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Globalizing fibrations by schedules
by

Eldon Dyer and Samuel Eilenberg (New York)

Abstract. For any open covering of a space B, the paths of B can be continnously decomposed
into subpaths each lying in an element ol the covering. Such a “scheduling” into subpaths leads to
a simple verification of the globalization theorem for Hurewicz fibrations, as well as to globalization
results for more rigid kinds of fibrations.

The crucial method of establishing that a continuous function p: ¥ — B is
a fibration is the Globalization Theorem for Fibrations. It states, roughly, that if
for sufficiently many open sets U in B the restriction of p over U, py: Yy — U for
Yy = p~}(U), is a fibration, then so is p. The first general statement of this theorem
appears in Hurewicz ([3]); a more detailed investigation is in Dold ([1]). It can be
found in introductory topology textbooks; for example, Dugundji ([2]).

We present here yet another proof of this fundamental result, a proof which it
is hoped clearly isolates the concepts used and which may well have further utility.
This proof is based on an investigation of properties of the path space of B related
to an open covering of B. We obtain a “Schedule Theorem™ which in a continuous
manner decomposes each path into subpaths, each of which is in a prescribed element
of the covering. This is a purely internal statement about the space B equipped with
an open covering; it has nothing directly to do with any mapping p: Y — B or any
statement about fibrations.

The globalization results for fibrations are immediate consequences of the Sched-
ule Theorem. A bonus of this approach is an immediate proof of a globalization
theorem for a special class of fibrations which we call “inversible”. These have
lifting functions which define homeomorphisms between fibers, This is a much
stronger geometrical statement than the usual homotopy equivalence assertion. For
a space B which is both paracompact and locally contractible in the large, a mapping
p: Y~ B is an inversible fibration if and only if there is a locally finite covering
{Ul ae A} of B by numerable open sets such that each of the restrictions
Pu.: Yy, = U, is vertically homeomorphic to a projection map U, xF — U,;
i.e., p is an inversible fibration if and only if it is locally trivial. Simple examples
show that fibrations need not be locally trivial.
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§ 1. Schedules. For a set 4 we denote by A* the free monoid generated by the
elements of 4. An element s of A* is usually written as a word
§= Qg o Oy
with @y, ..., a, € A. We define the word length
Fs=n.

The unit element of A* is the “empty word” and is denoted by A (regardless of
what A4 is). Of course, # = 0. It is useful to regard 4 as a morphism of monoids

#: 4¥* > N
where N is the set of all integers n3>0 with addition as operation.

We denote by T the monoid of all real numbers # > 0 with addition as operation.
The monoid T* is also equipped with a length function

LLT*=T
defined for each word v =ty ... 1, by
(V) =ty 4+t

This length is not to be confused with the word length # v, which is n.
There is a right operation of T on T* given by

vt = (t11) ... (£,1) .
Clearly, '
#vt=H#v and [(vt) =1(v)t.
The monoid
SA4 = (AxT)*

is called the schedule monoid of the set A and its clements are called schedules in 4.
There are two monoid morphisms

py: SA — A% and  p,r SA - T*
defined for each generating schedule (d, t) by
k pila,t) =a and p;(a, ) =t.
For any schedule s we have
#pi(s) = ds = Hp,(s).

Given any w e 4* and v e T* such that 4 w = #v, there is a unique s & S4 such
that p,(s) = w and p,(s) = v. It will be convenient to write s = (w, v). In this way S4

becomes identified with A* X T*.
N
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The right operation of T on T* extends to one of T on S4 by defining
(w, )t = (w, vt). We define I: S4 — T to be the composite

23 1
S4—»T*~ T,

Of course, [(st) = I(s)t for sS4, teT.
A schedule s is said to be reduced if it is a product of pairs (a, #) in 4 x T with
t > 0. The reduced schedules form a submonoid RSA of S4. There is also a retraction

0: SA - RSA.
It is the monoid morphism defined by

A iftr=0,
9(“”)“{(4;, £ ift>0.
Observe that i

Fol)< #s

with equality holding if and only if ¢(s) = s; i.e., if and only if s is reduced. Note
however that

Ho(®) = 1(s)-

In particular, ¢(s) = A if and only if I(s) = 0.
We now introduce topologies on S4 and on RS4. For each we A* consider

D, = pi*(w).

