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- We work in L[a] Suppose ¥ = U ﬂ B,,, where cach B, is }33+ 2 For neg
let o

Du = {p EP«‘ .".lmp ""P.T¢ -Bnm}
.CLAIM 2 D, is densc

Let peP,. Fix §>ad <:4L[°‘] Smcc Pa gP,,, RE Pﬁ bupposc {r, H) eP,
is generlc over La] and pe (T* H). Clearly of" 9§, thus T* ¢ ¥. Thus P,
\/ A\ TeB,, Thus pip, \/ TeB,,. Thus there is mew and r<p such that

n m
¥ n-,,j‘géB,,,,, Let Fe P, be the retagging of . By Lemma 2.2 F "'p“?'é,[m", since
“1B,, is II Clearly r<p so D, is dense.

Let <T H ) be P,-generic over L[a]. Since then D, are dcnsc Vn edme mElp €
e {T,HYp Il-ml‘¢ B,,. Thus Te nu *‘|B,,,,, "1Y. So o] # oc, contradxclmg
Lemma 2.2, e t
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Representability of V[A4] as intersection of
A-bounded variation classes

by
Pedro Isaza* (Medellin)
* Abstract. Tt is proved that the generalized bounded variation class V[H] of Cantunja is the inter-

section of alf classes of A-bounded variation with A = {4} satisfying Zh() (%7 *—A57)< e, but
it is not the intersection of any countable subcollection of them. As a consequence of this result,

a version of Helly’s theorem for the classes V4] is proved.

1. Two important generalizations of the concept of bounded variation have
‘been given by D. Waterman [4] and Z. A, Canturija [2] by introducing, respectively,
the finctions of A-bounded variation (AB¥") and the classes ¥ [%]. These spaces hiave
been studied mainly because of their applicability to the theory of Fourier sefies.
An interesting connection between the class of functions of bounded variation (BV)
and the classes ABV has been. pointed out by Perlman [3], who has proved that the
space BV is the intersection of all ABV classes but not of any countable collection
of them. We shall prove an extension of Perlman’s result to study.the reépresentability
of the classes V[h] as intersections of ABV classes. This theorem will allow us to
prove a version for the classes ¥[h] of the well-known Helly’s theorem.

Let f be a function defined on an interval [a, ). If I= [x,y], we write
F) = F(¥)—F (). Let {I,} be a collection of nonoverlapping intervals /; < [a, b].

"I A = {A} is a nondecreasing sequence of positive real mumbers such that
Y 14, = co, we say that f is of A-bounded variation (ABY) on [a, by if
YA WIA, < oo for every {I;}. This is known to imply that the supremum . V,(f)
of the collection of the above sums is finite [4]. Also, if fe ABV, then fis regulaied
i.e., has only simple discontinuities..

Let

3t 8D = 20,) = s V1S

* This paper is a pnrt of the doctoral dlssmtatlon written by the author at Syracuse Umversnty
under the direction of D, Wafermian (presented May 11, 1986; Syracuse N. Y. - R
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the supremum being taken over all finite collections {I,}{-1. For a nondecreasing,
concave function s on the positive integers, satisfying £(0) = 0, let

vk, la, 8] = V[kl = {f1Vs(f) = supv(n.f, la, b])/h(m) < 00} .

For h bounded, V[#] is BV, and thus Z(nm) — co for all other classes V[A]. It may
be shown that ¥[k] consists only of regulated functions if and only if h(n) = o(n),
and therefore we will make this assumption on A, since our interest is to represent
V'A] as intersection of ABV classes, which contain only regulated functions We will
also assume that si(n) — c0 as n — 0.

2. The following theorems establish some properties of the classes V[],
TuroreM 1. If fe Vi, [a, b]] and fe Vih, b, cll, then fe VIh, [a, c]].
The proof of Theorem 1 is trivial.

‘THEOREM 2. If f¢ V[h, [, b]l, then there exists x € [a, b] such that f¢ VIk, J)
for any closed interval J < [a, b] containing a neighborhood of x.

Proof. We split [a, b] into two closed intervals of equal length L, and L,,
and observe that, by Theorem 1, for one of Ly or Ly, sayJy, f¢ V[h, J,]. Dividing J,
as we did [a, b], thus by an inductive procedure, we obtain a nested sequence
Jy 27,2 ... of closed intervals of length approaching zero, and such that f¢ V[h, Jj]
for i = 1, 2, ... The intersection of the J;’s is a single point x which satisfies the
requirements of the conclusion of the theorem.

Theorem 2 implies the existence of a point xe[a, b] such that either
FéV[h, [x, x+8]] for all §>0, or f'¢ V[h, [x—86, x]] for all 6>0.

