icm

A resolution of the square of a determinantal ideal associated to
a symmetric matrix

by

Jacek Klimek (Torud)

" Abstract. In this paper we construct a free resolution of the square of the ideal of submaximal
minors of a generic symmetric matrix. We use methods of the theory of Schur functors.

1. Introduction. Let R = K[x;];<;<;<, be a ring of polynomials in n(n+1)/2
indeterminats x;; over a field K of characteristic zero and let X = (x;;) denote the
nxn symmetric matrix where we put x;; = x;; for i>j.

The determinantal ideal I,(X) is the ideal in R which is generated by all
pxp-minors of X. ‘

These ideals appear in the classical invariant theory [W], [K]. Kutz in [K]
proved that depth I(X) = (n—p+1)(n—p+2)/2 and the ideal I(X) is perfect,
i.e. depth I(X) = pdg R/I(X). This means that RII(X) is Cohen—Macaulay. The
minimal free resolutions of R/I(X) over R were described in [J], [L], J-P-W]in
terms of Schur functors. In this paper we construct a minimal free resolution of
R|IZ ,(X) over R. The ideal I2,(X) is no longer perfect, its depth is 3 and the length
of a resolution is 6.

2. Preliminaries. In the proof of the acyclicity of our complex we use the follow-
ing lemma.

Lemma 1 (see [P-S]). Let L be a complex of length d whose components are free
R-modules. If for any prime ideal P of R such that depth PRy < d the complex LRRp
is acyclic then so is the complex L.

Lemma IT (see [J]). Let T be a commutative ring with a unity and let ¥ = (2 be
an n X n symmetric matrix with entries in T. Moreover, let I(Y) denote the ideal gen-
erated by p x p minors. If I, (¥) = R, then there exist an invertible matrix C over T,
invertible elements zy, z, ... z,; and a jx j symmetric matrix Y such that

7 0 |0
0 =,
CYC= | I
0 |Y
Moreover, I, (Y) = I(Y) for i<j.
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The polynomial ring R = K[x;;] can be viewed as a coordinate ring of the affine
space Sym,(K) of all nxn symmetric matrices with entries in K. If we identify this
space with S,(U) where U is a vector space of dimension » over K, then R is identifed
with the symmetric algebra S(S, U*).

We denote by E the free R-module R@Q U of rank n and we fix

K

2 basis’ {1, 2,’;’.., n} of E. The dual basis of the dual module E* is denoted by
{1*, 2%, ..., n*}. Furthermore we write ¢:-E — E* for the linear map determined
by the matrix X in these two bases. With E and every partition I of a natural number
one can associate the Schur module Sy E which is a free R-module with basis con~
sisting of all standard Young tableaux of shape I (see [A-B-W] for details). The
map E — E* can be treated as a complex having E* in degree 0 and E in degree 1.
With this complex and arbitrary partition I one can associate the Schur complex
Sie) (e [A-B-WD.
We will need in the sequel the following Schur complexes:

4; d.
' S110: S,ES EQE* —» \2E*

where
. . & Y - 3 . +
di(i®j*) = é(i) (i) = iQe(N+i® () ;
dy dy
S20: \2E = EQE* - S, E*
where
(%) = eDj*, d, (f) =i®e()—Jj®e®;
ap® s i, d2 a '
S:0: N*E=> N*EQE* > \*EQS,E* - EQ S, E* — S, E*
where
disy(Jsn o AJi KT L ES)
i1 .
= ;1(."])5.71/\ o AJs A Ay ®kf...k§',;¢(js);
i S2E®/\ E ,
S0 SzzE“’ SuEQE* — @ - "’ E® S, E* - SuE'*
/\2E®S1E*
where .

i K\ i i k k
d(l.>= k) — 3 - ) s
s ﬁ®qo() jk®¢()+tj®¢(i) tl.@‘l’(])s

i i i t* 1*
da(. ® i*)= B o)+ @ e(N*+jk @ ~ik ® ;
ik J k C o) o()
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* k* k*
dz(U@ )=i® .+J'® N b
t, o) © t00)
NCI0); 0 @)
( ®k*t*) z®k*t* ®k*t*’
k* ke i
,dl(i® *.*)= <D(l)
¥ t* J-k

Now we define two maps of complexes If X is a complex we write X" [p] for
a shifted complex, i.e. X[pl, = X,_
Let Tr: R[1]— S¢; 0 be the_ map defined by

0 >Sz.E

‘,( tr l‘ n
Tr: R—EQE* ()= ) i®i*
i=1
_ 0— > N2E*
Let Ev: S, —.R[1] be the map defined by
' NE—>0

Bv: EQE*——>R  ev(i®)*) = j*0).