The function p,: SA — T* defines a bijection between D,, and T*¥, We use this
bijection to define the topology of D,,. The topology of S4 is defined to be that of
the coproduct of {D,,| w e A4*}. Thus U is open in S4 if and only if Un D, is open
in D,, for every we 4*.

When it comes to topologizing RSA we have in principle the choice of regarding
RSA as a submonoid or as a quotient monoid of S4. These two topologies are
different. It is important that we use the second one. Thus a subset U of RSA is open
if and only if the set ¢~ *(U) is open in S4.

§ 2. The Schedule Theorem. The path space PX of a topological space X is the
subspace of T'x (T, X) given by

PX = {a = (I, w)] ut) = u(l) for I<t}.

Here (T, X) is the space of continuous functions T'— X with the compact-open top-
ology. The number /s the length of the path « and projection to the first coordinate
is a continuous function. I: PX ~» T. We have the source and target morphisms

o: PX—-X and ©:PX->X
defined by

o(@) =u0) and (@) =ul).
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Given paths & = (i, ¥) and ' = (I, ') with ©(«) = (&), the sum a+o’ = (I+1',v)
is defined by
o fu(®)
v = {u’(r—l)

We have the morphism 0: X — PX assigning to each x e X the path 0, = (0, X),
where X is the constant map of T to x. And there is the morphism

0<t<],
I<t.

—: PX > PX

which assigns to each path & = (/, %) the path —a = (I, @) with 4 given by
u(l—-t), 0<1t<l,
b = {u@,

I<t.

Let % = {U,| ae A} be a family of subsets of the space X. Let « € PX and

S = (@1 eu @y 1y .5 1,) € SA. We shall say that the path « fits the schedule s, written
alls, provided [(a) = I(s) and for the decomposition

o= g+ +a, with I(«) =1,

itis true that o; € PU,,,i = 1, ..., n. The relation «|| s is characterized by the following
three properties:
(i) «||(a, ) if and only if I(«) = ¢ and « € PU,,
(i) if oy ]]sq, ez]ls, and © (oy) = (o), then e+, 58, and
(@) if og+oy|lsysp, Log) = I(s,), and I(ez) = I(s;), then oy]lsy and aqls,.
We have the evident

PROPOSITION. If «l||s and I(a) >0, then ollo(s). B

The converse of this proposition is false.

A subset ¥ of the topological space X is called numerable if there is a continuous
function g: X — T such that g(x) >0 if and only if xe& V. Such a function g is
called a numeration of the set V. The indexed collection % = {U,| ae A} of subsets
of X is called locally finite if there exists an open covering # of X such. that for cach
We W all of the intersections Wn U, are empty except for finitely many indices
acA.

A covering F = {F,| ce C} of the space X is called local if cach set F, is closed
in X and each point of X is contained in the interior of the union of some finite sub-
collection of . Such a covering need not be locally finite. It is clear however that
given a function f: X — ¥ such that £|F, is continuous for every ¢e C, we can
conclude that f itself is continuous.

THE SCHEDULE THEOREM. Let % = {U,| ae€ A} be a locally finite covering of
the space X by numerable open sets. Then there exists a local covering & = {FceC}
of PX and a family

St Fo— SA
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of continuous functions such that
(1) for each aeF,, alff (o) and
(2) for each we F,nFy, o ful@) = o(fl@).

COROLLARY. There exists a continuous finction

h: PX - RSA
such that
a||hfe)

h(a) = A

if @) >0 and
i@ =0.m

We shall see that the Globalization Theorem for Fibrations is an easy conse-
quence of the Schedule Theorem. The more elegant corollary seems adequate for
proving globalization results only when the base space is Hausdorff.

Our proof of the Schedule Theorem is presented in Section 5.

§ 3. Globalization of fibrations. The usual definition of a mapping p: ¥ —» B
being a (Hurewicz) fibration involves lifting arbitrary homotopies into B extending
given lifts of their sources. A completely equivalent definition. is the following: the
mapping p: Y — Bis a fibration if and only if there is a continuous function (called
an action)

#: Y, x,PB= Y,

to be written y *«, which satisfies the conditions

p(yxo)=1(@) and w0,y =y.

