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Quadratic form schemes and quaternionic schemes
by

M. Kula, L. Szczepanik and K. Szymiczek * (Katowice)

Abstract. Quaternionic schemes, quaternionic structures and abstract Witt rings are known
to be equivalent abstract versions of the algebraic theory of quadratic forms. This paper establishes
a relationship between quadratic form schemes and the three other axiomatic approaches to quadratic
forms. It is shown that .cancelative quadratic form schemes goincide with quaternionic .schemes.

Introduction. The algebraic theory of cjuadratic forms focuses on quadratic
forms over fields. However, it has become clear that some parts of the theory are
best treated by using an appropriate abstract language. Several authors have had
ideas of this kind and as a result we are confronted with at least fom distinct abstract
approaches to quadratic form theory. These are*

(i) Quadratic form schemes (3], {4], [5], [6], [10], [11], [12D.

(ii) Quaternionic structures ([1], [8], [9]).

(iii) Abstract Witt rings ([1], [8], [9] and earlier papers c1ted there).

(iv) Quaternionic schemes ([1]). :

The relationships among (ii), (iii), and (iv) are fully known. Marshall’s book [8]
shows that (ii) and (iii) are equivalent and Carson and Marshall [1] prove that (ii)
and (iv) are equivalent. It is the aim of this paper to clarify the role of (i) among the
abstract theories of quadratic forms.

In Section 1 we exhibit several equivalent sets of axioms for (i) and in Sectlon 2
we do the same for (iv). In both cases we have found that the generally accepted sets
of axioms for (i) and (iv) are dependent and we reduce the number of axioms in each
case to a pau of independent axioms and even to a single axiom in each case.

~ Section 3 explains the relatlonshlp between two concepts of isometry of forms
used in abstract theories (chain isometry and inductively defined isométry follow-
ing [8] and [9]). The main result, Theorem 3.5, establishes the actual equivalence of
quadratic form schemes with cancellation property and quaterniomic schemes,
A corollary to this result asserts that the classical Witt cancellation theorem for forms
of any dimension is a consequence of the cancellation property for 2-dimensional
forms.

* While submitting the manuscript this author held a visiting position at Louisiana State
University, Baton Rouge, LA 70803.
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In Section 4 we consider two important types of schemes (Pythagorean and
Hilbert) and show that for them the cancellation theorem is a consequence of the
other (simple) axioms.

1. Quadratic form schemes. Throughout the paper, G will always be an elemen-
tary 2-group (i.e., x> = 1 for every x € G) and —1 e G will be a distinguished element
of G (=1 = 1 is not excluded). The product —1-a will be written —a. We write V/
for a mapping assigning to each a e G a subgroup ¥(a) of G. Whenever the triplet
S = (G, —1, V) appears, G, —1, V have the above meaning.

DerINITION 1.1. S = (G, —1, ¥) is said to be a quadratic form pre-scheme
if the following two axioms hold for S:

Cl. ae V(a) for every ae G.

C2. be V(—a) implies ae V(=b) for all a,be G.

- DEFINITION 1.2. A gquadratic form f of dimension n in a pre-scheme
S=(G, —1, V) is any n-tuple f = (al,f,.., a,y of elements of G. The set Df of
elements of G represented by f is defined inductively as follows: -

D{ay) = {a;},
Dlay, ... ay = J{a;V(a;x): xe D{ay, ..., a,p} fornz2.

In particular, for a binary form {a, b, we have D{a, by = aV(ab).

All these have natural meaning in case of the pre-scheme of a field F of charac-
teristic # 2. Here G is the group of square classes F*(F2, —1 is the coset (—1)F?
and V(aF?) is the value group of the quadratic form X2>+a¥? viewed as a sub-
group of G. However, it turns out that in abstract situation the value set
D{ay, ..., a,y depends in general on the order of diagonal entries. To rectify this we
introduce :

DEFINITION 1.3. A pre-scheme S = (G, —1, V) is said to be a quadratic form
scheme if it satisfies the following axiom:

C3. D{a,b,c) = D{(b,a,c) foralla,b,ceG.

In a series of papers all the schemes on groups of order < 32 have been classified
(see [2], [13], [14], [4], [5], [6], [7] for |G| <8, [11], [12] for |G| <16 and [1] for
|G| <32). 1t turns out that all these schemes come from fields.

