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Multiple points of singular maps
Part 1I

by

Andrds Sziics (Budapest)

Abstract. Here we generalize the theorem from our earlier paper with the same title, Part I,
to the maps of nonorientable manifolds. Namely we give some conditions on a singular map which
imply that the map cannot have a single multiple point of the highest multiplicity.

§ 0. Introduction. Let us recall some definitions from Part I 71

Notation. For a generic smooth map f: M" — R*** of a closed manifold M"
in R"*' we introduce the following sets:

44F) = {ye R £~1(3) contains at least k different points},
I(f) = {ye R"*| £~Y(3) contains a singular point}.

DERNITION. A map f as above has singular multiplicity k if k is the smallest
nonnegative integer such that X(f) and 4,.,(f) have disjoint neighbourhoods.

Notaticn. &( ) will denote the singular multiplicity of f

DEFINITION. A map as above will be called a C-map if it satisfies the following
two conditions: . o ‘ '

ConpITION 1. &(f)'< n

CONDITION 2. For any conmected component 4, of 4,(f) which is a regular
curve in R**! the ¢-neighbourhood of 4, in 4,-(f) consists of even number of .
MG&bius bands plus some (may be zero) nontwisted bands § 1 x I all bands of the .
width 2e. (If we throw out the central lines of these bands then the obtained cut bands
are embedded subsets of 4,_4(f). Thé central lines lie in 4, but diffetent points
of the same central line may lie at the same point of 4. So these bands are immersed
in. R*** and they may have selfintersections only along the central lines.)
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Restriction (RZ). In what follows “a map” will mean a generic map having
only 2*° type singular points.

THEOREM. No C-map f: M" — R**! (satisfying RZ) of an even dimensional
closed manifold M" has u single (n--1)-tuple point.

§ 1. Notation and preliminary remarks. Let G, denote the group of /x / matrices
with exactly one nonzero entry in each row and column and such that these nonzero
entries are +1 or —1.

Let Gf be the subgroup of G, consisting of matrices with even number of negative
entries.

By an n-cross we shall mean the union of the coordinate lines in R" and an
n-cross bundle is a bundle with fibre homeomorphic to an n-cross. Notice that the
group G, acts on an n-cross.

Condition 2 above is equivalent to the following condition.

ConpITION 2'. For any component 4, of 4,(f), the intersection of 4,.,(f)
with-an ¢-neighbourhood of.4; is an -cross bundle over 4, with structure group G¥.

Since Condition 2" makes sense even if dim 4,(f) 51, we can extend the nouon.
of C-map

DEFINITION. A map f V”
satisfied.

Notice. that
if v<n-—1 then any map fis a C-map; }
if v =n-1 then Condmon 1 implies Condition 2'.

R*tis a C- map 1f Conditions 1 and 2’ are

Notation. Let us denote by C,(u) the cobordism. group of C-maps having
no (I+1)-tuple points of v-dimensional manifolds in R°*. (The cobordisms joining
the maps must be maps of the same type, i.e. 1hey are C mapa w1t11out (/+1)-tuple
points, their target space is R"** xI.)

Sketch of the proof. The basic llne of the proof is the same as in Part T.
Namely, there are three steps

Stép 1. (Andlogue of Lemma lAk B, C, D of Part T.)

Lemma 1. If Theorem fails then the natural Jorgetting map p: C,(n-1) -
= Cyr1(n—1) is monomorphic. (Recall that the indices show the maximal allowed
multiplicities of selfintersections, the number (n=1).in the brackets shows the di-
mension of the sources of the maps. The restriction a( f ) < nis not expressed by our
notation but it always meant.)

Step 2. (Analogue of Lemma 2 A, B C D of pa1t I ) Gwcn a natural number /,
there exists a space CX, such. that

Cl(m) ~ 7fm+ 1(CX Do
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For I < nthe space CXjis the same as X, in Part I. The space CX),, can be obtained
from CX; by attaching to it an (J+1)-dimensional disc bundle D{;,, by using an
attaching map

o 0D, — CX,.

Step 3. (Analogue of the Main Lemma A, B, C, D of part 1.) The restriction ¢
of the map g, to a fibre S* of d.D{,.., is not null-homotopic if » is even. In order to
show this we shall construct a map

0: CX, - RP® VT,

such that the composition 6o g: S" - RP® v I, is not null-homotopic.
These three steps imply the Theorem because the map

where 77, is the Thom space of {,,

@ = @,ls» gives a nonzero element of the kernel of the map’
¢: C(n—1) = C,1((n—1) and so by Lemma. 1 the Theorem holds.

Since the proof is quite similar for immersions and for singular maps, we shall
concentrate on the proof for immersions and then the general case can be deduced
from this special case mainly in the same way as this was done in part L.

