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Now

lim(x—a)~ ljgd)l =0,

x=>a

Tim (x—a)™! fg"dl 182,

x—+a

I is continuous at a and 2¢g-h+A(a) is bounded, so

lim (2g(x) + 2(x) + (@) (h(x) —h(@)) = 0 .

Consequently, lim®F(x, a) = 04462 +0+h(a)? =
to prove. B *7¢

12 4+f(@)?, as we wished

COROLLARY 6.3. Let X be a subset of R such that 9'(X) is a ring. Then the inner
Lebesgue measure of X is 0.

Proof. It follows from the lemma that, if ay, a,, ... € R are pairwise distinct,
then

22“"1(,, } e D' (X)
Then according to Lemma 4.3 of [7] X cannot contain a Baire space Y with "Yc"f,}.
As we have seen in 4.5 and in the proof of 4.4, this implies that the inner measure
of X must be 0. &
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Free subgroups of diffeomorphism groups
by

Janusz Grabowski (Warszawa)

Abstract. It is proved that the group Diff’ k(X) of all C*-diffeomorphisms of a given Ck.manifold
X =1,2,...,0) includes a non-trivial arcwise connected with respect to the ‘Whitney Ck-topology
free subgroup Whlch consists (except for the identity) of diffeomorphisms which embed in no flow.

It is also proved that for each sequence of elements of Diff k(X) there are diffeomorphisms
arbitrarily close to the given ones which freely generate a subgroup in Dift*(X).

0. Introduction. The fundamental concept of the Lie theory is to investigate
topological groups by means of their one-parameter subgroups. For a classical
(i.e. finite-dimensional) Lie group G, the set L(G) of all one-parameter subgroups
has a natural Lie algebra structure, Moreover, there is a one-one correspondence

“between arcwise commected subgroups of G and Lie subalgebras of L(G).

The group Diff®(X) of all compactly supported C®-diffeomorphisms of
a C®-manifold X is a well-known model of an “infinite-dimensional Lie group”
with the Lie algebra I'®(X) of compactly supported C®-vector fields.

Despite of some resemblances, this group fails to have some propertics of
classical Lie groups, e. g. the image of the exponential map includes no neighbourhood

~of the identity (cf. [2], [4], [6].

The main aim of this note is to show that the situation is even worse, namely
that there are nomtrivial arcwise connected free subgroups of Diff;” (X) consisting

“of diffeomorphisms (except for the identity, of course) which embed in no flow.

_The main pari of the proof can be found in § 3 of this note and the idea of the

proof is the following (reduced to the case X = R).

Denote by "® a free group with r-generators. Elements of "® can be represented
by “words” ¢ = Af* ... 4}, where i e {l,...,r}, ju = £1, ji # —Jp+s providing
iy = iy4q, and “the empty word” 1. Set || to be the length of the “word” @ €"P
and write 5P = {p € "®: |p| <n}. For a group G and g,, ..., g, € G, we have the
..., g €G given by replacing A by gt
Let G = Diff*[0, 1] be the group of all C®-diffeomorphisms of the closed

\inﬁt‘erval [0, 1]. By a theorem of Kopell [4] there are g € G arbitrarily close to the
.identity in the natural C®-topology such that g” embeds in no flow and has no fixed

poifits in (0, 1) for n = 1,2, ... We shall call them Kopell-diffeomorphisms.
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Take @e!l®, ¢ = Af"... 4*. Take g,eDiff*[0,1], i=1,..,r such that
there are closed intervals I; < I, <...<I, in (0,1)

(I<J means x<y for all xel, yeJ)

such that g,(x) = x for x < I, and g,|y, is a Kopell-diffeomorphism of 7, i = 1, ..., r.
Suppose ¢(gy, ..., g,) embeds in a flow. Since

(p(gl’ ey gr)'I;, = (/)(glllp Ida ey ld) = (gllh)sm ]

where Z;¢ =k 12 Juw and since g4|;, is a Kopell-difftomorphism, we have
=1, 00
=1

X, = 0. For example, take
¢ = LA AT AT 34347 (peid Zip = 0).
We can write ¢(gy, g2, g3) in the form

?(G1> 92 93) = (979297 (9195 95 (919397 Y) .
Putting

hy=g19291% Py =g19597% hy =g,0207%
we get

(P(gl,glags) = llb(hl, 17'23 hs)s where Y= A}A;iAgAé € i@ .

The pairs (hy, 1), (h2, 92), (hs, g5) consist of adjoint diffeomorphisms and, being
a little careful in the choice of g,, we can assume that ¢ (g, g2, 93) # id and that
there are disjoint closed subintervals Jy, J,, J; of (0, 1) such that A(x) = x for
x <Jyand Ay, is a Kopell-diffeomorphism, i = 1, 2, 3. Since || < |¢|, proceeding
inductively, we get finally ¢(g,, g5, g5) = id, a contradiction.

This example shows how to prove that for each natural n,r there are
915 s 9, € Diff®[0, 1] arbitrarily close to the identity such that ¢(gy,...,4q,)
embeds in no flow for each ¢ e;®, ¢ # 1. Then we can use a trick (see Theorem
(2.5)) to comstruct a curve (0, 1) e ¢ + y(¢) € Diff* (R) such that {y ()}reo, 1yis 2 set
of free gemerators of a subgroup in Diff* (R) lying off flows. Note that all this can
be done for difftomorphisms of class C¥, k=1, 2, ..., as well.

Let us explain what “being a little careful in the choice of g,” means in the
procedure above. We simply want the intervals ¢ (g, ..., g,)(I}) to be disjoint for
all pe;d, ¢ # 1, i=1,..,r This leads to an investigation of the maps

X DIff*[0, 1] € (g1, v, ) 0 @(ds -r 6@ €10, 1],

?’or Qe '@,x.e (0, 1), which is done in § 1 in a more general setting for the so-called
Inner mappings of topological groups of homeomorphisms. The fundamental
'result of §.1 is Theorem (1.9) giving some sufficient conditions asserting that the
inner mappings have locally “large” images. This allows us to prove in § 2 and ad-
ditional fact concerning some groups G of homeomorphisms (with Diff“(X),
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k=1,2,.., 0, as examples), namely that for each sequence fi, /3, ... of elements
of G there are h; € G arbitrarily close to f;, i = 1, 2, ..., such that Ay, h,, ... freely
gencrate a subgroup in G.

