154 1. Krasinkiewicz

A similar but even simpler reasoning combined with Theorem 2.1 in [K] gives
the following.

3.4, COROLLARY. Let p: I"*1 — I be projection onto the first fuctor. Then
there exists a contimum A< I' such that
(D) pld) = L
(ii) dimA = n,
(i) Yed&p(Y)> C=>dimY = n,
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Characterizing strong countable-dimensionality
in terms of Baire category

by

Elibieta Pol (Warszawa)

Abstract. The main result of this paper is the following theorem: a metrizable compactum X
is a countable union of finite-dimensional compacta (i.e. X is strongly countable-dimensional)
if and only if for almost every continuous mapping f: X — I into the Hilbert cube I® we have
S (X)n QR0 = @, where Q"° is the product of the rationals.We give also a characterization of strongly
countable-dimensional compacta in terms of the Baire category in the space of cuts defined by Hu-,
rewicz.

1. Introduction. In this paper we show that metrizable compacta which are
countable unions of finite-dimensional compacta (i.e. strongly countable-dimensional
compacta) ¢an be characterized in terms of Baire category in the function spaces
or the spaces of cuts introduced by Hurewicz. Let us describe the results in some
more details. ’

Let us recall that X is countable-dimensional if X is the union of countably
many zero-dimensional subspaces. A theorem of Nagata (see [8], Theorem V.5
and its Corollary) states that the subspace N, of the Hilbert cube I®, consisting
of all points having only finitely many rational coordinates, is universal for
countable-dimensional metrizable separable spaces X, i.e. any such X can be
embedded in N,,. In [9], we strengthened this result to the effect that the embeddings
of a metrizable separable countable-dimensional space X into N, form a dense
subset in the function space C(X,I”) of all continuous mappings of X-into I%,
endowed with the sup-metric. However, in contrast to the classical finite-dimensional
case, generally, the set of embeddings is not residual. .

More specifically, the main result of this paper is that the set of embeddings
of a metrizable compactum X into N, is residual (equivalently, is of the second
category) in C(X, I?) if and only if X is strongly countable-dimensional. Natural
examples of countable-dimensional compacta which are not strongly countable-
dimensional can be found in [1], Chapter 10, § 3 or [3], Example 1.12.

This theorem provides a characterization. of strongly countable-dimensional
compacta in terms of the function space. An “internal” characterization of strongly
countable-dimensional compacta in terms of the Baijre category in the space of cuts
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defined by Hurewicz is given in Section 5. This result corresponds also to a cha-
racterization of countable-dimensional spaces by sequences of partitions given by
Nagata (see Section 5 for details).

Finally, we extend in Section 4 some results from Section 3 to the case of
non-separable completely metrizable spaces.

2. Terminology and netation. Our terminology follows [2] and [8].

2.1. By the dimension we understand the covering dimension dim. By a com-
pactyum we mean a compact metric space. A space X s countable-dimensional
(strongly countable-dimensional) if X is the union of countably many zero-dimensional
(finite-dimensional and closed) subspaces.

2.2. By I we denote the unit interval [0, 1], by I — the Hilbert cube, by Q —
the set of rationals in I and by Q" — the countable power of Q. If 7 is a cardinal
number, then S(r) denotes the hedgehog space of spininess © (see [8], Definition

o 112
VL6). We consider I”with a fixed metric g(x, y) = ( ¥ %«,Ixi—« y,!z) , where
i=1
) L | 1/2
x = ()21, ¥ = ()22 and I" with a fixed metric g,(x, ) = (Z o Ixa—ydz) )
=1

where x = (x){=1, ¥ = (»){=1. By put I% =+ I" we denote the projection onto the
first n coordinates. In the countable power S(z)™ we consider the fixed metric

w 1/2 -
al(x,y) = (Z ~0(x; J’l)z)

=12
a meiric defined in Definition VL6 in [8].