It is observed from the definitions that fe V[h] if and only if there is a con-
stant C such that

(317 @meI<C

for all collections {I;};2, and all n. The next theorem shows, however, that only
requiring the above expression (as a sequence of n) to be bounded for each particular
collection {7;} is sufficient to assure its uniform boundedness.

THEOREM 3. (i) fe V[h, [a, b]] if and only if

) 2:, LF )] = O(hr)

Sor each collection {I}{2,.

(i) Iffisregulated, thenfe Vh, [a, b1] if and only if (1) is true for each collection
{1}z, satisfying | F(B) 10 as n - oo

Proof. We prove (if) ((i) being similar), The “only if” part follows immediately
from the definitions. For the “if” part of the theorem, suppose that f'¢ V[h, [4, bl
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Applying Theorem 2, we may assume that

SEVih, [x, x+6
§>0. Let M = sup|f(¢)]. Let d, {h, [, x4 31 for some x and al
z

> 0. We choose n, such that h(n;+1)>2M and
vy +1, [x, x+6,]) >2h(n, +-1). There are subintervals of D, x+6,1, I,
I,+1 (ordered from right to left, i.e., ;.4 lies to the left of L) such that

ngt 1

2 @I 28011

I,

s dpyyy

We can assume that 7,,,, has nonempty interior. Thus x¢ 1, . Now

ny LIE S ngt1
1;1 Lf@) = 21: SN =1S Ty 4 ) = 21 —2M

Z2h(ny+1)—h(ny+1) = h(ny+1) > h(n,).

Having chosen ny, ..., m_,, and I, .., 5, <x, b], ordered from right to left

and x¢I, . let L,  =[a_,, b_,]and & = min{(a,_; —x), 1/k}, and choose n,
such that :

h(m+1)>2M (- +1),
and

vim+1, [x, x+6,]) > (1 +E)h(y+1).

Therefore, there are intervals J,, ..., Jner1 € [x, x+68,], having nonempty interior
and ordered from right to left, such that

et 1

DO > A+ A1)

Let I, = J; for n,_y <i<m, then x¢1, and

@iz 3 1= 3 e

e+ 1

Mw g
= 21; LD~ f U )|~ ; £
| = (L+k) b+ 1) = 2M — 2 Mgy = (1+K) b+ 1) — by +1) = Kh(ny).
Since 6,1 0 as k — oo, we have that £(I)) — 0 as i — oo and therefore {I} can be
rearranged into {7*} such that | #(I*)|| 0 and

Z1ran> 3150 # o). m

Throughout the rest of the paper, sequences A = {A;} are assumed to satisfy
the gondxtion Ju 1 c0. For a sequence {a,} we will write da, = a,—a;., 1 The following
relation between fclasses Vh] and ABV is due to Avdispahié [1],

TrroREM 4. If Y h()4(1/A) < o, then V] < ABV,
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Proof. We first observe that
B, = b)) 3, AUA)< Y hD AU/,

and therefore h()/A, —» 0 as n — oo. Now, for fe Vii] and a collection {I} Wwe
have

S A< z kzi1|fak)| 40+ 515,
1 {= = o == ‘
P RO AQ) +h)A) < CV(F)
1
for some constant C and all n. &

3. We now state the generalization of Perlman’s result.
THEOREM 5. V[h] is the intersection of all ABV classes satisfying
Y h@AQ/A) < 0.

To prove this theorem we need the following results:

©)

Lemma 1. Suppose h, g 2 0 are nondecreasing. concave functions of the Dpositive
integers. Then the function p defined by p(n) = {h(n)g(W)}* is also nondecreasing
and concave.

Proof. pis obviously increasing. If 0 << ¢ < L and r = tn4-(1—#)m is an integer,
then by Hélder’s inequality we have that

2(r) = {h(Ng(}'? = {th(m)+ (L~ ) h(m)} 2 {tg (n) + (1 — £) g (m)} 12
t{11(n).¢7(?!)}”2+(1—t){h(m}y('ﬂ)}”2 p@)-+(1-p@m). B
A consequence of this lemma is
THEOREM 6. No V[h] contains the class of regulated functions.

Proof. Let p(n) = {nh(n)}*/%. p is nondecreasing and concave by Lemma 1,
and also p(n) = o(n). Then the sequence defined by b, = p(n) ~p(n— 1) is decreasing
and converges to zero. Consider the function f defined on [a, b] by f(b) =0,

1) = z( 1)1,  for a+(b—a)/(k+1)<x<a+(b-a)/k,k =1,2,..

and f(@) = 3, (—1)"*'b;. Then f has only simple discontinuities and v (n, 1, la, B])
1
= p(n). But p(n) # O(Iz(n)) and therefore f'¢ V[h].