1. Inner mappings of topological groups of homeomorphisms.

(1.1) DermniTION. A. subgroup H of the group Homeo(X) of all homeo-
morphisms of a topological space X, equipped with a group-topology such that
the mapping H A w A(x) € X is continuous for each xe X (i.e. the topology is
finer than the topology of pointwise convergence), will be called a fopological group
of homeomorphisms of X. Given a family D of homeomorphisms of X and a subset
W< X, we denote by Dy the set of all homeomorphisms from D with supports
in W. A topological group H of homeomorphisms of X will be called strongly locally
transitive (shortly SLT) if, for each x € X, each neighbourhood D of the identity
in H (we define neighbourhoods to be open), and each neighbourhood W of x,
the set Dy(x) = {A(x): h e Dy} includes a neighbourhood of x.

(1.2) ExamMPLE. Let X be a C*-manifold (by a manifold we shall mean a finite-
dimensjonal paracompact manifold without boundary), k = 0, 1, ..., 0, and Iet
Diff¥(X) be the group of all C*.diffeomorphisms of X (Diff’(X) = Homeo(X))
with the Whitney C*topology (called also the strong C*-toplogy). Then it is easy
to see that Diff*(X) is a SLT topological group of homeomorphisms of X. The same
is true for the group Diff¥(X) of compactly supported diffeomorphisms which is
a closed normal subgroup of Diff*(X).

Note that Diff*(X) is a Baire space for & = 1,2, ..., o (see [3] or [5]).

(1.3) ExaMPLE. Let B be an open ball in R" and let Diff%(B) be the group of
all C*diffeomorphisms of R* with supports in the closure of B and the topology
induced by the Whitney C%topology on Diffy(R™), k= 1,2, ..., 0.

Tt is not hard to verify that Diff(B) considered as a group of homeomorphisms
of the open ball B has the topology of C*uniform convergence on B and that it
is a SLT topological group of homeomorphisms of B.

One can check that the topology is completely matrizable. Observe also that
Diff¥(B) is locally arcwise connected. Indeed, for each neighbourhood U of the
identity in Diff*(B) we can choose a neighbourhood ¥ of the identity such that
for each ¢ e V there is an arc in U connecting ¢ and the identity. Such an arc can
be taken to be [0, 1151 b ¢y, @,(x) = tx+(1~1)e(x), since it is easy to see that
@, is really a diffeomorphism for ¢ € Diff%(B) sufficiently close to the identity and
that ¢, is closer to the identity the closer to the identity is ¢.

The same reasoning shows that the group Difff(B) ~ Diff¥(R") is locally arcwise
connected. .

Observe also that, having a relatively compact coordinate chart on an
n-dix:lensional Clmanifold X, we can construct an embedding of Diff(B) into
Diff, (X). ‘
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(1.4) ExampLeE, Let X be a commected real-analytic manifold of a positive
dimension and let Diff °(X) be the group of all real-analytic diffcomorphisms of X
with the inductive real-analytic topology. Then Diff“(X) is a topological group of
homeomorphisms of X which acts transitively on X, but it is not strongly locally
transitive since (Diff“(X))y(x) = {x} for a neighbourhood W of x ¢ X.

Let H be a (topological) group. Denote by > Hthe (topological) group X x.... x H

S—
r times

with the produet group stracture (and the product topology). Accordingly, if D < H,
r
then D x...x D will be denoted by ><D. On the other hand, by D" we will denote

r times
the set {hy... B Ay, ..., h.€ D}.
Let ,Q(H) be the set of all sequences

(gu+1: LLEE) g;[s in: sery il;jn: 571) ’
whete gy, ..., Gys1 € H, iy, i€ {l, ..., ¢}, and j, .o, j, = +1.
For we,Q(H) and h = (hy, ..., h,) e X H, we define

CD(}I) = gn-l-ih‘ti:gn huj;lgi »

o) = gehiect ., My if =1,
hi,,l.‘/k--- ll{f.‘h if jo= -1,

k=1,..,n
If H is a topological group of homcomorphisms of X, xe X, o e Q(H), and

he XCH, then we shall also write w(k, x) and (h, x) i
s ,X) 4 (R, x) instead of (w(®))(x) and
AT () ()

. Mappings of the form ><H 5h v w(h)e H, where we @ (H), will be called
inner mappings of rank n of H.

Note that the definition of w, is of the form above in order to have

() = Gy (11, Y7 g, .l o, (i)

3

k=1,.,n.

. r

Hence, if we compute w(hu, x) for w e QH), /1,‘ue><11, H being a group of
ho%neomorphlsms of X, xe X, then u{;‘ in the composition w(f) is acting at the
point w; (hu, x). »

(1.5) DermNiTiON. Let H be a topological group of homeomorphisms of X,

r
lfet f= (fl.’ s )€ X H, and let w e Q(H). A point x e X will be called proper
(3{ (a),f)j ifforeachk = 1,..,n-1, satisfying i1 = & and ji., = —j,, We have
Sl Ox St g1(x) € Tnt (SuPP (9r+ 1))

(1.6) ExaMPLE, Let g be a homeomorphism of R such that g(l) =1 and
gx)>x for x s 1. Let f(r) = t+1. Consider weéQ(Homeo(R)) such that
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w(k) = h~gh. We have g(f(0)) = f(0), but £(0) € Int(supp(g)), so 0 & R is proper
for (w,f).

(1.7) ExampLE. Let g and f be as in (1.6) and let x e Homeo(R) be such that
supp(u) = (— o0, 0]. Consider 4 € 1Q(Homeo (R)) such thatn(h) = h™ g™ huh™"gh.
Then f~1gf(0) = Oesupp(w), bui 0¢Int(supp()), so Oe R is not proper for
(n,.1)- .
(1.8) Remark. Let H be a topological group of homeomorphisms of X.

r
(a) Tt is easy to sec that for @ LQ(H) and for xe X thesetof all fe Y} H

such that x is proper for (@,f) is open in > H.
O oeiQ(H) w=(d,..,1d, i s i1, s > J1), then each x € X is proper

for(w, f)forall fe <H if and only if j ., # —Jj, for all k=1, ..., n—1 satisfying

Iy = G414, 1.6, ©(R) = @ () for @ being a “free group-word” from , @ (in the notation

of §2).