J. Pekata [10] observed that Cl and the following axiom P2 also define a quad-
ratic form scheme:

P2. - beV(—a)V(~ac) = ae V(-b)V(—bc).
It i; convenient to state this axiom in the following equivalent form:

L. BV () V(—ac) # B = aV{—B) " V(—be) # & .
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Finally, we wish to tufn .attention to the following consequence of .Cl and P2:
QFS. be V(—a)V(=—ac) = —abe V(—b)V(=bc).
The following theorem determines the strength of the various sets of :axioms.

THEOREM 1.4. .For a triplet. S = (G,—1,7V) the following are equivalent:
(1) C1, C2 and C3 (i.c.-Sis a quadratic form scheme).

(ii) C2 and C3.

(i) C1 and P2.

(iv) Cl1 and 12.

(v) QFS.

Proof. (i) = (ii) is trivial and t6 prove (i) = (iii) we first prove that (ii) = CI.
Observe that without assuming anything on S we have ae D{a,b) and
aeD{a,b,cyforalla,b,ce G.Thusae D<{a,1, —1>and by C3,ae D{1,a, —1).
It follows a € V(x), where x € D{d, —1) = aV(—a). Thus x = ay with ye V(-a)
and a € V(ay). By C2, —aye V(—a)and so ~a = —ay-ye V(—a). By C2,a € V(a).
This proves Cl for 8. Now P2 follows as shown in [10].

(iii) <> (iv) follows easily via the general fact: be HKiff HinK # & where H
and K are subgroups of an arbitrary group. That (iii) = (i) is proved in [10]. Since
(iii) = (v) is trivial, it remains to prove (v) = (iii). First observe that applying QFS
twice, we get v o o
(1.4.1) be V(—a)V(~ac) = ae V(ab) V(abc).

Now take b = ¢ = 1 and use (1.4.1) to get ae V{(a). This proves QFS = Cl. But
QFS and Cl obviously imply P2. Hence (v) = (iii), as required.

Remark 1.5. Looking at. appropriate examples of triplets § = (G, —1, V);
one can conclude that the axioms in (ii), (iii) and (iv) are independent.

2. Quaternionic schemes. In this section we will discuss the pre-schemes intro-
duced by Carson and Marshall in [1]. Given a standald trnplet S = (G -1,7)
we write V(a, b; ¢, d) for bV(—a)n V(—acyndV(—c).

DrrnNiTION 2.1 ([1]). A quadratlc form pre- scheme Sissaid to be a quafernzomc
scheme if it satisfies the following axiomr. -
CM. Via,bic,d) # D= V(b,a;d,c) #9D.

Quaternionic schemes are closely related to quaternionic structures co1151dercd
in [8] and [9] (see [1] for the proof that the two concepts are equivalent). In order to
relate quaternionic schemes to quadratic form schemes considered in Section 1, we
introduce the following intersection property I3 and transitivity property T (the
latter coming from [1]):

13. Via,b;c,d) # D= V(b,a;c,d) + 9.
T. Via,b;c,d)# @ and V(c,d;e,f)#D=V(a,bje, f)#J.
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We also consider the following consequence of Cl and I3:
Q. V(a,b;c,d) #9D = V(b, —ab;c,d) # D
The- interrelations among the four properties are recorded below.

THEOREM 2.2. For a triplet S = (G, —1, ¥) the following are equivalent;
(i) Cl, C2 and CM (i.e;, S is a quaternionic scheme).

(i) C1 and CM.

(iii) C1 arnd 13.

(iv) Cl1 and T.

™ Q

Proof. (i) < (i) will follow if we show CM = C2. Assume CM holds for S
and let b€ V(—a). Then b e V(a, b; 1, b) and by CM, we have V(b, a; b, 1) # .
It follows aV(—b)AV(~b) # & and s0 ae V(—b), as required.

The second part of the proof will show (iii) = (ii) = (iv) = (iii). Observe that
always V(a, b; ¢, d) = V(c, d; a, b). Now assume I3 holds for S. Then

V(a,-b;c,d);éﬁaV(b,a;c,@;é@, by 133
= V(e,d;b,a) # O
=V(d,c;b,a)y D, byl

> V(b,a;d, ) £ D . .

This proves I3 = CM and so (iii) = (ii). That (ii) = (iv) is proved explicitly in ur
proof of Theorem 1.3. Carson and Marshall use in their proof also C2, but this is
a consequence of CM as shown above.