THEOREM 7. Suppose f has only simple d:scontmuztzes If f¢ VIh, then f¢ABV
Sor some 4 = {A}} satisfying (2).
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Proof. By Theorem 3 there is a collectlon {I}2, of nonoverlapping_intervals

=[f{I)10 as i > oo and Za # O(h(n). Thus Za =
ng = 0. Choose n; such that

such that a; oo, Let

Y a;>hny).
=1

Having chosen #y, ..., m,_,, we can find n, such that

e Nt nr
Ya;>2 Y a;, and Ya,> 2k h(m,).
T i T
Therefore
nr i
> ai>%thi>k2h(nk).
Br-y+1

Let A, = k*h(n) for m_; <i< m.. Then ;7 co and A(l/),) is nonzero only when
i = n for some k. In this way, .

AN I N pen
Z]’(‘)A(w“’) = Zh(""){k%(nb_(k+1)2h(nk+1)} < Z'I/k =
k=1 ) T k=T

Also
i;lf(ﬁ)l/lg =Yall=Y{

k=1 i=

T, o> 11 -

It is left only to show that Y 1/4, = co. Since f is bounded, we have that
2 sup| f(N)| X V2> Y, afA; = o0, and thus ¥ 1/4, =
We proceed now to prove Theorem 5.

Proof of Theorem 5. Theorems 6 and 7 guarantee that there is at least one
space ABV with A satisfying (2). By Theorem 7 the intersection of such classes ABV
is contained in V'[#]. Finally, by Theorem 4, ¥ [A]is contained in such an intersection.

We will observe that Theorema 5 cannot be improved. by cons1dermg only
countable collections of classes ABV.

Lemma 2. If 3 h()A(1/A) < oo, then

}f(lpz Wi, =0 asn—oo.
n

Proof. Let &> 0. There is N> 1 such that Zh(z)A(l/l,) < & We can choose

M > N such that
N—-1
A
ﬂ?z i <e,
n
=1
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and h(n)[4, < ¢ for n> M. Then, for n> M we have

n N-1
‘ h(n)
3 k) E 1//1ish-g-1-)~ E 1/i~i+—nf~
n
i=1 1

I< ¢, and applying summation by parts

2, = T+1I.
N
< B (n 41— W)
A3 10 R o Nt
n-"® Z (41~ N A Q)+ =
n n
i=N

n-1

< z@wmaﬂi—"—)
n

n
=N

< S RO+,

since h(n)/n < h()/i for i< n. Therefore the left side of (3) is less than 3¢ if n> M,
and the conclusion follows.

Turorem 8. Let A' = {8}, 1 =1,2,... be a collection of sequences such that
ih(i)(l/lﬁ——l/)uﬁﬂ)< 00, L1 00 as n— oo and Y 1/Ai = oo for all I. Then there
i=1 @ i=1
exists a function f in (\ A'BV which does not belong to Vh].

I=1

:
Proof. Perlman [3] has shown that if I' = {3}, where 1/i} =k;11/ﬂ‘,

i=1,2, .., then the intersection of all A'BV, I = 1,2, ... equals the interselction
of all "BV, I=1,2,... We observe that 7} >yi"* for all / and all i. Also, y,1 0
as n— oo, and

0 I .
¥ BG)(fyi— 1 pieq) = k21 ;:lh(i)(l/xi‘— YA <0
i=1 = =

By Lemma 2 and the fact that h(n) = o(n), there exist integers 1 = ny, 7y, ... such
that a;, = kh(n)/(m—n,-,) is a decreasing sequence of k which converges to zero,

> 2.4, and
ny
h(m) 7, & 1
e 1y <
i=1

for k=1,2,.. Let b, = a for my_y; <i<n. Clearly, 5 }0 as i-» 0. Also

Nic B

IIIEIEDY

i=1 i=ngewytl

ay, = kh(ng) .
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n

Hence ) b; # O(h(n)). But, since @, < 2kh(ny)ny, and 9} =9¥ for k =1, it follows
=1

that

@ © ) e ’ @ N L @ .
2kh(n R :

Z bi/ﬁ:Za"("' Z l‘/ﬁ)< y 2 g k< E 2 <o

d- - Ld T s i T

i=megt1 k=1 i=nmgemy+1 k=1 =1 r=1 .