Sy E* —> 0

Both maps are maps of complexes since X is symmetric. Moreover Bv and Tr are
Gl(E)-invariant, KerTr = 0 and BEv is nonzero. -

3. Construction of the complex W (). Now we construct the double complex S.. .

Oan e o2 a1*
St Saw = Szx = S2x = St — Sos
where i ) : :
Sax 1= Sl Sawi=S20® 8,0,

Sux 1= R[2], Six = 829,

Sox 1= R[2], 845 :=Tr, 844 :=Ev.
The differential 8;, is defined as the following composition:
Sl 'IE'T; S110®S11¢ > S2:0D Sap
where # is a projection
S119®S110 = S40@ 82119 DS 0 —u’ Sa@®Sne.
The differential ,, is defined as

. 1QEv
Si20 @S¢ “>S,0@8,0 > S, 0[1].
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The injection is from the equality
S0 @820 = S220D82110D 540 .

It is easy to see that these maps define a double complex S.., i.e. that in the following
diagram di_;;0;;+0;-1d; = 0, for 1<7,j<4, and 0;~1;0;; =0, di;_ dyy=0

4 2: 14
0 j_‘_.,. 0 ..i’.:; Sng@/\4E i 0 —0
daa 34 924 . dya doa
SuEQE* .
0 —L SZ E __633_> @ ._>zs /\ZE ___.3.1; 0
/\3E® E*
daa d33 fas l di3 dos
N*E®@ S, E*
@ 2
R_.af“)E®E*_35.z_>. S,E® \*E* _fff_>E®E*~_‘_z._>R
® .
daz daa /\ZE@SZ E* d1z doz
d22
2
0 041-—)- /\SE* ,....ai.‘._; E® S21E*—ai—> SZE* ..._“...>. 0
@
day d31 E® S::. E* diz doy.
dag l
240 230 220 210

—s 0

'_>S22E*@S4E* — 0

Let g: R — Sy, E® \*E be the map defined by

oyl tM i t)
o =T ()
it

where M ( k) denotes (n—2) x (n—2) minor of the matrix X obtained by omitting

Js
rows i, j and columns k, f.

Let r: Sy, E*@® S, E* - R be the map defined by
ot ittt itE it
r(j* k*)= (-1 M ik detX,
PR %) = (=DM, ) M@, R+ MU, £ MG, R+ M, ) M, 1)

where M (i, j) is (n—1) x (n— 1) minor of the matrix X obtained by omitting row i and
column j. Notice that Kerg = 0. It is easy to show that dy,q = O and rd,; = 0.
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We define W(p) as the following complex

0 RS HyS.) 5 R

where H,(S..) is the homology of S.. with respect to the horizontal differential 0.

Lemma 1. Imr = I2.,(X).

R i, t
Proof. From the equality M (j k)' detX = M(j, k) M(i, t)— M(j, MG, k)
it follows that Imrc % ,(X). Moreover, using clementary linear algebra, every
generator M(i, )M (p, g) of 12.,(X) can be expressed as a linear combination of
clements from Imr. In other terms, Hy(W(¢)) = RII% (X).

THEOREM. The complex W(p) is a minimal free resolution of the ideal I:_ (X).

4. Acyclicity of the complex W(¢). Because the complex W(p) has length 6 it
follows from Lemma I that the acyclicity of the complex W(p)is equivalent to the
acyclicity of the complexes W(p)p where P R are prime ideals such that depth
PRp < 6. We know that depth I, _,(X) = 6 (see [K]). Hence I,_(X)d=P. Therefore
in I, ,(X)p there exists an invertible element. Hence Rp = L, _»(X)p. In this situation
we can use Lemma IL This means that in E there exists a basis fi ... fy such that
the matrix of ¢ with respect to this basis has the form

where z; are invertible elements of R, and X is 2 x2 symmetric matrix. Moreover,
I,-1(X)p = Li(X)p. In the sequel we will write R instead of Rp.