(iv) = (iii). Assume x € V(a, b; ¢, d). Then xebV(—a)and so —abe xV( —a),
by Cl1. Again by ClI,

—abeaV(~b)nV(—ab)ynxV(—a) = V(b,a;a, x).

Further, x e bV (—a)n df’(—- ¢) implies bV (~d) = xV(—a) and dV(—¢) = xV(— c)
Hence

V(a,b;c,d) = xV(—a)nV(~ac)nxV(=¢c) = V(a, x; ¢, x).
Thus x€e V(a b; ¢, d) implies
 Vh.ma,x)# O and V(e xic,x) # @

and using T we conclude
Vb,a;c,x) # 9.
It follows

Vb, aye, d) = aV(=b)nV(=be)AxV(—c) = V(b,e;c,x) # & .

icm
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This proves I3 for S and completes the second part of proof. It.remains to prove
(v) = (iii) since the converse is obvious. Applying Q twice, we get

2.2.1) Vie,b;c,d) # G=>V(—ab,a;c,d)#D.

Now take b = c=d =1 and observe that 1e V(a,1;1,1). Hence by (2.2.1),
av@nvV@nV(—1) = V(—a,a;1,1) # J. It follows a¥V(a) n¥(a) # & and 50
a € V(a). This proves Q = Cl. But Q and CI imply I3, since —ab¥V(—b) = aV(-b)
follows from CI. Hence (v) => (iii), as required.

COROLLARY 2.3. Every quaternionic scheme is also a quadratic form scheme.

Proof. According to 1.4 and 2.2 it suffices to prove I3 = I2 which is obvious.
Another proof is by observing that Q = QFS which becomes particularly easy if QFS
is written as the intersection property

bV(—a)nV(—ac) # @ = —abV(—-H)nV(—bc) # O .

Remark 2.4. We point out that the converse of 2.3 is not known to hold. We
will discuss. this problem in the next sections. We can prove that the axioms in (ii),
(iii) and (iv) of 2.2 are independent. Also one can show that T alone is weaker than I3
or CM since it does not imply C2 while both I3 and CM do. We omit the details.

3. Cancellation property. The notion of isometry of quadratic forms can be
introduced in abstract pre-schemes in two different ways. The first uses the chain
equivalence theorem of Witt ([15], Satz 7) and the second an inductive descnptlon
of isometry relation for forms over fields (cf. [8]).

DerNiTioN 3.1, Two forms f= {ay, .., a,) and g = (by;...,
scheme S are said to be chain isometric, written f~ g, if

b,y in- a pre-

(i) a; = by, when n = 1.

(ii) aja, = by b, and D{ay, a,) = D{(by, b,), when n' = 2.

(iii) For n> 3, there exists a chain of forms f = f, f1, ... s = ¢, k=0, such
that for each i = 1, ..., k, the form £, is obtained from f;_., by replacing two entries
a, a' by b, b', tespectively, where {a, a'y ~ (b, b').

DermviTION 3.2, Two forms fand g as above are said to be strongly isometric,
written f = g, if (i) and (ii) of Definition 3.1 hold when n =1, 2, and when n>3,
there exist a,b,c,..,c,€G such that <{ay,a) =<{by,b), {az,...; @)
= {a, cyy .y 0y and (by, ..., b,) = (b, Cayuns ).

It is obvious that chain isometry is an equivalence relation but for strong isometry
this is not so. The point is that transitivity of = requires some extra assumptions
on the pre-scheme S. '

. THEOREM 3.3. For a pre-scheme S the folIowmg are equtvalent
(i) Strong isometry = is transitive.
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(ii) Strong isometry = is transitive on 3-dimensional forms.
(iii) The pre-scheme S is a quaternionic scheme.

Proof. (i) < (ii). Marshall’s proof of (i) for quaternionic structures ([8], p. 34)
includes the proof of (i) <> (ii). Observe that (ii) holds iff it holds for 3-dimensional
forms of determinant 1 (here det f= a,* ... -, for f = {ay, ..., 4,»). Indeed, a simple
induction argument shows f o g =>detf = detg and it is easy to sec that
f&g=xf=xg for any xe G (here xf = {xay, ..., ¥a,)).

Thus for the remaining part of the proof we need the following result.