Thus ), b,/y; < co. Finally, by using the sequence {b;} we define f as we did in the
proof of Theorem 6, and the procedure above shows that fis contained in the in-
tersection of all A'BV, I=1,2,... but f¢ V[i]. B -
4. For fe ABV let || fll4 = | F(@)|-+V(F) If fe ViA], let
Ul = S @I+ V() ;

V4 and V, as defined in §1. Tt is easy to see tﬁa‘c ABV and V[h} are Banach spaces
under the norms || ||, and || ||, respectively.

As an application of Theorem 5 we will prove an analogue of the well-known
Helly’s Theorem for the classes V[h).

THEOREM 9. Let { i} be a sequence in V[h)] such that I felln < M for some M,

k =1,2, ... Then there exists a subsequence {Ji,} converging pointwise to some fin
Vi) with || 1, < M.

Proof. Theorem 5 guarantees the existence of a class ABV satisfying (2). For
each collection {/;} and each k, by an argument similar to that given in the proof of
Theorem 4, we have that

Y A& < CV(R)
i=1
for some C> 0 independent of k. Thus

1 fdla = 1/d@]+Va(f) SIA@I+ CV(A) < (C+ DI Alls < (C+D M.

By the analoguc of Helly’s Theorem for the classes 4BV ([4], Theorem 5), there is
a subsequence {f,} converging pointwise to some f. For a finite collection {1},
cousisting of » clements, we have

@I (3, AT <l < M.
By letting j — oo, we observe that
(317 @0 < M= 17 @I,

and thus Vi(f)< M—]|f ()|, which is the same as || f||, < M.


Artur


icm

236 P. Isaza

References

[1] M. Avdispahié, On the classes ABV and V[»], Proc. Amer. Math. Soc.'95 (1985), 230-234.
[21 Z.A. Canturija, The modulus of variation of a function and its applications to the theory of
Fourier series, Soviet Math. Dokl. 15 (1974), 67-71.
[3] S. Perlman, Functions of generalized variation, Fund. Math. 105 (1980), 199-211.
[4] D. Waterman, On A-bounded variation, Studia Math. 57 (1976), 33-45. . Alphabe tic index of Volumes 121—130
1984 —1
DEPARTMENT OF MATHEMATICS (19 988)
UNIVERSIDAD NACIONAL DE COLOMBIA
e i J. M. Aarts
Medellin, Colombia . The strastire of orbits in dymamical ysems. Vol ]29, s

U. Abraham

Received 9 December 1986 . 1. (and S. Shelah, R. M. Solovay), Squares with diamonds and Souslin trees with special squares,
Vol. 127, 133-162.

Z. Adamowicz
- A generalization of the Schoenfield theorem on X} sets, Vol. 123, 81-90.
. Continuous relations and generalized G; sets, Vol. 123, 91-107.
- A recursion theoretic characterization of BX provable in Zpa N, Vol. 129, 231-236.

V. N. Akis
. Fixed point theorems and almost continuity, Vol. 121, 133-142.

R. J. Allen
4. Errata to the paper “Equivariant embeddings of finite abelian group actions in euclidean spaces”,
Vol. 125, 185-185.

K. Alster

6. On Michael’s problem concerning the Lindel6f property in the Cortesian products, Vol. 121,
149-167.

7. On the product of a perfect paracompact space and a countable product of scattered spaces,
Vol. 127, 241-246.

8. On the class of all spaces of weight not greater than o, whose Cartesian product with every
Lindeldf space is Lindelsf, Vol. 129, 133-140.

B. Aniszczyk
1. (and R. Frankiewicz), On minimal generators of o-fields, Vol. 124, 131-134.

S. A. Antonian
1. (and S. Mardesi¢), Equivariant shape, Vol. 127, 213-224,

A, W. Apter
2. A generalized version of the singular cardinals problem, Vol. 121, 99-116.

G. Bachman

1. (and M. Szeto), On strongly measure replete lattices and the general Wallman remainder,
Vol. 122, 199-217.

—

th b W

—

* This index is a continuation of indexes of Vols. 1-15 contained in Vol. 15 (1930), Vols. 16-25
contained in Vol. 25 (1935), Vols. 26-40 contained in Vol. 40 (1953), Vols. 41-50 contained in Vol. 50
(1962), Vols, 51-60 contained in Vol. 60 (1967), Vols. 61-70 contained in Vol. 70 (1971), Vols. 71-80
contained in Vol. 80 (1973), Vols. 80-90 contained in Vol. 90 (1976), Vols. 91-100 contained in
Vol. 100 (1978), Vols. 101-110 contained in Vol. 110 (1980), Vols. 111120 contained in Vol. 120
(1984). . o

6 — Fundamenta Mathematicae 130.3


Artur