(1.'9v) TucoreM. Let H be a SLT group of homeomorphisms of a Hausdor[f

topological space X. Let welQ(H), n>1, let fe X H, let xe X be proper for
(w, 1), let W be a neighbourhood of the set {w(f,x): k=1, woon}, and let D
be a neighbourhood of the identity in H. Then the image of the mapping

r
‘ X(Dy)you v ofu, ) e X
includes a nonempty open set.

(1.10) Remark. This open set has not to be a neighbourhood of the point
w(f, x). Indeed, one can check that, in the notation of (1.6), there is a neighbourhood
D of f in Homeo(R) such that the image of the mapping Dah » w(2,0)eR
contains only nonnegative reals.

(1.11) Remark. The assumption that x is proper for (@, f) is essential in (1.9).
To see this, it suffices to consider the inner mapping (k) = h™'gh and to take
fsuch that f(x) ¢ supp(g). Theorem (1.9) is also not valid if we put “supp” instead
of “Intsupp” in Definiiion (1.5), since in (1.7) we have ™' gf(0) & supp (). bui,
for a mneighbourhood D of f in Homeo(R), the- image of the mapping
Deh w»y{h,0)e R consists of only one point. .

Before proving Theorem (1.9), let us present the following two technical pro-
positions which can easily be proved by induction.

(1.12) PROPOSITION. Given w € ;Q(H), we have

0] 8 thy () 7 i di) = (1L, 1),
S+ iwlx(h) i/‘ (jk-(~1:jk) = (19 - 1) ’
]l;]::]gk"'lhika)k(h) if (errsd) = (=1L 1),
B 0@ I G dd = (=1, = 1)

w1 ()=
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fork=1,..,n-1;

)] _ )9+ CO,,(h) ifjn = -1,
ol = {gnihz,.w,,(h) =1

(1.13) ProrosiTioN. Let H be a topological group of homeomorphisms of X,
xeX, e QH), and f, ue><H. If off,x)¢supp(uy) for 1=1,..,k<n~1,
then off,x) = o (fi,x) for I =1, ..,k and

Wy 1(f, %) if Jes1
) U, x) =< = L
1t 3) {urk:1(wk+ 1(fa x)) if Jrwt

(1.14) LemMA. Under the assumptions of Theorem (1.9), if x is not an isolated

1

1,
-1.

f

. r
point of X, then there is ue ><(DW) such that the points w(hu, x), with le {1, ..., n}
satisfying i, = k, are mutually different for all k =1, ...,r.

Proof. For n= 1, the lemma is trivial. Suppose it is true for n and take

® € ,+1 Q(H) By the inductive assumption there is we ><(DW) such that the points
afw, x), with I = 1, ..., nsatisfying {, = k, are mutually different forallk = 1, ..., r.

Choosing w sufficiently close to the identity, we may assume additionally that
w,(fiw, x) belongs to W for I = 1, ..., n+1 and that x is proper for (@, fw) (cf. (1.8)).

Set & = fw and let C be a neighbourhood of the identity in H such that wu e><D

forue ><C Let U be a neighbourhood of w,(k, x) included in W and not containing
yh, x) for I =1,...,n—1 satisfying i, = i,.

Consider v = (v, ..., v,) € ><H such that supp(v,) = U and v, = id for I # i,.
Then, by Proposition (1.13), w,(hv, x) = w,(h, x) for I = 1,..,n—1 and we have
the following possibilities.

(@) Gus1:J) = (1, 1). Then w,(hv, x) = w,(h, x) and
wl:"'l(hv! x) = Gy llll..vi,, (a)n(hs x)) .
() Ups134n) = (=1, 1). Then o,lhv, x) = 0,, X),

A — 1 g0
60,,+1(hl), ')“) = Vg J’lgn“g,,4.1]11"171"(60,,(/1, x)) )

?ndh;o,,(k, x) € Int(supp (b, *g,+ M), providing i, = i,.4, since x is proper for
, k).

(C) (jn-|~1=jn) = (1 > T 1) Then
CO”(hU, x) = ”i:l (CO,,(/Z, x)): Dy 4 1(]“7: X) = g,,+11);;1(03,,(h, X)) )
and w,(h, x) € Int(supp(g,+,)), providing i, = i ..
(@) Gus1dy) = (=1, =1). Then w,(hv, x) = v (o, ‘C)) and

(0,,+1(hv, x) = ”;ixhi..ugwﬂ’ﬂl(wn(h: x)) .
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Now, it is easy to sec that in each case we can choose v;, € Cy in such a way
that @, 4 (v, X) # o, x) for all | = 1, ..., n satisfying i, = i,, ;. This is possible
in cases (b) and (c) for i, = i,,, since we arc working in the interior of the support

Of gn-(-l. .
Hence, the desired u can be chosen to be wv. B

Proof of Theorem (1.9). If x is an isolated point of X, then the theorem is

p
trivial. If x is not isolated, then by Lemma (1.14) there is ve><(DW) such that
afv, ), are pairwise different for those 1< /< n for which 4 = 7,. We may also
assume that w,(fv, X)€ W. Put & = fv and let U be a neighbourhood of w,(, %)
included in W and not containing w(k, x) for those 1 </<n~1 for which i = i,
Let C be a neighbourhood of the identity in H such that v, C= D

r

Consider w = (Wy, ..., W) € X(H such that supp(w,)=U and w, = id for
! # i,. We have the following possibilities:
(@ j,=1. Then o(w,x) = gyss hwi (0w, X)) = gur thuw, (@, x)).

(b) jn = —1. Then CO(hW, x) = gn+1(mn(hw9 x)) = gn+1wi:1((bn(h= x))
Now, it is easy to sce that the image of the mapping Cy3u + w(fow,, e X,
where w, = (Wi, ..., W), Wy = u if [ =1, and w; = id if I # 7,, has a nonempty

r

interior. Since vw, e><(DW) for ue Cy, the theorem is proved. W

2. Groups generated by families of homeomorphisms. Let "®, r=1,2,..., 0,
be a free noncommutative group with r generators (“co” denotes a countable set
of generators) The elements of "® may be represented by words ¢ = Al . A,-jl‘,
where i, = 1,.., 7 jo= 1, n=1,2,.., such that i # iy I Ji = —Jis1>
k=1,..,n—1, and the “empty word” which will be denoted by 1L

The group operation in "®, for which 1 is the neutral element, is defined by the
composition of the words:

(Al Ay o (4l all) = s . Al All
modulo the reduction of the given word by the formula A{4;/ = 1 to the form
in which i, % By q if Jo = ~Jis1-

It is casy to see that (4. 4f)™ = 477 .. 45

We have the natural inclusions *® €— &'+, r= 1, 2, ..., which define the direct
limit group lim"® isomorphic with “®, so we can consider 'hor=1,2,.., a8
a subgroup of ©®. For ¢ = Af! ... Al! € ®®, we define:

@ lol = n. ‘
(li) ](Pll = lZl|jk], I= 172: .
=

(i) Zip = Y jo I=1,2, ..
b=

Clearly, we assume |1] = |I; =21 =0for I=1,2,..
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We have the following trivial formulas:

©

@ lol = Y, loh-

1=1

) lpgopali<loitloal, {=1,2, ..