‘Lemma 34. {—a, =b,ab) = {—c, —d,cdy<V(a,b;c,d) # O.

Using 3.4 we conclude that (ii) holds iff S satisfies the transitivity axiom T from
Theorem 2.2 and this holds iff S is a quaternionic scheme, by Theorem 2.2.

Thus it remains to prove Lemma 3.4. The two forms are strongly isometric iff
there are e,f,ge G such that (—a,e) = (—e¢,f), {(—b,aby = {e,g) and
(=d,cedy =S, g). Comparing detelmmants, —a=-eg, —c = fg hence e = —ayg
= ax, f= —cg = cx, where x: = —g. Thus the forms are isometric iff {—a, ax)
2 (—c,exy, {—b,ab) = {(—x,ax), {~d,cdy={—x,cxy iff aceV(-—x),
bxeV(—a), dxe V(—¢) iff

xebV(—dnV(=a)ndV(—o) =

This finishes the proof of 3.3.
Let =~ denote an isometry relation for forms in a pre-scheme S and let us agree
that {ay, ..., @) +{by, o, by 1=a1, «ovs bp)-

DEFINITION 3.4, We say the pre-scheme S is n-cancelative for the isometry = if
for any two forms f and .g of dimension # and for every a € G,

(B+f=lay+g=f=g

S is said to be cancelative for = if it is n-cancelative for every n> 1.

V(a,b;c,d).

The cancellation property behaves quite differently in the two types of schemes
considered here: ‘On the 'one hand, if we work with strong isometry =, we have to
assume S is a quaternionic scheme (cf. 3.3) and then it is quite easy to prove that S is
cancelative for = (cf. [8],'p. 35) and that strong isometry = and chain isometry ~
coincide ([9], Cor. 2.4). On the other hand, if S is assumed to be a quadratic form
scheme and the isometry chosen is chain isometry it appears to be a hard problem
to decide whether S is cancelative for ~. Notice that all the quadratic form schemes
on groups of order < 32 come from fields and so are cancelative. Hence, if a non-
cancelatjve scheme exists, it lives on a group of order at least 64.

In order to develop a meaningful abstract theory of forms one has to add one
more axiom to Cl, C2 and C3, and this is cancellation for chain isometry (cf. [11],
[12]). The question now arises: how do quaternionic schemes compare to these
cancelative quadratic form schemes? ‘ :

icm
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THEOREM 3.5. For a pre-scheme S the following are equivalent:
(i) S is a gquaternionic scheme.
(ii) S is a quadratic form scheme and S is 2-cancelative for chain isometry.

Proof. (i) = (ii). As mentioned above, (i) implies that chain isometry coincides
with strong isometry and the latter is cancelative. Also C3 follows from [8], Prop. 2.1
on p. 3L

(i) = (1). We need a ]emma analogous to 3.4

LEMMA 3.6. Assume S satisfies (ii). Then for any a,b, ¢, d€G,
(—a, =b,aby~{~c, ~d,cdy < V(a,b;c,d) # 9.

Proof of 3.6. If V(a,b;c,d) # @, the two forms are strongly isometric by
Lemma 3.4, hence also chain isometric. Conversely, assume f:= {—a, —b, ab)
~{—¢, —d,cd) =:g. Then Df = Dg and so —ce Df. According to Def. 1.2,
ce D{—a,y), where y€ D{—b, ab). It follows ace V(—ay) and aye b¥V(—a).
Thus with x := ay we have
(3.6.1) xebV(—a)nV(—ao).

It also follows that {—b, ab) ~ {—x, ax) and (—a, ax) ~(—c, cx) and so we
get the chain

{—~a, —b,ab),
showing that /'~ {~c,

{~a, =x,ax), {—e,~x%,cx)

—x, ex). Since f'~ g it follows that
{(—e¢, —x,cxy~{—c¢, —d,ed).

Now use 2-cancellation for ~ and get {—x, ex) ~ {—d, cd). Hence x e dV(—c).
On combining with '(3.6.1) it follows x € V(a, b; ¢, d), as. required. ThlS proves
Lemma 3.6.