2.3. We denote by N, (respectively, K,,(1)) the Nagata’s countable-dimensional
universal space of weight 8, (respectively, of weight ) consisting of all points in
I? (vespectively, in S(t M) having only finitely many rational coordinates. By N7
we denote the set of all points in J®, having at most n rational coordinates, and by
K, (1) — the set of all points in S()*, having at most # rational coordinates differcnt
from 0. '

2.4.If x is a point in a metric space X with a fixed metric ¢ then for ¢> 0 the
symbol B(x, £)(B(x, e)) denotes the open (closed) ball with a center x of radius 6.
If AcX, then B(4, o) is an open ball of radius & around 4,

diam 4 = sup {o(¥, y): x, y & 4}

is the diameter of 4 and 4 denotes the closure of A.
2.5. By B" we denote the closed unit ball in I*, by $""! w— the n— 1-dimensional

sphere being the boundary of B" and by aI" — the boundary of I". A mapping f

.of X into B”.(into I') is essential (sec [8), Definition YII.5 and JIL.3.E) if and only
1f_3ver¥ 1contnm.touf mapping -g of X into B (into I*) which coincides with JSon
f (s" (911 f (61’.’)) satisfies g(X) = B" (g(X) = I"). Recall that dimX>n
if and. only if there exists an essential mapping /i X — I" (see [8], Theorem IIL5),
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A family {(4;, B)}i=4 of pairs of closed disjoint subsets of X is called essential

if for every family {F,}i=; of closed subsets of X such that F, is a partition between
n

A and B; we have [ F; # @. By a theorem on partitions (see [2], Theorem 1.7.9),
=1

dim X > n if and only if there exists a family {(4,, B;)}=; which is essential in X.

2.6. A set A = Xis of the first category in X, if it is the union of countably many
nowhere-dense subsets of X. A set is of the second category if it is not of the first
category. A subset 4 of X is residual, if X\4 is a first category set in X (in a complete
space X, A is residual if and only if it contains a dense Gysubset of X).

2,71. Given a space X and a metric space Y with a fixed bounded metric g,
we denote by C(X, Y) the space of all continuous mappings of X into ¥ endowed
with the metric d(f, g) = sup {o(f(x), 9(x)): x e X}; note that if ¢ is a complete
metric in X, then d is a complete metric in C(X, Y).

2.8. We say that a two-element collection {K, L} of closed subsets of a space X
is a cut in X if jYA\K = [ and SKZ = K (see [4]). We use the symbol K|L to denote
that {K, L} is a cut. We say that a cut K|L in X scparates a pair (4, B) of disjoint
closed subsets of X if A is contained in one of the sets X, L, the set B is contained
in the other one and the intersection KL is disjoint from both 4 and B. Note
that if K|L separates (4, B), then KN L is a partition between 4 and B. A sequence
{Ki|L,;}i2, of cuts in a space X is point-finite if for every x € X there are at most
finitely many indices i with xe K;nL;.

2.9. The Hurewicz space S(X) of cuts of a space X (see [4]) is the set of all cuts
in the space X with the topology defined by a base consisting of all the sets of the
form Sx(4, B) = {K|L: K|L separates a pair (4, B)}, where 4 and B are disjoint
closed subsets of X. In Sy (4, B) we will consider a topology of a subspace of the
space S(X). Hurewicz proved [4] that if X is a compactum then S(X) (and every
Sx(d4, B)) is a completely metrizable space. :

3. Residuality of the set of embeddings into V,, characterizes strongly countable-
dimensional compacta. In this section we will prove the following characterization
theorem:

3.1. THEOREM. For a compactum X the following conditions are equivalent:

(i) the set # = {he C(X,I°): his a homeomorphic embedding and h(X) < N}
is residual in C(X, 1),

(ii) the set &F = {he C(X,I°): H(X)nQ® = @} is of second category in
C(X,1%),

(iii) X is strongly countable-dimensional.

The proof of this theorem will be proceeded by a proposition. The proposition
will also be applied in Section 4 and is stated in a more general form than needed
here.
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3.2, ProposiTioN. Let X be a complete metric space, which is not strongly
countable-dimensional. Then every Gysubset of C(X, 1 @y which is dense in some open
subset of C(X,I°) contains a mapping f& C(X, 1) such that f(X)nQ® # @.

First let us recall the following well-known lemma.