The space Y, % ,PBis the subspace of ¥ x PB of all pairs (, &) such that p(3) = ¢ ().
A useful stronger notion is that of an inversible fibration. The mapping p: ¥ —» B
is an inversible fibration provided there exist two actions

* %1 YV, X, PB— Y

(called a reciprocal pair of actions) which in addition to satisfying the conditions
imposed by each of their being an action also satisfy the conditions

(yro) (=) =y = (y# 0)*(—w)

for all (y,a)e ¥, %, PB.
This type of fibration is much more rigid than the usual type, For 4 < B denote
by Y, the subspace p~'(4) of Y. In an inversible fibration the mapping

— k0 Y,,(l) b d Y,(m)
is a homeomorphism for cvery aePB, with — «'(—a) as inverse.

GLOBALIZATION THEOREM FOR FIBRATIONS. Let p: ¥ — B be a continuous
Sunction. Suppose that U = {U,| a € A4} is a locally finite covering of B by numerable
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open sets and that for each ae A the restriction of p over Uy, p,: Y, — U, where
Y, = p~X(U,), is a fibration. Then p is a fibration.

More specifically, for each a€ A let an action *: Y, % PU, = X, be given and
let # = {F,| ce C}bea local covering of PB and {f.: F.~ SA| ce C} be a family
of continuous functions as in the Schedule Theorem. Then the assignment

PRL I Pk O * Oy ¥ O
a1 az an
is an action %: Y,x ,PB— Y for p, where a € F,, Jdo) = (ay .. a,, ty, .., t,) and
o= cyt..to, with o) =t fori=1,..,n

Proof. First we note that the collection {¥,% ,F,| ¢eC} is alocal covering of
¥, % .PB. The action as given is defined and continuous on each member of this
collection. Condition (2) of the Schedule Theorem implies that the action is a globally
defined function. Its continuity is an immediate consequence of the definition of local
covering. That the function is an action is clear. B

GLOBALIZATION THEOREM FOR INVERSIBLE FIBRATIONS. If, additionally,
each p, is an inversible fibration, then so is p.

More specifically, if for each ae A a reciprocal pair (%, %) of actions for p, is
given, then * as defined explicitly above, together with «', defined below, are a reciprocal
pair of actions for p.

For (y,d')e Y,x,PB with —o'eF, and fo(—o')= (b ..by, 81, s
define . ’

yua =y x (=B) g [ (—Bi-1) i3/ (—B1)
where —a' = By +...+ B with [(B) = s, for i=1,.., k.

Proof. We prove first that ' as defined is an action for p. For a subset X of
PB denote by —~X the collection {x e PB| —a€ K}. Since —: PB - PB is an in~
volutory homeomorphism, the covering — #F = {—F,| ce C}isalso a local covering
of PB. The proof that «’ is an action for p is just that of the Globalization Theorem
for Fibrations, except we use the local covering {¥,x (—F,)| ce C} of ¥,x ,PB.

To see that (#, ') is a reciprocal pair of actions for p we must verify for
(y,0) € Y, x,PB that

yrax (—o)=y=y¥a*(—aq).

Assume ce F, With f,() = (@1, v, ys £ys ey 8,), and write o = oy .. 0, with
o) =t;fori=1,..,m Let ¥ = p=a and, in the notation of the definition of ',
write o' = —a. Then ~o' = e F, and f(—a') = f(¢). Also, —o' = oty ... 0.
Thus,

PrRaN(=0) = (4 oy ok )+ (—0)

=y tl oy "';’:n Oy 2‘"' (—“n) '"f‘l (_‘xl) =Y.
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Also,
yul g (~o) = ¥ (=B ... % (-ﬂl)t, By .. *B=y

where —o€Fy with fo(—0) = (by... by, sy,....5) and —a = By +.. +f, with
IB)y=s,fori=1, .,k &

The explicit forms of the actions obtained are convenient for globalizing addi-
tional structure. For example, let G be a set and m: ¥Y'x G — ¥ be a function. We
shall write yg in place of m(y, g) and shall think of m as defining a right “action”
of G on the space Y. We require nothing more of G or of the action s, although clearly
an interesting and important case is that in which G is a topological group and the
action is continuous, associative and unitary.

CoRrOLLARY. Continuing with the previous notation, suppose there is a right action

YxG— Y of G on Y such that p(yg) = p(p) for all (y,g) € YxG. Suppose also
that for each ae A

(3) (yg) o = (yra)g.
Then for the globally defined » in the statement of the Globalization Theorem, (3) is
also true.

Moreover, if for each a € A there is a reciprocal pair (%, %) of actions for p, each
of which satisfies (3), then the same is true of their globalizations.