(©) Zfpio02) = Doy +2ipa, 1=1,2, 0

Moreover, for ¢ € *® we have ¢ &"® if and only if |pl; = 0 for /= r+1,
F+2, ... Denote "&\{1} by "@* and denote the set of all ¢ &P such that [p|<n
by [, r=1,2,.., c0. It is easy to sce that (@)™ == ;& and (@)o(s®) = 4 s,
so {T®}2, = 0 is a gradation of the group "®. For a group Gand r= 1,2, ..., we
have the natural mapping @ 3 ¢ == g€ ,2(G) defined by

(A e AUy s ) = B B!

r
and 1, = id. If it is known what a group G is under consideration, = (fy, ... ,f,)e><G
or = (fi, [z ) is an infinite sequence of clements of G, ¢ € "®, then we write

@(fy -5 fp) or @(f) instead of @g(fys s i)
The mapping ‘@2 ¢ & @(fi, .., /) € G is a homomorphism of "¢ onto the
subgroup of G generated by the elements fi, ..., /f;. It is clear by definitions that,

for H being a topological group of homeomorphisms of X, fe ><H, and ¢ e'®,
each x & X is proper for (¢y,f). This fact and Theorem (1.9) imply the following
theorem.

(2.1) TueoreM. Let H be a SLT topological group of homeomorphisms of
a Hausdorff topological space X, let x be a nonisolated point of X, let D be

.
a neighbourhood of the identity in H, let r, n be natural numbers, fe ><H, and let W
be a neighbourhood of the set {o(f, x): @ & ®}. Then there isue ><(DW) such that

SJor p e, ¢ # 1, we have ¢(fi, X) % x. In other words, for @€ /B, ¢3€,.P,
NNy S0, O # Qo we lave @y(fu, x) # @u(fu, X).

Proof. Let ¢y, ..., ¢, be a sequence of all elements of y@\{1}. By Theorem
r
(1.9) there is u; e X(Dy) such that ¢y (fu, x) # x. We may also assume that
¥

{0 (f.ul, X): ¢ e, ®} = W. Recurrently, if v, ¢ ><(Dw) is such that o,( fit,, x) 5 x for
I<isk<m, and {@p(fin,x): e 0} =W, then for a neighbourhood C of the

. . . " r

identity in H such that we XC implies uw e XD, {p(fuw, x): ¢ & P} = W and
r

o fugw, x) # x, 1<i<k, we can find, by Theorem (1.9), w e><(CW) such that

. r
Qe l(ﬁfk.vv, x) # x. Putting g, = 1w, we have then ., | & ><(DW), O filpag, X) # %
for 1<i<k+1 and {@(fisy, %): @eiP}cW. H

The theorem above allows us to distinguish a homeomorphism ¢ () from
r

05(fu), for @1, @y P, @1 #* ¢y, and some u & >H arbitrarily close to the identity,
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just looking at the images of x. An analogous statement for arbitrary lengths of the
“words” ¢, and @, is the following.

(2.2) TusoreM. Let H be a SLT topological group of homeomorphisms of
a Hausdorff topological space X. Assume additionally that H is a Baire space and X
is separable. Let xy, x5 ... be a sequence of nonisolated points of X, Dy, Dy, ... a se-
quence of neighbourhoods of the identity in H, f = (f, fa, ..) @ sequence of elements
of H. Then there is a sequence u = (Uy, Uy, ...), where 1, € Dy, n = 1,2,.., such
that o(fu, x,) # %, for all pe®®, ¢ #L n=1,2,..

In particular, the homeomorphisms fy s, f5 4y, ... freely gemerate a subgroup
in H.

Proof. Since H is separable, we can assume that the sequence xy, X, ... is
dense in the set X, of all nonisolated points of X. For ¢ € '$, ¢ # 1,and for xe X,
st o »

A,(x) = {we Dy: o(fiw, x) # x3}.
Obviously, 4,(x) is an open and, by (2.1), dense subset of D,. Hence
0
Bi= N N A()
peld*n=1

is of the second category in D; and we can find u, € B,. Inductively, suppose
O(figy s fo s %) # X, for all pe'@*, n=1,2,.. Take ee™1P\'P and put
k = |¢|,+1. There is o€ }Q(H) such that for all 7€ H we have

w(h) = @(fitky, oos fithe, B) = gk+1hjkgk hhgn

where g; = @{filts, -, f4,) for some @;€"®, i=1,..,k+1, and ¢; # 1 for
i=2,..,k Then, by the inductive assumption, supp(g)> X, for i=2,..,k
and, for every nonisolated peint x of X and every s e H, the point x is proper for
(®, k). By Theorem (1.9) we conclude now that the set

Anp(x) = {WE Dr+1: q)(fluls ~-~af;ur=f;+1w¢ x) # JC}

is dense (and obviously open) in D,.;, and hence the set

-]
Br+1 = ﬂ ﬂ Av(xn)
rEIGNTD n=1
is of the second category in Dj.y.
Taking #,.q € Byr1, We get @(fi, s frrtthats x,) # x, for all pe
n=1,2,..,that proves the inductive step. ||

r+ 1@*
H

An immediate consequence of the theorem above (cf. (1.2)) is the following
corollary.

(2.3) COROLLARY. Let X be a separable C*-manifold and let Dy, Dy, ... be a se-
quence of neighbourhoods of the identity in Diff*(X) with the Whitney C*topology,
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k=1,2,.. Then for each sequence f= (fi,fs ) of elements of DIft*(X), there
is a sequence u = (uUy, Uy, ..), where uye D, i =1,2,.., such that ¢(fu,x) # x
Jor all p e *®* and all x from a subset of X of the second category.

kIrz particular, the diffeomorphisms fiuy, fous, ... freely generate a subgroup in
Diff(X).