Let N be the R-module generated by f ... f,— and: let Fbe the R-module gener~
ated by f,-y, f,. Let 1 N — N* be the map defined by the matrix

z; O
0 4'2',”2

and let 0: F — F* be the map defined by the matrix X. Hence @ = ¥ @0. Because yr

is an isomorphism and a Schur complex of an isomorphism is exact (see [A-B-W])

and morcover S;p = S;( @ 0) = Y Sy ® ;0 w2 infer that H.(S;¢) = H.(Syh).
Jal

In order to prove that W(gp) is acyclic we utilize the theory of the spectral se-
quences associated with the double complex S... It will be shown that "E5%, is equal
to H,(H,(S)). Furthetmore we compute:"ES, and: comparison with "EZ, gives us
the desired description of the homology of W(p). :

3 — Fundamenta Mathematieae 130, 2
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LemMMA 2. The only nonzero elements of the sequence 'E;,’q are:

IX) tro L, B LX)

100 —
207 LX) LX)
Proof. First we have to calculate the homology "H, ((S) of the columns of the
complex S... The columns of S.. are Schur complexes and we can replace ¢ by 6.
It is obvious that

, B¢, xIX), 'EX =R

2,

R = R =2,
I Ho f(S) = {O Z 22 q

THyf(S) = {o g#2.

Now we compute "“H, (S), Six = S5,0[0]. From Lemma 1 and Lemma IT
it follows that H,o(S.) = Hy(S,0) and Hj4(S) = H,(S,0) ale zero. We must

compute Hy ;(S) = Hy(S,6). We compare the complex F&® F* ! = S, F* with the
Koszml complex 7. on a regular sequence X;;, X5, Xz2. Notice that depth I;(X)
= depthZ,.(X) = 3.

T. 0o = NUSFH 3 = AXS,F9) 5 S, F* 5 L(R)L(X) - 0

where r'(i*j%) = (=1 M (i, j)det X.
The complex T. is exact; hence Cokermy & I;(X)L(X).
Let us consider the map a: A*(S,F¥)@®R—~ FQF* defined by:.

G((1*1%) A (1%29) = —2@ 1%, a((1*1%) A (2%2%) = 2@2*~1@1*,

a((1*2%) A (2%2%) = 1®2*%, «(l)=1Q1*.
The following diagram is commutative:
S;F* % FOF*

ﬂ% /
NS, FHIBR

where n3(1) = %, (1¥1%)+%,,(1*2%).
Since « is an isomorphism Im(r, ®n}) = Imn,+Imn) = Imd,,,

* £y
TH, (S.) = Cokerd, = St ___SF
Imd;, Imn; @Imr)
C S P Imn LE)LX)
Imz, +ImayImz,  I3X)

Now we compute "H, ,(S..). From Lemma I and Lemma II it follows that the

complex S,0 < Sy is acyclic and S,,60 = S,4 has nonzero homology in first and
zero place only.
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Let us compute "Hz,l(S..). We handle the complex S,,6 only because
H,(S,0) = 0. Let T. be the Koszul complex as above. Let us consider the map ‘of
complexes &: T. — S5, 0.

N F® S, F*
5220 SzzF "—"—>S21F®F* ——e @
S, F ® \2F*

T N

—> F® 8y F¥ —> Sy, F*

T N (S F) —> NS, F) —> S, F — R —s 0

&) A (12) A (22) = ~(ﬁ> &(1) = %(11 ®i‘: + i‘ ®2*2*),
L2 . 1 2% 2 .

a(a £02) - 5 82). o =3 (el — o127),

*

1/2 2 1 2 2
é‘z((ll)/\(22))=§<12®2"‘~11®1*>, £) = 5(22®1*+1 ®1+1%),

172 2%
&((12)AQ22)) = — 5(12®1*)= &) = 1®1* 1+ ®1*2*-
Since ¢; is an isomorphism, ¢, is a monomorphism and

Imf;@R( ®2*>=Sz1F®F*;

the cone on & stopically equivalent to the cone on the following map.

2 /\ZF(Z)SZF*
R<12®2*>———> @ ——>F®S21F*_"522F*

5220,

S, FQ N\ F*
TE Th T!.‘o
T S, F —> R

This cone M. has length 3. Using Lemmas I and I and the long sequence of homology
associated with a cone, we obtain that M. is acyclic. Hence we have the exact se-
quence:

~ Hy(M.) = H(T) = Hy(S3,0) » Hy(M.)

and consequently

H,(53,0) = H1(Szzo) H1(T) = H(T) =

R
L@’

3
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Now we compute HHZ, o(S..). Let us consider the map of complexes f: T. — N.
where - T. as above and N. is the Eagon-Northecott complex of a matrix

5611 J?12 )_622 0 )
0 Xy 84z %a)
T 0> NS F) - NS ) > S, P s (D) 1,(R)
ll‘a Lﬂz l/u
N 0 S5, (S, F) > $,,(S, F¥) —> 5,(S, F*) —> I3(X)
where
Bai*7%) = (= D" ML, )((1* 1%) (2% 2%)— (1*2%)(1¥2%) ,
((1*2*)) (1%2%) (v