In particular, if G is a topological group, m is a right action of G on Y, and each
Pat Yo U, is vertically right G isomorphic to the projection pry: U,xG — U,
(the action of G on U, x G being given by the group in G: (u, g)g’ = (u, gg")), thenp is
a principal right G bundle. Moreover, there is a reciprocal pair (x, ") of actions for p
each of which satisfies (3). R

In the globalization statements above, we required the open covering of B to
be locally finite and each of its elements to be numerable. These conditions can be
dropped if one assumes B is paracompact and Hausdorff. For in this case any open
covering of B has a refinement satisfying the additional conditions.

§ 4. Local triviality, The mapping p: ¥ — B is called trivial if there exists a
(vertical) homeomorphism h: ¥ — Bx F for some space F such that the diagram

Yt BXF
B
commutes, Evidently, any such mapping is an inversible fibration.
We say that p: ¥ — B is locally trivial if for some covering # = {W} of B by
open sets, each of the restrictions py: Y — W is trivial. i
The space B is called locally contractible in the large if there is an open covering
W = {W} of B such that each W is contractible to a point in B.
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PROPOSITION. If p: Y — B is an inversible fibration and B is locally contractible
in the large, then p is locally trivial,

This result is an immediate consequence of the

LeMMA. If p: Y — B is an inversible fibration and the subset A of B is contractible
to a point in B, then py: Y, — A is trivial.

Proof. Let H: IxA — B be a homotopy contracting 4 to the point b of B;
thus, H(0, @) = ¢ and H(l,a) = b for all ae 4. Let h: A - (I, B) be the adjoint
of H: for each a & 4, h(a) is a path of length 1 in B with 6 (h(2)) = ¢ and t(k(a)) = b.

Let (*, ') be a reciprocal pair of actions for the inversible fibration p. And
define

fi Yy = AxY,

by f() = (p(»), y*h(p( y))). This mapping has inverse given by (a.w)
w+'(—h(a)). Cleatly, pry(f(3)) = p(3); and so, f is a vertical homeomorphism. M

COROLLARY. Assume that the space B is paracompact, Hausdorff and locally
contractible in the large. Then p: Y — B is an inversible fibration if and only if p is
locally trivial.

The proposition implies that if p is an inversible fibration, then it is locally
trivial. Conversely, if p is locally trivial, then since B is paracompact there is a locally
finite covering % = {U} of B by numerable open sets such that each py: ¥y — U
is trivial. Since py is then an inversible fibration, the Globalization Theorem implies
that p itself is an inversible fibration.

The hypotheses of the corollary are known to be satisfied if B is a CW -complex.
Since the property of being locally contractible in the large is an invariant of homo-
topy type, it follows that the hypotheses of the corollary hold for paracompact,
Hausdorff spaces having the homotopy type of a CW-complex. We do not know if
the conclusion of the corollary is valid for a space B which has the homotopy type of
CW-complex. In particular the following question is open.

QUESTION. Let p: Y= B be a locally trivial mapping and suppose that B is
contractible. Does it follow that p is trivial?

There is an example due to P. T. McAuley (private communication, April 1980)
of a mapping which is locally trivial but is not a fibration. We describe her example
here.

Let L be the “long line”. (This space can be defined as follows. Let @ be an
uncountable well-ordered set in which each term has only countable many prede-
cessors. In @ x [0, 1) introduce the linear order (x, 5) < (', 8') if and only if either
x<x"orx = x"and s<s'. The space L has underlying set wx [0, 1) and is topo-
logized by the order topology.) Let ¥ be the subspace of Lx L of all pairs (/,/")
with /<1, let B = L, and define p: ¥ — B to be projection onto the first factor.
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For any two points /<!’ of B, the open segment LIy={I"eBl I<!l" <!}
is homeomorphic to the open interval (0, 1) = I. Moreover, the restriction Pa,ry is
trivial; Y¢,py is vertically homeomorphic to the product {/, 1"y x(L-0), where 0
denotes the least element of L. The mapping p is thus seen to be locally trivial.

However, it is impossible to define an action for p. In fact, pisnoteven a “delay
fibration” — this being a weaker notion than fibration, due to Dold ([1]), in which
the lifting of homotopies is allowed an initial delay during which it moves vertically.

§ 5. Proof of the Schedule Theorem. This proof will use two lemmas ; their proofs
are given in the next section.