(2.4) Remark. It is obvious that, looking for u € >< Dsuchthat ¢(fu, x) # x
for all @ € "®*, (in order to get a free group of homeomorphisms), we need a sort
of the Baire property of H. We have used cxactly the Baire property in (2.2) since
it fits very well to the case of diffeomorphism groups, but other versions of Theorem
(2.2) may also be derived.

An easy example showing that there is no version of Theorem (2.2) for H
without any sort of Baire property is the following. Let X be the space of all sequences
from {0, 1}", with almost all zeros, equipped with the metric

@)z B = 3 b2

Let H be the groups of permuiations ¢ of X such that (¢(a)), = a, for all
a = (a,)5=1 € X and all n > k(o). Taking the topology of uniform convergence in H,
we get a topological group of homeomorphisms of X. To sec that H is SLT, consider
a neighbourhood W = {4’ € X: g(a, &) < ¢,} of a = (a,);%,, where &, is irrational,
and a neighbourhood

o
D= {ceH: le(a(c)),,——c,,l/Z" <g for all ¢ = (¢} € X}
n=

of the identity in H. We shall chow that Dy(a) contains the neighbourhood
W' = {a'e X: g(a, @) <min(e,, £,)} .
Indeed, for a’ = (a;),=; € W' define o€ H by

(), = oy +ap—a,) (mod 2) if xe W,
e Xn if xé w

for all x = (x,)s=; € X. Since W and X\W are both open (g, is irrational), o is really
a homeomorphism, ¢ € Dy, and o(a) = 4.

On the other hand, since every element of H is of finite order, H does not include
any free subgroup.

(2.5) TueoreM. Let H be a completely metrizable group of homeomorphisms
of a Hausdorff topological space X. Suppose that R is a subset of H satisfying the
Sollowing conditions:

M iff ge H, supp(f) = W and f|p = gly, then fe R implies g e R,

(2) there is a family {W}i2y of disjoint open subsets of X such that Jor each
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neighbourhood D of the identity in H and eachr = 1,2, ... there are f1, f2, ..., f, € Dy,
satisfying o(fy, o, Ji) € R for all ¢ & 9%

Then there is a mapping y: [0, 1) = H, y(0) = id, such that {y()}ee,1) is
a set of free generators of a subgroup of H which is included in Ry {id}.

If, additionally, the subgroups Hy,, i = 1,2, ..., are locally arcwise connected,
then y can be taken continuous.

Before proving this theorem, note that taking R = H\{id} for a SLT topological
group of homeomorphisms H, we get Corollary (2.6). Theorem. (2.5) will also be
used in § 3, where, for groups of difftomorphisms, we will take R to be the set of
diffeomorphisms which embed in no flow.

(2.6) COROLLARY. (a) Every completely metrizable SLT topological group of
homeomorphisms of a nondiscrete Hausdorff' topological space X includes a free
subgroup with continuum generators. ]

(b) For each k=1,2,..,00, the group Diff¥(X) of compactly supported
C*-diffeomorphisms of a Crmanifold X (and hence the group Diff*(X)) includes
a nontrivial arcwise connected (with respect to the Whitney Ct-topology) free
subgroup.

Proof. To prove (a) it suffices to put R = H\{id} and to make use of Theorems
(.1) and (2.5).

To prove (b), consider an embedding j: Difff(B) ~ Diff¢(X), where Bis an open
ball in R¥™®, given by a relatively compact coordinate chart in X. Let {W;}i2, be
a family of disjoint open balls in B. Since Diff(B) is a completely metrizable SLT
topological group of homeomorphisms of B, and since (DIEXB))lw, ~ Diff{(R")
is locally arcwise comnected (see (1.3)), putting R = Diff¥(B)\{id} we can use
Theorem (2.5) to obtain a continuous mapping y: [0,1) — Diff(B) such that
y(0) = id and {y(")}e(,1) is a set of free generators of a subgroup in Diff*(B).
Then, { j(¥(*))}e(0, 1y generates an arcwise connected free subgroup in Diff(X). W

Proof of Theorem (2.5). Let g be a complete metric on H. Enumerate all
increasing finite sequences of rationals from (0, 1) of even length by (¢)i21. Write
¢ = (Pl s Phaqry)- We can construct recurrently a sequence of mappings

Y+ [0, 1) - HW,., n=1,2,.., 7(0) = id,
such that
@ sup {(a(®) e 710, Yum1(8) e 1A} <127,
(i) 'p,,(tj = f,, for t e [Pyi-1, Pl i= 1, ..., k(n), where f;, wres foemy 1€ Elements
of Hy, such that @(fyy, . sfo) € R for all @& gk,

Let y(¢) be the limit point in H of the sequence Io(t) = 7,(2) ... 74(¢). Since the
topology of H is finer than the topology of pointwise convergence,

supp (7(1)) nyl Wi
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and y(#)lw, = y:(z). We shall show that {y(#)};(, 1, arefree generators of a subgrouyp
in H included in Ru{id}.

It suffices to prove that, for #y,..., 2, (0, 1), #; <.. <t,, we have

? (tr(i))m‘ Y (tr(s))ms eR

for all my, ..., mye Z\{0} and for all #(1), ..., r(s) € {1, ..., n}, r(i) % r(i-+1). Tuke
J=|my| ..+ |my such that k(j) = n and 1, [p}_, ph], i =1, vy I
Then

()™ o ¥t My = 95ty o 9y ()™ = S oSy = O s i),

whete @ is an element of j@*. The right hand term belongs to R by the construction,
80 P(f))™ - Y (ty)™ € R by assumption (1).

If the subgroups Hy,, n=1,2,..., arc locally arcwise connected, then the
mappings v, (and hence I',) can be chosen coniinuous. Since the mappings I', are

uniformly convergent, the mapping y is also continuous and the group generaied

by {v(t)},s(o,i) is arcwise connected, B

3. Diffeomorphisms outside flows. One-parameter subgroups of a topological
group G are defined to be continuous homomorphisms from the additive group
of reals into G. One-parameter subgroups of groups of diffeomorphisms are also
called flows. It is well known that each flow in Diff*(X), k = 1, ..., co, (with the
Whitney C*-toplogy) is generated by a €%~ t-vector field on X (see [1D), Tt is also
well-known that cvery neighbourhood of the identity in Diff*(¥) contains
diffeomorphisms which embed in no flow. This is one of the main differences between
the finite-dimensional Lie groups and the groups of diffeomorphisms. (see [2]).
Since each flow generates an arcwise connected commutative subgroup in Diff¥(X),
Corollary (2.6) implies the following.