3.3. LemMa (see [1], Ch. IV, § 6, Main Lemma to Theorem 14 or [8], IL2.A).
Let f: X—1I" be a continuous mapping such that f(X) < B" < By, ¢) for some
yel" and £>0 and the mapping [ X — B" iy essential. Then there exists 6> 0
such that for every g: X~ 1" satisfying olg(x), f(x)) < & for every x € X we have
g(X)2y.

3.4. Remark. Let us recall that given a mapping / of X into a metric space Y,
a point y e f(X) is called a stuble value of fif there exists & > 0 such. that for every
mapping ¢g: X — ¥ such that olg(x), f(x)) <8 for every x& X, g(X) 2y (cf. [6],
Ch. VLI and [8], ChIILI). Lemma 3.3 states that if fis an cssential mapping
of X to the closed n-dimensional ball B”, then the cenler of B” is a stable value of f.

We will apply Lemma 3.3 in a special situation deseribed in the next lemma,

3.5, LEMMA. For (%q, Xy, ) €l® let B = B((xy, .., %), 8)<I"  and
B = B (X415 Xusz0 ) © 1% be nedimensiondl balls. Suppose that fi X — 1% is
a mapping such that for some Y < X we have f(Y) & B" and the mapping f'| Y2 Y - B
is essential. Then there exists 8 > O such that for every g X —~ 1° satisfying g, f) < &
we have p,og(¥Y)d (X1, ey X))

Proof. Put f' = p,of|Y; then f(Y)< B and the mapping f': ¥ — B is
essential. Take & > 0 satisfying the assertion of Lemma 3.3 for f” and let g: X~ I®
be such that d(g,f) < 8. Put g’ = p,og|Y; then g,(g"(x), [/ (x)) < & for every xe ¥
and hence g'(¥) = p,og(¥) 2 (xy, vy 3

Proof of Proposition 3.2. Let # be a Gy-subsct of C(X, I®) which is dense
in some open subset % of C(X,I°). We will show that % contains a mapping
o)
h such that /(X)n Q™ s @. Let ¥ () ¢, where @y > @, .. s a sequence of
terg
open and dense in % subsets of C(X, %) Since X iy not strongly countable-
dimensional, by the standard kernel construction (ef. [12]) it contains a non-empty
closed subset ¥ such that each non-empty open subset of Y is infinite-dimensional,

By induction we will construet a sequence {s,}% 5 of positive real numbers, a sequence

{h}1 of mappings of X into I, a sequence {g;}ju, of rational numbers from I
and a sequence {X}iy of closed subsets of ¥ such that for every e N the following
conditions are satisfied:

(1) ;<27 and 2, < 8.y for i>1,

(2) B(h,, 8) =¥, and Bk, 2)) = B(hy~q, 8..) for i>1,

(3) diam X, <27 and X, = B(X;.q, 279 for i> 1, and

(4) for every ge B(h, &) we have (qy, .., g)€peg(X) (where p;i 19~ I
is the projection).
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Inductive construction. Take an arbitrary ke & and put g =1 and
X, = Y. Assume that m = 1 or that ¢, /;, g; and X, are already defined for 7 < m.
Since ¥, is open and dense in %, there exists fe% and # >0 such that

B(f’ ’1) = B(hm—h 8m--l)ﬁgm .

By (4) with { = m—1 there exists a point ¥ = (g3, e, Gu1> Xps Xms 15 Xppse2s 1) €
J(Xy-y), where gy, ..., g, , are already defined rational numbers and x; are some

real numbers for i m. Choose a rational number g, such that 1% — ] < u

4
and let

L .
Yy = (qls ey Qs Xt 15 Xyt 2 "') »

we have then )'e B(y, Z) = U. Take xef~'(3) N X,,~,; since x € f~ {(U), there
exists 0< R<2"' such that X,, = (xB, R)n ¥ =f~(U). Denote