Lemma 1. Let % = {U,| ac 4} be a locally finite covering of the space X by
numerable open seis. Then there exists a collection {p,| ae A} of numerations of the
sets U, which is also a partition of 1.

Let % = {U,] aue A} be a collection of subsets of the space X. For
§=day..a,€A* and o € PX we shall say that o evenly fits s, and write all.s, if for
the equidecomposition « = ey +...+a, of « into 7 parts of equal length, o; € PU,,
for i =1, ..., n. We adopt the convention that no path evenly fits A.

LemMA. 2. Let U = {U,| ae A} be a locally finite covering of the space X by
numerable open sets. Then there exists a locally finite covering W = {W,| se A*}
of PX by numerable open sets such that for each o€ W, ol|,s.

Proof of the Schedule Theorem. Let # be a covering of PX as in Lemma 2

for the covering % of X of the hypothesis of the Schedule Theorem. Let {g,| s& 4*}
be a partition of 1 numerating the elements W, of #".

Let # be the collection of all finite subsets of A*—{A}. For be & define

D, = {nePX| ¥ gfx)=1}.
seb

Notice that
D, = {aePX| q0) = 0 for all s not in b}.
The collection {Dy| be %} is a covering of PX by closed sets. By the local finiteness

of W, for each o & PX there cxist some b & # and open set ¥ in PX containing «
such that g |V = 0 for all s not in b. Thus for all fe ¥, Y q,(B) = 1; hence, V= D,.

Totally order the elements of 4% Then each be .;,5 bis displayed with an order
b=g <. <8.
Given « e Dy, define i
Qi) =j2:1 Qs;(“) .
Then

0=0o<Oi <. €Q=1.
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For be® consider 2k-tuples e = (I, ry, ., ko 1) Of integers satisfying

I<hisr< %5,
Define
ri—1
3 85

<0< #LS—} .

I~1 I,
Dipey = {oc € Dy Y < 0@ < E and ;

i

The set Dy, is closed in Dy and the collection {Dy, } is a finite cover of Dj.
Let C be the collection of all pairs ¢ = (b,e) and let F, = Dy, . Then
F = {F,| ce C} is a local covering of PX by closed sets.
For ¢ = (b, €) as above, define

Jo: Fo— S4
as follows: for ae F, = Dy, ),
fAo) = 04 ... o1 1()
where o; is the schedule with
(o) = ¢:(@ ,

and for s; = ay ... a,, o; is the product of basic schedules

I; 1 1 -1
gy = (alu"n"’ "Qi-1(“)) (‘lh-n: ;l) (an—lﬁ ;;) (a,,, Qi@)— r’i”;‘—)

provided I, <r;. For I, = r;, set o, = (a,, Q&) — Q- 1(x)).
The function f, is continuous. Also for o€ F,, « fits f,(«) and for a e F,nF,,

(@) = ¢(fe)). M

6. Proofs of lemmas.

%0, =r—l+1 and

Proof of Lemma 1. Let g,: X — T be a numeration of U,. For x € X define
g(%) = 3 g,(x). We claim the function g is continuous and never zero. Let % be
agd

an open covering of X as in the definition of locally finite; for We ¥, WnU, = 3
except for finitely many a € 4. Thus g,|W is the zero function except for the same
exceptional &’s and g|W is a finite sum of continuous functions. Hence g is con~
tinuous. Any x € X is in some U,; thus g,(x)>0 and g(x) > g,(*) > 0.

Since g is continuous and never zero, 1/g is also continuous. Define p,: X — T
to be g,fg. Then p, is a numeration of U,. Clearly by lp,, =1 M

ae

Proof of Lemma 2. The subspace of PX of those paths having length 1 is
homeomorphic to the function space (I, X). Moreover there is a retraction
r: PX - (I, X); one such is given by

re=w,: I-X

where for o = (I, %) and 021, @) = u(H).
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Suppose we have a locally finite covering ¥ = {¥,} se 4*} of (I, X) by
numerable open sets such that for each w & (, X), ||, s. Then letting W, =r~ V),
we obtain a covering #” = {W| se A*} satisfying the conclusion of Lemma 2.
Thus Lemma 2 is a consequence of the

Lemma. Let U = {U,| ae 4} bealocally finite covering of the space X by numer-
able open sets. Then there is a locally finite covering ¥ = { Vil se A%} of (I, X)
by numerable open sets such that for w e V,, wl|,s.