(.1) TreoREM. For X being a Cr-manifold, k = 1,2, ..., o0, the group Dift*(X)

includes a nontrivial arewise connected subgroup which contains no nontrivial Slow.,

(3.2) Remark. Theorem (3.1) shows that Dift,” (X) includes arcwise connected
subgroups which are not Lie subgroups in any sense, i.c. that the theorem of
Yamabe [7] is no longer valid for such “infinite dimensional Lie groups™,

Our aim in this section is to prove a stronger version of Theorem (3.1), namely:

(3.3) THEOREM. Given a C"-manzfold X, k=1,2,..,0, there is o continuous
mapping 92 [0, 1) » DifE(X), y(0) = id, such that {PW}eco,1y 35 a set of Jree
generators of a subgroup of Diff¥(X) which contains only (except for the identity,
of course) diffeomorphisms which embed in no Slow,

(3.4)-Remark. Theorem (3.3) is not valid for groups of homeomorphisms.
For example, every orientation-preserving homeomorphism' of the interval (0, i}

embeds in a one-parameter subgroup of Homeo (0, 1) with the compact-open
topology.
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Let us show this first for homeomorphisms f with no fixed points. Let x, & (0, 1).
For t € [0, 1], set X, = xo-+#(f(x¢)— o). Consider now the mapping ¢: R — (0, 1)
defined by @ (1) = fE(')(x{,)), where E(t) is the integer part of 7 and {1} = t—E@).
It is easy to see that, since f has no fixed points, ¢ is a homeomorphism. Define
now ¥, (0,1) = (0, 1) by putting ¥,(¢(2)) = ¢(¢+5). One can easily verify that
s » 1, is a flow in Homeo(0, ) and that v, = f.

Now let 7 be an arbitrary orientation-preserving homeomorphism of the
interval (0, 1). Let {J,},q4 be the set of all maximal h-invariant open subintervals
of (0, 1) consisting of nonstationary points of & We still know that A|;, embeds
in a flow A, in Dift*%(I)) such that A} = hiy,. Hence, h embeds in the flow

X ifx¢ UI,,

h’(x) - ned
M(x) ifxel,.

Our approach to the proof of Theorem (3.3) will start with an investigation

of the group Diff*(J), k = 1,2, ..., 0, of diffeomorphisms of a closed interval

J, i.e. the .group of those homeomorphisms of J which can be extended to C&dif-

feomorphisms of a larger open interval, with the natural C*topology.

(3.5) DerviTiON. A diffeomorphism g e Diff%([a, b)) such that

(i) g has no fixed points in (a, b), .

(ii) ¢" embeds in no one-parameter subgroup of Diff“([a, b]) for all n e Z\{0},
will be called a Kopell-diffeomorphism (K-diffeomorphism). ‘

Observe that the set of all K-diffeomorphisms is invariant with respect to the
action of inner automorphisms of Diff*([a, b]). Following Kopell [3], we shall prove:

(3.6) THEOREM. Euach neighbourhood of the identity in Diff*([a, b]),

k‘= 1,2,..-,w:
contdins a K-diffeomorphism.

Proof. We can take [a, b] to be [0, 1] = J. Let D be a neighbourhood of tl-le
identity in Diff*()). Tuke o C*vector field ¥ on J which is of the form 4,20/0t in
a neighbourhood of 0 and of the form A,(t—13/dt ina ne‘ighbourl}‘ood of 1,
Ay <0, 2, >0; ¥V does not vanish in (0, 1) and is so clote to 0 in the C-topology
that b = Exp(¥)e D, where t v BExp(s¥) is the flow generated by V.

Take xq € (0, 1) such that Exp(rV)(x) = ¢™x for x e [0, %ol and 120, Choose
B & Dift*([h(x,), xo]) having the C*contact with the identity at xo and h(xo),
B # id.

Then there is exactly one feHomeo(/) which satisfies ﬁ'“’"‘.‘”; xol =; E,
Blexo, 1y = 1d, and BA"(x) = h"B(x) for x & [A(x), x,], ne N, Put g iﬁ hB. It is
easy to see that gEDiII"(J), gI[O.X‘O] = hl[o‘xu:], gl[xo.;,“l(xo)] =B hl[xn,h"‘(xo)]”
gl[h'l(xo), 1] = hl[h"‘(xo). 1]+
3 — Fundamenta Mathematicae 131, 2
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Assume that f is so close to the identity that g € D. We shall show that g is
a K-diffeomorphism.

First observe that the linear local diffeomorphism -defined in a neighbourhood
of 0 by (%) = e’x embeds in a unique local flow as its value at 1, namely, embeds
in the flow @,(x) = ¢™x. Indeed, suppose that ¥, is a lIocal flow of C-diffeomorphisms
such that ¥, = fin a neighbourhood of 0. We can assume that 1 <0, considering f
or 1. Since for allm = 1,2, ... and e [—1, 1] we have f ™", f" = \,in a neigh-~
bourhood U of 0, we get e ™ (%) = Y(x) for n = 1,2, ..., te[—1,1], and
x & U. Differentiating with respect to x, we obtain

Wie™x) = Yi(x) form=1,2,..,,
and hence

Yj(0) = Yi(x) for te[~1,1] and x€ U,

so that y,(x) = ax and it is éasy to see now that a, = ¢
Now suppose that g, for a natural 7, embeds in a C*flow. Since g" equals
A" (and thus is linear) in a neighbourhood of 1, we can apply the result proved to
conclude that this flow is unique in a neighbourhood of 1. But g"(x) < x for x € (0, 1),
so this flow is unique on [0, 1], and hence it has to be equal to B~ *Exp(m¥)p.
Similarly, by the uniqueness in a neighbourhood of 0, we conclude that

At

B 1Exp(mtV)B(x) = Bxp(mtV)(x) for xe [0, x], t=0.
Hence

M (x) = ()
Differentiating with respect to x, we get
B0 = @)

that implies f'(x) = f'(x') for x', x € [0, x,] . But ' is not constant on [A(x,), x,]
since Blicwoy,xa = B and B # id, a contradiction.