2 (1%1%) = X11 (1% 1%) (1*1%) X12 (I*1%)(1*1%)
e (2*2%) _ (1%2%)
2ar ar2n T (e 2ran)
(%% . (1%2%) (2%2%)
2 (1*1%) DS (1*1*) (1*2*)+x22 (1*2*)(1*2*)
(2*2%)
+X12 (1%1%) (1%2%)°
(720) - 1, 022 @*2%)
2 (1*2*) = X2z (1*2*) (2*2*) X12 (1*1*) (2*2>k)
C(1*2%)
+X1y (1*1*) (2:112*) 4
(1% _ . (@¥2%
A 2 2y 2 2220) = (e 1) (1619 24 2%)
. (1*2%)
T¥i2 (a gy (102%) 20 2%)
(2*2%
+X32 (1* 1*) (1*2*)('2*2*) .
3x
Hence Coker(f, @g9,) = ﬁz%) Since  S,(S, F*) = 8, F*® S, F* we
EX) :
have Cokerd,, o 127
R 759725 4!

Now we compute UHy,4 (). Tt is easy to see that 5, (5. T(EXTS To
i
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caleulate "Hj, 5(S..) let us consider the following map:

D
D. R ——> R N 0
b |
2 . . U B} daz
N0 Sy F - F@ F¥* —— N2F*
where

D(1) = det(X), go(1) = 1@1*+2®2*,
g1(1) = %(x“(ZZ)+x22(11)—-x12(12))

Ttis easy to see that the cone on this map M(g) is acyclic. Using the long exact
sequence of homology, we have:

~ Hy(M(9)) » Hy(/\"0) - Hy(D.) » Hy(M(g)) - Hy(/\*6) ~ Hy(D) > Hy(M(g))

Hence

R
Hl(.D.) = I_’Ii_)’ HZ(D) = 0
and finally
R
! 20) =0 20) = ——.
BN =0, B\ = 1o

We obtain that the sequence H,,, (S..) has the following diagram:

_BE) AT
Il X’)IQ(X) El 1,1 = IZZ(X) »

E¢, = IXX) and 'E}, 2 I(X).
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Observe that 'EZ, ='E?, because all higher differentials are zero.

LEMMA 3.

lIEoo ~ Hq(HZ(S"))= b= 2’
P = 0’ p# 2.

Proof. We have to compute the homology of the rows of the complex S...
We can express the modules S; ; as the sums of Schur modules on E. It is known that
Homgygy (St E, S;E) = 0 if I 5 J. Therefore it is easy to check that only H,(S..)
is nonzero.

Proofofthetheorem. Let B. be the total complex of the double complex S.. .
By Lemma 3 it follows that H,(B) & H,_ 2(HZ(S..)). Moreover the geometry of 'E
shows that H,(B) = 0, for i = 3,4, 5, i.e. H(H(S.)) =0 for i=1,2,3 and in
turn Hy(W(p)) = O for i = 2, 3, 4. Furthermore,

Hy(Hy(S.)) = Hg(B) = Kerd,, = R..

It can easily be shown that the image of g kills this homology, i.e. H., s(W (@) = 0.
Finally we must prove that H,(B) = I~ ,(X). To this end let us consider a se-
A 7
quence of maps By — B, - IZ ,(X) whete
B, = SupE*@S,E*®S,E*®R, By =EQS, F*®ERS,E*@EQ E*,
h=dy +0y+dis+8y,, f=r+r'+d,, dy(l)=detX?,

Ore can easily check that f& = 0, i.e. that we have a map Hy(B) — IX. (X)) induced
by f. From the analysis of the spectral sequence 'E and an explicit form of f we know
that there exists a commutative diagram:

0——> T ——H,B)— Hiz("B) °
g Ef 7
1 Y IX)
R A A - N
~1(X) I(X) —— I¥X) Lm0

where T is the image of H,(Tot( Y S.7)) in H,(B). Since
i1
Tot( Y 8,): A2E > EQE* » S, E*+ R
i<1

and this is (up to a splitting factor R = R) the resolution of I,_ ,(X) described in I,
we infer that the mapping g is an isomorphism. Moreover the map f is also an iso-
morphism since H,(B)/T = ’Efm, this implies that we have an isomorphism of
Hy(B) ‘and I} ;(X) induced by f and, in fact, by ri Sy, E¥*® S, E* —» IX ,(X).
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