Now we are ready to prove (i) = (i) in 3.5. If (ii) holds and V(a, b; ¢, d) # O,
then by Lemma 3.6, {—a, —b,aby ~{—c, —d,cd). It follows trivially that
{=b, —a,bay~{—d, —e¢,dc), and by 3.6 again, V(b,a;d,c) * J. Thus S
satisfies CM and so is a quaternionic scheme. This completes the proof of 3.5,

Remarks 3.7. Since quaternionic schemes are cancelative, we arrive at an
interesting corollary to 3.5 that for a quadratic form scheme 2-cancellation for chain
isometry implies cancellation property in full generality. This observation seems to
be new even in the classical context of quadratic forms over fields. Thus, defining
cancelative quadratic form schemes. we may require only 2-cancellation instead
of n-cancellation for every n. If G is finite, this makes it possible to check the can-
cellation property for S = (G —1,¥) in a finite number of steps.

3.8. The result in 3.5 asserts that for a pre-scheme S the axiom CM is equivalent
to C3 plus 2-cancellation property. It is an open problem whether CM is actually
equivalent to C3 alone,
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4. Pythagorean and Hilbert schemes. In this section we consider two important
special types of pre-schemes and show that for them the cancellation property is
a consequence of the other axioms. This solves the problem discussed in 3.8 above
for the two types of pre-schemes.

A pre-scheme S'= (G, —1,¥) is said to be Pythagorean if 1% —1 and
V(1) = {1}. Pythagorean fields produce examples of Pythagorean schemes and every
cancelative Pythagorean quadratic form scheme with finite group G comes from
a Pythagorean field (cf. [4]). We will now show that for quadratic form schemes
(C1, C2 and C3 assumed) with [G] < oo Pythagoreanity implies cancellation property.

TreoREM 4.1, Let S = (G, —1, V) be a Pythagorean quadratic form scheme and
assume the group G is finite. Then S is cancelative for chain isometry and so S is a quater-
nionic scheme.

Before proving the theorem we recall two basic properties of Pythagorean
schemes,

LemMMA 4.2. For any form f in a Pythagorean scheme S and for any positive in-
teger n, we have D(nx f) = Df.. :

Mere nxf = f+..4+f (n times). This is a simple consequence of the repre—
sentation criterion (cf. [8], Prop. 2.10, p. 36 and [12]). .

LemMMA 4.3. In a Pythagorean scheme, ae V(b) <> V(a)< V(b).

Proof of 4.3. Assume aeV(b) and ce¥(a). Then {1,b)~<{a,aby and
{1, ay ~{e, acy. Consider f (1,b,1,b). The above isometries yield

f~<a ab 1,by~ (b ¢, ab, ac) .

It follows that ¢ e Df = D{1, b), the latter by Lemma 4.2. Thus ce V(b) and so
¥(a) = V(b). The other implication in 4.3 results from CI.

In a Pythagorean scheme one can introduce a partial ordering on G by putting
x <y < V(x) = V() (checking antisymmetry requires V(1) = {1}). If we assume.G
is finite, there are some maximal elements in G with respect to. <. This will be used
in the proof of Theorem 4.1 which follows.

By Theorem 3.5 it is sufficient to prove that chain isometry has 2-cancellation
property and this (by scaling) says that

{0y +4a, by ~ {1+ e, dy = {a,b)~{c,d).

So assume {1, a, by ~(1,¢c,d). Comparing determinants we get ab =
and. we wish to show that -

,a,axy~{1,¢c,ex) = {a,ax) ~{c, cx) .

Let-ye D(1, a, ax) be maximal with respect to <. We have ye D{1,z) = V(2)
for some z e D{a, ax). By Lemma 4.3 we have V() = V(z) and by the maximality

ced=:1%

(4.1.1)

icm
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of y, we have y = z. Hence
(4.12) a, axy ~(z,2x) = (3, xp) .

Since D{1,a,ax) = D1, ¢, cx), we have ye D{l, ¢, cx) and y is a maximal
element in this set. Similarly to the above, there is a te D{c, ex) with
yeD{l,t) = V(t) and so y <t and y = t by the maximality of y. It follows that

(4.1.3) e exy~{t ey =y, ap) .

By transitivity, (4.1.2) and (4.1.3) imply {a, ax) ~{c, cx) which proves (4 1, 1)
This completes the proof of Theorem 4.1.

A pre-scheme S = (G, —1, ¥) is said to be Hilbert if each subgroup V(@)
has index |G: V(@)| <2 and equality holds for at least one ae G. Classical local
fields are Hilbert in the sense that their quadratic form schemes are Hilbert. We
will show that Hilbert pre-schemes are cancelative for chain isometry and also
satisfy C3.