To use K-diffeomorphisms in constructing the mapping y from Theorem (3.3),
we shall need a modification of Theorem (2.1). Let us introduce a notation.

For homeorphisms 4, /i, of a topological space X, for Uc X, and for x ¢ X,
we denote by Un(hy,hy) the set of all @ = Af*.. Af!ed such that for all
I=1,..,k—1 we have hf'..hf!(x) € U providing iy = 1.

We shall use the convention 1e Uy (hy, hy) for all natural n, all xe X, and
all hy, h,. ‘

We shall omit an easy proof of the following technical proposition.

(3.7 ProrosiioN. (a) If ¢, € Uj(hy, hy) and @y UDO"3(p b)), then
P1°P2 € U:-fm(hi’ hz)-

() I ¢ € Uz (hy, ha), then 9™ & (hy(U) O~ (U hy, hy).

(¢) If U is open, then Uy(hy, hy) = Uy (hy, h3) for b} sufficiently close to hy in
the topology of the pointwise convergence,

for xe [0, x,], t=0.

for xe (0, x,],220,
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(d) If U is open, there is a neighbourhood W of x such that hy by |y = id implies
U:(hla hz) = U:(h;.’ hz)s and (P(hl’ hl’ y) = (D(hi: /12: y) fOI' (245 U:(hl’ h2): ¥y ew.
To each ¢ ¢ "® and each element / of a group G we may assign @ € [¢;=’l;|119(G)n
putting @u(f1, voos frm1) = @, f1, s fomy) I hkis a homeomorphism of a topological

space, then we denote by supp,(#) the set supp (#).
i=1

Immediately by the definitions, we get the following.

(3.8) ProrostrioN. If @ e Uy (h, g), and U supp,(h), then x is proper for
(@hs g) .

(3.9) TueoreM. Let H be a SLT topological group of homeomorphisms of
a Hausdorff topological space X, h, g e H, let U be an open h-invariant subset of
Supp,, (h), and let x be a nonisolated point of X such that x ¢ U or x is not a periodic
point of b with the period < 2n. Let D be a neighbourhood of the identity in H, and
let W be a nieghbourhood of the set {¢(h, g, x): @ € 2 ®}. Then there is ue Dy such

that @,(h, gu, x) # @a(h, gu, x) for @1, ¢, € Us (1, gu), o1 # @2

Proof. Put B = {we D: ¢p(h, gw, x)e Wiorallp e 2 ®}. Bis a neighbourhood
of the identity in H. It suffices to prove tne following inductive step:

If there is we By such that for some @, ..., ¢, & Uy(h, gw) the points
@(h, gw, %), i =1, ..., r, are pairwise different and {¢y, ..., o, # Ug(h, gw), then
there is u & By such that for some ¢}, ..., @41 € Uy (k, gu) the points oi(h, gu, x),
i=1,..,r+1, are pairwise different.

Assume that we have o,,, € UZ(h, gw) different from ¢;, i = 1,...,r, such
that @, . ,(k, gw, x) = @;(h, gw, %) forsomeje {1, ..., r}. Let Cbe such a neighbour-
hood of the identity in H that for each w' e C we have ww' € B,

Uy (h, gww')= Ui (h, g¥) ,
and the points ¢,(k, gww', x) are pairwise different for i=1,..,7 and
i=1,.,j=Lj+1, ., r+l.
Since A(U) = U, by Proposition (3.7) (a) and (b) we have
@ =07 o Prs1 € Un(h, gw),

o(h, gw,x) = x,0 # 1, and § € Ml,Q(H). If |p|, = 0,then p(h, gw) = KEI that
is impossible since x ¢ U or x is not a periodic point of & with the period < 2n.
Hence, |@|, >0, and since U < supp,,(h), x is proper for (¢, gw) by Proposition
(3.8). It is easy to see that (Pphlgw,x) = ne(h, gw, x) for some me€ 20,
k=1,..,|elz so by Theorem (1.9) there is w' & Cy such that @,(gww’, x) 5 x.
It suffices to put now u = ww’, and @} = @;, i = 1, s r+l1, A

3‘


Artur


118 J. Grabowski

Now, let I = (a, b) be an open interval, and D aneighbourhood of the identity
in Diff*(D), k = 1,2,...,0,and xp € (a, b). Let fe D be such that f can be trivially
extended to a C-diffeomorphism of R (i.e. the mapping g: R — R, such that
g(x) = x if x¢(a,b), and g(x) =f (x)if xe(a, b), is a C*-diffeomorphism of R),
Sl x0) = 1d and fl,s has no fixed points. Put U = (x,, b). By Theorem (3.9),
for each natural n there is g € D such that g can trivially be extended to a ck-dif-
feomorphism of R, and that @,(f, g, o) # @.(f> g, x0) for @4, @z € U(f, 9),

Py F @2
By Proposition (3.7)(d), there is a neighbourhood W of x, such that Af~ Yy =id

implies U:D(fa g) = U:O(hs g) and (P(f: gay) = (P(h, I’B y) for Qe U:O(f: g) alld.

ye W. We may take then yo, ¥o < Xo, 50 close to x, that, for he D,supp(h) < [y, b),
WYy =id, we have @ik, g,%0)> @a(h; g, ¥0) it @y, g, x0) > @a(h, g, Xo).
Moreover, by Theorem (3.6) 4 may be chosen such that there is a closed interval

J < (9, Xo) such that A(J) =J and A|, is a K-diffeomorphism. Thus we get the

following.

(3.10) COROLLARY. For each neighbourhood D of the identity in Dift*(I), where
I=(a,b) is an open interval, k = 1,2, ..., 0, and for each natural n there are
Yor Xo € I, yo <Xg, and h, g e D satisfying the following conditions:.

(1) g and h can be trivially extended to C*-diffeomorphisms of R;

(2) hlg,yp = id, and x, is the only fixed point of bl by5

(3) there is a closed interval J < (v, Xo) such that h(J) = J and h|y is a K-dif-
feomorphism;

(4) for each @, @, € (%, B°(h, 9), @y # @z, we have

(Pl(hn g, xO) 9é (PZ(h, g: xo)a
and @4(h, g, Xo) > 0a(hs g, y0) i @10k, g5 X0) > @2k, g, Xo)-

(3.11) LeMMA. Let N > k be natural numbers. Let g, he Diff*(I),s = 1,2, ..., 00,
satisfy conditions (1)~(4) from (3.10) for n = 4* N, and let

oh, gy = (g™ gT") . (gh" g ),
where

1
® izllhl SN-k,

(i) g = @,(h, g) for some @& (xo, B2 (h, ), i = 1,..., 1.
Suppose also that there is no closed interval K <1 such that ¢(h, g)(K) = K
and o(h, Pl is a K-diffeomorphism.