Lemma 1 can be proved — mutatis mutandis — in the same way as
Lemma 1A,B,C,D i in Part I, so we shall deal only with steps 2 and 3.

§2 The classnfymg space for cobordisms of C-immersions and C-maps.

DEFINITION. A codimension 1immersion f: ¥* — R**'is called a C-immersion
if it is-a C-map.

DeRNITION. The cobordism group of C-immersions (C-maps respectively)
of m-manifolds into R"** having no (/+ 1)-tuple points can be defined replacing in
the deﬁn1110n of the cobordism group of embeddings the word “embedding” by
the' expression “C-immersiosl (C-maps, respectively) without (/+1)- tuple pomts
This group will be denoted by C-Immy(m) (Cy(m), respectively).

PROPOSITION 1. For any natural number I there exist spaces CIy and CX; such
that’ v .
C—Immy(m) & 7, ((CTY) ,  Cm) R sy (CX) -

Proof. Let us denote by I'; the space I'(RP®). (For the definition of I'(*)
see § 4 of Part I Briefly, I')(X) is the Jth term in the model of Q®S® X.) Let
wt I', » RP® be a map inducing isomorphism of the fundamental groups and let
B: F, — I, be the corresponding double covering map. Now CT, can be obtained
from [, identifying those points of B~*(I,~;) which have the same image at ,B
(Espec1a]1y, CI] =TI if I<n—-1)

An alternative descrlptlon of CI';. Let G, and G} be the groups described
in the “Preliminary remarks” and let {; and & be the universal /-dimensional vector
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bundles with structure groups G, and G Let D{;, S{; and D¢, St} be the corres-
ponding disc and sphere bundles: D¢ = SC;, 8D{} = S}
The bundle map ¢

14

St

> S

corresponding to the inclusion Gf = G, is a double covering. Recall from part I
that I'; = I'(RP%) can be obtained from I';.; by attaching to it a disc bundle D¢,
using an attaching map g;: S¢ = I'y.,.

Now if /<n then put CI', = I.

If I>n then we attach to I',_, the disc bundle D{} by the attaching map
o0y = gyo ¢ (where ¢: SGf — S, is the double covering map mentioned above).

The obtained space will be CT,, i.e.

CF,.=F,,—1UDC:-
. L

Then we attach to CI, the space D{}., by an attacking map o, ,: St*,, - CT,
ar:d obtain CT',,. Then we attach to the space CT,, , the space D¢¥,, by a map
On3+2 and obtain CT, ,, etc. (The definitions of the maps g, |, 05, ... are analogous
to those of the maps g; from [6].) :

In order to show that these two definitions of CI; give the same space we have
to. show only the following

PROPOSITION 2. The double covering map Bl — D, induced by the restriction
of the map a: I'y - RP® to DL, is the same as the double covering map c: D¢ — D,
induced by the inclusion G < Gj.

We shall prove this proposition later.

Construction of the space CX;. Recall that in Part I a space X; (k) has
been constructed for any natural numbers k, ! and s such that > s { den'oted the
maximal admitted multiplicity of the selfintersections and s denoted the maximal
admited singular multiplicity of maps, while k& denoted the codimension of the
maps. The cobordism groups of the maps of this sort of orfented manifolds were
isomorphic to the homotopy groups of the space X, (k).

Replacing in the definition of this space the group SO(k) by O (k), we obtain
a space which we denote by X (k). For s = n—1 and k = 1 we shall denote this
space by X; . Notice that X; contains the space I'; as a subspace. Now the space CX,;

can be defined identifying in-the disjoint union X7y CT; the subspaces I',.; = X/
and I',., < CI';. ’
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The proofs of the isomorphisms in Proposition 1 are quite analogous to the
proofs of the isomorphisms '

Tmmy(n, k) = m, (T(MSO(K))  from [4], [6]
and

S(n, k) ~ m(X (k) from [5]

or
Sl,s(n, k) ~ Wn+k(Xl,s(k))

So we shall not repeat them. By thus we consider Step 2 as setded.

from part 1.

§ 3. Step 3. Let g* denote the restriction of the attaching map
ome1t Sy = CT,
to a fibre S” and let T¢* be the Thom space of {7

PROPOSITION 3. There exists a map 0: CT, — RP® v TL} such that 0..0* is
not null-homotopic if n is even.

Proof. There exists a map §: CI', -~ RP® such that

(a) Oy: m(CI,) = my(RP™) is an isomorphism;

(b) 6 maps the zero section By of D{y = CI, into one point e RP®.
Morcover, we can suppose that

(c) there is a neighbourhood U of By in CT, disjoint form I~y = CI'; and
diffeomorphic to D{; such that 6(U) = %€ RP*.

Let the point * be the common point in the wedge product RP® v.T¢x. (This
point is also ihe singular point of the Thom space TCx) .