5 n
B" = B((ql’ vy Qm): g)x(xm-l-l’ KXo+ 23 "') H

B™ is a closed m-dimensional ball contained in U. Since every non-empty open
subset of Y is infinite-dimensional, we have dim X, >>m, and hence there exists
an essential mapping k: X, — B™ Extend k to a mapping A,: X — I such that
bl X =k, B(f"YU) =T and h,|f~1(I°\U) = f|f~1I*\U). It is easy to see

that d(h,, f) <diamU < g By Lemma 3.5 there exists §; > 0 such that for every

g: X—1I° satisfying d(g, h,) <5, we have p,,og(X,)3 (g, s §m). Take 8, >0
such that B(h,, 8,) = B(f,n) and put g, = min(S,, 85, &, 27, Then &, A gy
and X,, satisfy conditions (1)~(4) with i = m. The inductive construction is complete.

Now, from the completeness of the space C(X, I®) it follows that there exists

he (Y B(hy, ). By (5) for each i= 1,2, ... there exists a point y, e X; such that
i=1 '

pioh(y) = (g4, .., q1)- By (3), {y:}i21 is a Cauchy sequence in the complete space X;
hence it is convergent to some y, e X. We have h(yo) = (41, 42, -..) € QF, thus
X)n Q% # B.

3.6. Remark. Let us notice that Proposition 3.2 remains true if I® is replaced
by a space S()™, where © is an arbitrary cardinal number, and Q% is replaced by
the set 4 of all points in S(z)™, which have all coordinate rational and different
from 0. To see this it suffices to make the following minor changes in the proof
of Theorem 3.2: in notation of this proof; we choose ¢; # 0 for i = 1,2, ... and

L
we put B" = B((gy, ..., @) 7) X (K415 X2 ) Where r <min {ﬁ’ /2 P Iq,,,l};

we also use the fact that S()™ is an absolute extensor.
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Proof of Theorem 3.1. Since # < &, (i) = (ii). The proof of the implication
B L]
(ili) = (i) follows from the classical embedding theorems: if X = U F,, where
n=1

F,=F, and dimX,<n for n=1,2,..., then the set &, = {he C(X,I°): h is

a homeomorphic embedding and A(F,) = N} is residual in C(X, I®) for every

n=1,2,.. (see[7], § 45, VII, Remark (ii) after Theorem 1 and §44, VI, Theorem 2),
' 00

Thus the set &, containing () &,, is residual in C(X, I®). It remains to prove
n=1

that (ii) = (iii). Suppose that X is not strongly countable-dimensional. We will
show that & is a first category set. First, let us observe that the set & is coanalytic
(see [7], §39 for this notion). Indeed, C(X,INF = {fe C(X, I): £(X)n
n Q" # B} =p,({(£ N e CX I)xI": te 0% 1ef(X)}) = p,((C(X, I*)x ®) A
n{(f 1): tef(t)})‘ where p;: C(X, I°)x I® - C(X, I®) is the projection. Thus
C(X, I°)\# is a continuous image of a Borel st in a complete space C(X, %)% 1°,
and hence it is analytic: Now, by Proposition 3.2, for every open set U in C(X, 1)
the set Un & is not residual in U, i.e. the set UN & is mot of the first category.
Since the set C(X, I")\&, being analytic, has the Baire property and is not of the
first category at any point of C(X, I”), it follows that its complement & is a first
category set (sce [7], § 11, IV, Corollary 2). This ends the proof.

4. Some extensions to the non-separable case. Theorem 3.1 can be generalized
to non-separable spaces in two ways: we can consider the set of continuous mappings
of a given space X into N,, instead of embeddings or we can consider the set of
embeddings into the Nagata universal space K, (1), where ¢ is the weight of X,
In this way we obtain the following two theorems.

4.1. TuroREM. For a complete metric space, the following conditions are
equivalent :
(i) the set F = {fe C(X,I°): f(X) = N} is residual in C(X,I*),
(i) the set 7' = {fe C(X,I): (X)) Q" = @} iy residual in C(X,I?),
(i) X is strongly countable-dimensional.