Then @(k, g) = (@A (gD ™) oo (G ™ (g)™Y), where
(i) 3 |r{l < N=(k+1), and
=1,

(iv) gi = ¢i(h, g) for some @€ (xo, b)is(h, g), i=1,..,m.
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‘Proof. Choose i, such that g, (x,) <g:(xp), i=1,...,I. By assumptions,
gi(x0) = g;(xo) implies g; =g;, and g, (%) <g;(x,) implies g;(x%o) <g:(3o),
'so that

X on
@A, D1 0015000 = Jih™0 ™% Gl 003, 010200
If Z r; # 0, then o(h, g)f%”) is a K-diffeomorphism. Thus Y r; = 0,and ¢(%, g)
8= 81 91=01
can be written in the form

((g:h™ 813 ) (@1 11 97 (@ih™ " g3 )) o ((@:h7"g33 ) (90,2 @ik~ g0 ")) s

where (ig, .oy Iy) ‘is formed from (1, ..., /) by removing the elements with the indexes

:
i such that g; = gy, and where p; = Y r;. In particular [p;| < Y |r] <N.
i<l i=1
ai=gj,

Putting g = gioh"’g{;’gi} and rj=ry,j=1,..,m, we get the required form
for o(h, g).

. m 1
It is easy to see that ) |r]| = Y In|<N—(k+1). Put U= (xo, ). Since
T e
(Pi] € U:D(h: g) (Plo(h: !]a‘xo) = giu(xo) <gij(x0) = (pij(]l’ g, xo) for J = 19 ey My,

and since o' e Us™(h, g), we have on'e UST)h, g), that implies

Patop e UR(h,g) and  oitopy(h, g, %0) = i 91,(X0)> Xo

j=1,..,m Hence h”’gi:lgij(xo) > xo, and there is @€ Useyy(k, g) = Uss(h, 9)
such that @j(h, g) = gih™g;,9:,(x0) = gj. B

(3.12) THEOREM. If p € 58, ¢ # 1, 2,0 = 0,and g, h e Difi*(I), s=1,2,..., 0,
satisfy conditions (1)~(4) from (3.10) for n = 4 N, then there is a closed interval
K <1 such that o(h, g)(K) = K and o(h, 9)|K is a K-diffeomorphism, or o(h, g )= id.

Proof. Suppose a contrary, Since X,¢ = 0, @(k, g) can be written in the form

1
@K g™ .. (g™ with Y [ <N, |r]>0, and |KI<SDN, i=1,..,1L
i=1
Moreover g* = ;(h, g)for g, = A} ... A3 €58 and @, € (%o, DV, 9), i=1,..., L.

ki—times

Then Lemma (3.11) gives us an inductive step to prove that o(h, g) = id. B

Proof of Theorem (3.3). Since flows preserve supports of included
diffeomorphisms, and since there is an embedding j: Diff¥(B) — Diff*(Xx) for B
being an open ball in R™ (cf. (1.3)), it suffices to prove that we can find a continuous
mapping y: [0, 1) — Diff¥(B), y(0) = id, such that {y(¢)},c(0,1) is 2 set of free genera-
tors of a subgroup in Diff%(B) consisting of diffeomorphisms (except for the identity)

" which embed in no flow of diffeomorphisms of B. (Note that there is more flows

in Diff*(B) than in Diff¥(B).) Let R be the set of all such diffeomorphisms from
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Diff(B). It is easy to see that R satisfies (1) from Theorem (2.5). To see that R
satisfies also (2) from (2.5), take a neighbourhood D of the identity in Diff%(B),
an open subset W of B, and a natural number r. Let C be a neighbourhood of the
identity such that C*"~* < D. Take an open subset of the form I'x V, where I is an
open interval included in W with its closure.

By Corollary (3.10), there are i, § Diff*(7) arbitrarily close to the identity having
properties (1)-(4) from (3.10) for n = (r24+r)4™*". Since (x,, BZ(A, §) = *& for x
sufficiently close to b, by (3.9) & and § may also be chosen in such a way that
o(h, §) # id for pe2d* and so close to the identity that the diffeomoprhisms
h(t, x) = (A(?), x) and §(t, x) = ((z), x) of I x ¥ can be extended to diffeomorphisms
h,ge Cy.

Putf, = ¢""'hg" ", i=1,..,r, and take g €|®, ¢ = Af*..
i=1,..,r, and

. AJt. Then f, € Dy,

O(fos e fi) = ("G T L (g g T
= giu—l hjkgik—l-ikhfk-x lzj‘gl_h.

Since iy # fiey, @(fys oos ) = Y(h, g) for some ¥ € #&, Ty = 0, where
N<k+E+Dr=1) <ri+r.

Y(h, @)lrxy has the form Y(h, g)(t, x) = (Y(k, §)(¢), x) and by Theorem (3.12),
there is a closed interval [a, b] = K< 1T such that ¥(k, §)(K) = K and y(h, §)lx
is a K-diffeomorphism or ¥(h, g) = id. The last possibility we have excluded.

Now observe that ¢(f}, ..., f) = ¥(k, g) embeds in no flow in Diff*(B). For,
suppose s b u, is a flow in Diff(B) such that u, = W(h; g). Since

..lj?w W, 9)'(t, %) = (lifl Wk, )(1), x) = (a, %)

or Ex_n (W, 9))'(2, %) = (a, x) for (¢, x) € Kx V (y(h, 9l¢a, 1 has no fixed points)

and since Y(h, g)'u, = uy(h, g)" for ne Z, se R, we have u(t, x) = (0,(2), x) for
(¢, x) € Kx V and # being a flow in Diff*(X), that is impossible since =Wk, Ol
is a K-diffeomorphism.

This shows that R has property (2) from (2.5) and Theorem (3.3) follows now
directly by Theorem (2.5), since Diff*(B) is completely metrizable and locally arcwise
connected SLT topological group of homeomorphisms of B. M
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