Let r: U — T+ be a homeomorphism.

Now the map 0 can be defined as follows:

o= T

if xeU.
Recall that, quite analogously, a map #: T, » §*v " has been defined in Part'1
(which was denoted first by 6). The space T, was the m-th term of the James product
of the circle S!. The m-th homotopy group of this space was isomorphic to the co-
bordism group of those codimension 1 immersions of oriented (m——l)-dimensional
manifolds into R™ which had no (n+1)-tuple points and which were projections

of embeddings into R™*%, ‘
It is easy to see that there is a homotopically commutative diagram

é
Cr,——=>RP*vI{;
vt
L 8
T

> Sty §”
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where i embeds S* and §" onto a fibre in the Thom spaces MO(1) = RP” and Tk,
respectively, and j is the “forgetting” map. (It is analogous to the map j of Part L)

Remark. The degree of a map f: 8" — RP® v T¢ for any n dimensional vector
bundle ¢ can be defined as follows: (This degree will be an element of the group
Z,®Zy). . .

Let us identify the space RP* with the Thom space M 0(1) and denote by BE
the base space of & The map f can be supposed to be transversal both to
BO(1)c MO(1) and BE < T¢. The preimage STHBO(1)) is a hypersurface in §"
which divides S" into components. Divide the set of these components into two groups
taking two components into the same group iff a curve joining points from these
two components has even number of (transversal) intersection points with
F£~Y(BO(1)). Counting modulo 2 the preimages of B¢ in both groups of
components, we obtain degfeZ, ®Z,. ) ‘

Let us recall how we computed in Part I the degree of the map

CE=feg: S">STVE". R
The source sphere gf “this map was identified with the boundér,y of the cﬁge'
et %{(xl,...,x,,,,_;)l‘OSxiﬁl} | : .
and choosc.:'points Pest an.cl Pre 8" so tha;c we had:

TP = {(*1s s e €57 Ly = $mod1},

T7%(P,) = the set of the face centers of et

Now we want to comput'é:‘the degree of the map y = e £: S" —» RP®v T(y. We
have : ) -
yHBO) = TH(P)  and pTHBEG) = TP
Both preimage sets y~*(BO(1)) and y"’(BC,’:‘) are symmetric on the centre of the cube
I*™1, The components of $"\y~(BO(1)) corresponding to each other under this
symmetry belong to different groups of components (in the sense of the previous
Remark). Hence in both groups the number of the face-centers is (n+ 1) that is odd.
Proposition 3. is proved.

Proof of Proposition 2. Let us denote by T; = I'}(RP®) the I-th term of
the James product of RP® (see [3] and [7]). The m-th homotopy group of this space
is isomorphic to the cobordism group of those immersions of (m—1) manifolds
(not necessarily orientable ‘ones) into R which are projections of embeddings into
R™*1 and have no ({+1)-tuple points.

This space can be obtained similarly to Iy = I'(RP®) by induction on J, begin-
ning with Ty = RP® and obtaining T} from T}.., by attaching to Iy, an I-dimen-
sional disc bundle Df;. But the structure group of the bundle {; is not G (as in the

a
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case of I';) but the group of diagonal matrices with 41 in the diagonal. We shall
denote this group by G,. Ohviously,

G=o®..00()

Similarly to the oriented case treated in part I there is a “forgetting” map j: T; — I}
which is an /! —fold covering over

(I-summands) .

BG,= DL I, and j~X(BG) = BG,.

Now consider the following commutative diagram
? T _
B'———>BG =T\
. N
i ‘Rp®
L
B -—p——) BG, c iy 1 *

Here o« and a induce isomorphisms of the fundamental groups, 7 and i are inclusions,
p and j are double covering maps induced by o2 and oo i respectively.
Let us cousider also the. corresponding diagram of the fundamental groups.

0o m(B)» iR Zy® .. ®Zy———>Z,

~

0 my(B) = Gy =(Z:® ... ©Z)2 SN > Z
Because of the symmetry, i, is the “sum map”
L1y ees X)) = 2 %1

and so my(B) = {(x(, ... @) € G Y. x; = 0} or if we think of G, as the diagonal
matrices with +1 in the diagonal than 7;(B") is the group of the diagona_l matrices
with even number of negative entries. Let us denote the latter group by Gi.

Then B’ = BG;. ‘ .

The S() extension 0 — Gy — G, —~ S()—~0 induces an S(J) extension .of
the group Gi:

o 0 G- my(B) - SO = 0.