Proof. Let {p,| ue A} be a partition of | numerating the elements of the
collection %. Bor s = ¢ ... a, € A* and we (I, X), define

i
e

i) = H inf{pm(w(t)): “lais }

The function f: (I, X) — I is continuous and numerates the open set
EU, = {we(l, X)| o|l,s}.
Denote by Afy the set of those words se d* with #s<#n; and define
By = {EUJ| se dw} .

We claim the collection By is locally finite. For e (I, X) we shall find an open
set §'in (I, X) which contains w and intersects only finitely many elements of Eyy,;.
For each f € I there is an open set W, in X which contains w(t) and intersects only
finitely many elements of %. By compactness of I, there is a finite set {t,, ..., f;} I
such that (1) is contained in W = W, U ... UW,,. Then open set W intersects only
finitely many elements of %.

Denote by 4y the finite set {ae 4] WU, # @}. Then 4} n 4f; is a finite
set. Let S be the subbasic open set [I, W] in (I, X). We claim that if SN EU, # &
for EU e %,, then se 4j. Since #s<n, it follows that s is in the finite set
AynAly; thus S is an open set in (J, X) satisfying the above requirements.
Suppose Ae SN EU, with s = a, ... a;, i<n. Since A(I) = W, each a;€ Aw; ie.,
sedy.

Since EWy, is locally finite, the function

Fo= 3 @ X)~>T
“AI‘:."]

is continuous. For se 4* with #ks = n, define
gy = 5“13(0,](;"'”17;,—1): (I.’ X)—~1,

and let ¥, = g5 *((0, 1]).

We claim that ¥ = {V;| se 4*} is a covering of (I, X) as required. Since
a:< S, Vi EUg i.e., for o € ¥}, w|l.s. To see that ¥~ covers (I, X), for w e (I, X)
let k be the least integer for which there is 2 word s = ay ... @, With f(w) > 0. Then
F,_ () = 0 and so gyw) = fi(w). Thus, we V.
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Finally, to see that ¥ is locally finite, let w e (1, X). For some integers z and k,
E(w) > 1[k. Define
R={le(, X)| F)>1/k}.

The set R is open in (I, X) and contains w. We claim that for m >max(k, n) and
s € A* with 45 = m, RNV, = @&. This will sufficc since we know already that the
collection E% pmayq,ny 15 locally finite. For e R,

Foue () 2 B > Yk
Thus

mF,_(A> mQ/k)>1.

Since fi(A) <1, it follows that g,(4) = 0. Thus Z is not in V,. M
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Connections between different amoeba algebras
by

J. K. Truss (Leeds)

Abstract. The “amoeba algebra” is the complete Boolean algebra which has the effect of making
the union of all null Borel sets coded in the ground model have measure 0 in the corresponding
Boolean extension. Six different versions of the amoeba algebra are studied, together with the local-
ization algebra, and connections, in some cases isomorphism and in some cases forcing equivalence,
are established between them,

§ 1. Introduction. A number of different versions of Martin and Solovay’s
original “amoeba” algebras have been considered. In their original application [5]
the relevant set of conditions was taken to be the set of open subsets of the. real line
of measure less than a fixed e, partially ordered by inclusion, approximating to an
open set of measure & In [8] we took instead a “variable” s. That is, a condition was
a pair (p, €) where p is an open subset of R of measure less than e, giving the infor-
mation about the generic open set X that p< X and p(X) < &. The main reason for
this was to enable us to show that the amoeba set of conditions P satisfies
RO(P) =2 RO(P x P) where RO(P) is the complete Boolean algebra associated with P
(the “regular open” algebra). Whether this is true for Martin and Solovay’s “fixed
measure” case we still do not know. And then there are the amoeba algebras on
compact intervals I' (or equivalently on 2°) derived from the set of (relatively) open
subsets of I' of measure less than e, which were used by Shelah in [7], and also by
Miller and others in their investigations into the connections between measure and
category on the real line.

What all these algebras B have in common is the following. In cach case the
Boolean value in V* of the statement

“u{xe R: x is not random over ¥} = 0"

is 1, whoere u denotes Lebesgue measure, What ideally we would like to know is that
this statement holds in an extension of ¥ if and only if the extension contains
a V-generic filter on B, T the absence of this, however, the next best thing seems to
be to show that as many as possible of the known versions of the amoeba algebra
are isomorphic, or at any rate, are equivalent in the sense of forcing. This was in
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