THEOREM 4.4. Every Hilbert pre-scheme is a quaternionic scheme.

Proof. Accordmg to Theorem 2.2, it is sufficient to prove that every Hllbert
pre- scheme S satisfies I3. Our proof below does not use axiom CI. Write

L= bV(-a)n V(- @)ndV(~0) and Ri=aV(~b)n V(- bc)ndV(-c)

and assume L # . We want R % @. We begm with
LemMa 4.5. If S is Hilbert and L # O, then
‘ ' beV(-a) = deV(—0).

" Proof of 4.5. Assume b e V(—a). By C2, we have V( aAnV(—ac) c V(- c)
and on the other hand ¥V(—~a)n¥V(—ac)ndV(—c) # @ since bV(—a) = V(~a)
and L # @. It follows that V(—c)ndV(—c)# & and so de V(—c). Thus
beV(—a)=>deV(—c). Since L = V(a,b;c,d) = V(c,d;a,b), using the same
argument yields de V(—c¢) = be V(—a). This proves 4.5.

Now we proceed to the proof of 4.4. So let L # &. If 1€ aV(—b)ndV(—c),
then 1€ R and so R # @, as required. So assume 1 ¢ aV(—b)ndV(—c). It follows
a¢ V(—b)ord¢ V(—c)and by Lemma 4.5 we actually geta ¢ V(—b) andd ¢ V(—c).
By Hilberticity, this means V(—b5b) and V(- c) are subgroups of index 2 in G and so
certainly aV(—b)ndV(—c) # @. Let xcaV(—b)ndV(~c). Then axe V(—b),
dxeV(—c) and so x¢ V(—b) and x¢ V(—c). Hence b ¢ ¥(—x) and c ¢ V(—x),
by C2, and so bc e V(—x), by Hilberticity. Hence x € ¥(—5c) and so x € R. Thus
R # @ and we are through.

Remark 4.6. Another proof of 4.4 can be given by using quaternionic structures
and their relation to quaternionic schemes ([11]). For a 2-element set Q = {0, 1}
we define the mapping ¢: Gx G — Q by putting q(a,b) =0 or 1 according as

3 — Fundamenta Mathematicae 130.3
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be ¥V (—a) or b¢ V(—d). It turns out that (G, q, Q) is a quaternionic stru:cture in
the sense of [8] and its scheme coincides with S. By [1], CM holds for S, so Sis a qua-
ternionic scheme.
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A combinatorial analysis of functions provably recursive in 1Z,
by

Z. Ratajezyk (Warszawa)

Abstract. We use certain functionals of finite type to define an indicator for IX,. We show that
this indicator is equivalent in IZ’,.{tof an indicator of combinatorial character. The syntactical-combi--
natorial part is definitely separated from the model — theoretic part. Finally we obtain a simple
proof of the estimation of the growth for recursive functions provably total in IX,.

§ 1. Introduction. This paper is devoted to an application of a family of selec-
ted primitive recursive functionals to the investigation of provably recursive functions
in IZ,, where n > 1. We first define the spaces F,® on which the above-mentioned
functionals are defined Let Fyw = w; then we define by induction:

Fyp 0 = (Fro)fe
for kew.
We assume that I;: @ — o is the function of the immediate successor and we
define the subsequent functionals by

LAY o (P = (P48 L ()G

for all xew, f*eF,0,....f 'eF_ 0.

The functionals belonging to the space Fyo will be said to be of #ype k. In par-
ticular, for every k € w, k>1, the functional I, is of type k. '

The idea of using functionals like I,, ..., I, is not new. In [4] Paris presents,
referring to Aczél, a sketch of proof that for every o < w,,.; the existence of «-large
sets is provable in IZ,. That proof is based on the use of the above-mentioned
functionals. : : :

Unfortunately, a considerable difficulty in reading that proof arises from problems
connected with the formalization of the above functionals in arithmetic. Moreover,
all lemmas are sketched and it is not obvious that they can be formalized in IZ,.

In the present paper we only formalize functionals of type 1, strictly speaking’
only those of them which are formed of I, I,, ... by means of application and
superposition. In order to reach this objective we use a kind of miniaturization of all
functionals. This topic is discussed in § 2 and § 3.
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