Hence ,(B") = the group of matrices with 1 nonzero entry in each row and column,
these nonzero entries are 41 and the number of negative entries is even. In other
words, m,(B’) ~ G} This proves that B' = BG;. B

‘Thus, the Theoremhis pfoired for immersions. The extension of the result to
singular maps goes in the same way as in Part 1. Namely, thp map

8: CT, — RP®v T(*

5 — Fundamenta Mathematlcae 130.§
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can .be extended to a map -
6%: CX, - RPVT(}

by the same argument as in part I
- So we have the commutative diagram

s Rl"'"D v Ig
N | ya
Ny,

Here p* is the restriction to a fibre of the attaching map by using of which we obtain
CX,,, from CX, (i.e. ¢* here is the analogue of the map ¢* from Part I). From
this diagram we deduce that ¢” is not null-homotopic. Now by Lemma 1 the Theorem
follows. W

§4. Final remarks.’

(1) The restriction (RZ) can be released as soon as the appropriate classifying
spaces‘for the cobordisms of maps with higher singularities are constructed (see the
corresponding remark in § 8 of Part I).

(2) For immersion T. Banchoff in [1] described a procedure of pairwise elim-
ination of the multiple points of the highest multiplicity. His procedure applied to
a C-immersion givés again a C-immersion. I-Ience we have the following

COROLLARY. No C-immersion of an even dtmensional mamfold M" into R**?
has odd number of (n+1)-tuple points.

(3) As a matter of fact the multiple points of the highest multiplicity can be
eliminated pairwisely for an arbitrary C-map as well (although not by Banchoff’s
procedure since that procedurc may increase the singular multiplici.y). So in the
prev1ous_cprolla1y “C-immersion” can be replaced by “C-map”.

The elimination procedure of (n+1)-tuple points of a map f: M" - R is
'shown on' Figs. 1,2, 3. :

(1) Take small balls By and B, in Rf'“ centered around (11+1)-tuple points.
These balls can be joined by a thin tube 7" which

(2) avoids the image of the singular points and the double points,
" -«(b) its-central line has-even number of transversal intersection points with £(M)
(see Fig. 1).

(2) Makmg a surgery of (M), we can achieve that the tube does not intersect
the image set of the map at. all (see Fig. 2).

(3) Now in a big disc D of R" take (n+1) small g-balls BY, B},

.y By 44 such
that
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: B, : (M)
7; 1]
: f L\n‘M) ‘

Fig. 1

™)

&
J2

(a) their centers are in general position and the distance between any two of

Fig. 2

them is e,

(b) the boundary of any of these balls contains the centers of all the other balls.

Let S denote the union of the boundaries of these balls

nt+1

i=1

Let us denote by S, the subset Sx{t} in Dx{t} for t€[0, 1]. There exists

a diffeomorphism 4 of Dx [0, 1] onto the set U = By UTUB, such that (S, U Sy)
= (QU)n f(M) (see Fig. 3)

B*
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Now make the following surgery on f(M).
Throw out from f (M) the 2(n-+1) balls of dimension » which form the inter-
section f(M)NU and add to (F(M)\U) the set

REUS) re[0, 11).

By thus the number of (n-+1)-tuple points has been decreased by 2.
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An analytic equivalence relation not arising from a
' Polish group action

by

David Marker * (Chicago, 1IL.)

Absh'act We show that the equivalence relation xEy iff @7 = ] cannot arise as the orbits
of 2 Polish group action, We also calculate the exact Borel rank of {x % = a} for a a countable
admxssxblc ordmal .

Th‘ere are two natural abstractions of Vaught’s conjecture to descriptive set
theory. The most natural would be the conjecture that any analytic equivalence
relation on a Borel set with uncountably many classes, each of which is Borel, admits
a perfect set of inequivalent elements. Unfortunately this is easily seen to be false.
Let xEy if and only if @i = w], where o} is the first ordinal not recursive in x.
Then Eis X} and all E equivalence classes are Borel, but E has exactly ¥; equivalence
classes, one for each countable admissible ordinal.

The second abstraction is known as the topological Vaught conjecture. Let G
be a Polish group acting continuously on a Polish space X. If G has uncountably
many orbits, then there is a perfect subset of X such that any two distinct elements
are in different orbits. Kechris asked if the equivalence relation E could arise as the
action of a Polish group on the Baire space. In § 1 we show that it cannot. In § 2 we
give an exact calculation of the Borel rank of {x € ©®: w} = a}, for « a countable
admissiblo ordinal.

§ 1. Our main lemma uses several ideas of Vaught’s [V].

DepniTioN. Let G be a Polish group acting continuously on a Polish space X.
Let B< X, The Vaught transform B* = {xeX: {ge G: gxe B} is comeager}.

The facts we need about the Vaught transform are summarized in the following
lemma.

Lemma 1.1 (Vaught [V]).
(1) For any B< X, B* is G-invariant.

* Partially ‘supported by NSF postdoctoral fellowship MC 583-11677.
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