4.2. THEOREM. For a complete metric space of weight © =W, the following con-
ditions are equivalent:

() the set # = {he C(X, SE@MY: B i homeomorphic embedding and
WX) < Ky (1)} is residual in C(X, S(0)%),

(i) the set ' = {he C(X, S@M): his a homeomorphic  embedding and
WX)nAd = @Y, where A is the set of all points in (1) which have all coordinates
rational and different from 0, is residual in C(x, S('v)“"),

(i) X is strongly countable-dimensional,

To prove the implication (iii) = (i) in the theorem, we will need the following
proposition.
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4.3. PROPOSITION. Let F be a closed subspace of a normal space X and
dimF<n. Then

() the set F = {fe C(X, I°): %CN,?} is residual in C(X,I°),
and

(ii) the set § = {fe C(X,S()"): f(F)cK,(0)} is residual in C(X,S(x)*)
Jor any cardinal number <.

Proof. The special case of Proposition 4.3 when F = X was proved in [10] —
see the proofs of Proposition 3.3 and 3.5 in [10] — and the general case can be
obtained by a slight modification of these proofs. For example, to prove (ii) we
modify the proof of Proposition 3.3 of [10] by putting

F (K, J) = {fe C(X, S@)™): of (F), F(K, T))> 0} .

Consequently, in the proof that & (K, J) is dense in c(x, S('c)“°) we modify the
construction of the function g: in the following way: first we extend the mapping
FIfTHSAAF: fUS)NF > S, to a mapping g,: FUK)NF — S, (using the
theorem on extending mapping to spheres) and next we extend the mapping g, (using
a theorem of Tietze) to a mapping g,: f “YK)~ K, in such a way that
gllf-l(Sr) =f]f-i(S,). ‘

Immediately from Proposition 4.3 we obtain the following.

4.4. CorOLLARY. If Y is a strongly countable-dimensional closed subspace of a nor-
mal space X, then

() the set F = {fe C(X,I°): f(¥Y)=N,} is residual in C(X, I°)
and

(i) the set 4 = {fe C(X, S@)™): f(¥) <K, (%)} is residual in (X, S(m™)
Jor every cardinal number .

Proof of Theorem 4.1. Since # = &, (i) = (ii). To prove that (i) = (iii)
suppose that X is a complete metric space which is not strongly countable-dimen-
sional. By Proposition 3.2, the set &' = {fe C(X,I%): f(X)nQ® = @} does
not contain any dense Gjy-subset of C(X,I”), and hence & is not residual. The
implication (iii) = (i) follows from Corollary 4.4 and is true for every normal
space X.

Proof of Theorem 4.2. The implication (i) = (i) is obvious and the
implication (ii) = (iii) follows from Remark 3.6, Finally, (iii) implies (i) by Corollary
4.4. (ii). '

We will end this section by a remark concerning n-dimensional spaces.

4.5. Remark. For a normal space X, the following conditions are equivalent:
@) dimX<n, o - -
(i) the set .= {fe C(X,I"*Y): F(X)<=N**} is residual in C(X, "™ )s
where Ny*! = {xeI"*: x has <n rational coordinates}, .
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(iii) the set #' = {fe C(X,I"""): f(X)n(0,0,..,0) = &} is dense in
C(z\’, In+1)

Proof. The implication (i) = (ii) follows from the proof of Propositon 3.3
in [10] and the implication (ii) => (iii) is obvious. To prove that (iif) = (i) suppose
that dim X >n. Then there exists an essential mapping /2 X — I"*1 Tlen by
Lemma 3.3 there exists &> 0 such that for every g: X - I"'* salisfying d(f, g) < ¢
we have g(X)2(0,0,..). Thus the set F' is not dense in C(X, /**1).

Note that the implication (iii) = (i) was proved by Hurewicz in [5] For compact
metric spaces (cf. [2], Problem 1.9.C).

5. Characterizing strongly countable-dimensional compacta by the Baire category
in the Hurewicz’s space of cuts. By u theorem of Nagata (see [8], Theorem VI1.2)
a metrizable space X is countable-dimensional if and only if for every sequence
{(4,, B)}{21 of pairs of disjoint closed subscts of X there exist closed sets Fyy By, ..
such that F; is a partition between 4, and B, and the family {#}/, is point-finite,
It is clear that the partitions in this theorem can be replaced by the cuts (see Section
2.8 for this notion).

The following theorem. gives a corresponding characterization of {he strongly
countable-dimensional compacta.

5.1. THEOREM. For a compactum X the following conditions are equivalent:

(i) X is strongly countable-dimensional,

(i) Sfor every sequence {(A,, B)}%y of pairs of disjoint closed subsets of X the
set C point-finite sequences of cuts {K|L}2, is residual in the product IS4, B)
of the  Hurewicz's spaces of cuts separating A yand B, in X, !

The condition (i) was distinguished by R. Pol in [11]. As observed in [11],
Remark after Definition 3.1, the condition that C is residual i equivalent to the
condition that € is of the second category.

The implication (i) = (ii) was proved in [11], Corollary 3.4, We will prove
that (i) = (i), which answers Question 3.5 of [11).

Proof of the implication (ii) = (i). First let us notice that if X satisfies
(i) then every closed subspace Y of X satisfies (ii). This follows from a reasoning
given in the proof of Lemma 3.3 in [l 1], Indeed, let Sy, y = S(X) and

7+ T1rx 0 Su(di 8)) = 11 8y(4 B)
be defined as in [11], Lemma 3.3, Then, using the fact that S,y is o dense Gysubset
of §(X) and that the mapping £ is open and onto, it can casily be verified that if
)
the set of point-finite sequences of cuts in §' = 1 Sy (4 B)) is of the first category
w1

in § then the set of point-finite sequences of cuts in § = I Sx(4,, By) is of the
first category in S. '

icm
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Suppose now that X satisfies (i) but is not strongly countable-dimensional.
Then X contains a closed subspace ¥ such that each open non-empty subspace
of Y is infinite-dimensional. By the remark made above we can assume without
loss of generality that X has the same property as Y.

Let {(C;, D)}y be a family of pairs of disjoint closed subsets of X such that
for every pair (4, B) of closed disjoint subscts of X the inclusions 4 < C; and
B < D, hold for infinitely many indices 7. Since X satisfies (ii), the set of point-finite
sequences of cuts {K|L}a €S = ]l[ Sx(Cy, D)) is residual in S, i.e. it contains

24

a dense Gy-set G = () Uy, where U, is open and dense in S and U,,, = U,
neal

Since the space ' is completely metrizable, we can choose a complete metric
¢ in §. By diamd4 we will denote the diamater of 4 < § with respect to o.

By induction we will construct for every n = 1,2, ...: an index i, € N, a finite
subsct N, < NV and a family {(4}, B})}u; of pairs of disjoint closed subsets of X
such that

(1) iy ¢ Nywy and N> N, {iy, ooy dyy} for n>1,

(2) Sx(4}, B) = Sx(Cy, D) and (4}, B)) = (Cy, D)) for i¢ N,,

{ ‘
(3) if V, = [ Sx(4i, B)=S, then V, = U, diamV, <~ and V,c ¥,_, for
faN

n>1, and
(4) the family o, = {(4], Bj)}]«y is essential.
Note that by (4) we have '

n
(5) for every {Kj|L}i21 e V,, () (KyynLy) # O.
J=1

The inductive construction. Since dimX >1, there exists an essential
mapping fy: X — I There exists i; € N such that f;1(0) = C,, and f; *(1) = Dy,.
Since the set U, is open and dense in S, it contains an open basic subset V:} of the
form Vy = T[] Sx(4}, B}), where (4], Bf) = (C,, D)) for i¢ Ny, where N, is some

iaN

finite subset of N containing ;. We can assume that diamV, f 1. 1Sinc.e
Sx(dis Bi) @ Sx(Crs Dy) & Sx(f71(0), /7 (1), the family oy = {(4i,, Bi)} is
essential,

Suppose that i, N, and familics {(4¥, B)}=, satisfying (1)~(4) are constructed
tor k< n. " . -

Let M = JU1(A7IUB;;). Since the family o, is essential, the set X\M is non-~

empty. Hence there cxists a non-empty open subset W of X such that W< X\M.
Since dimW 2 n+1, there exists an essential mapping g: W — I"**. For eaclf
J=1,..,n take h;: M — I such that h;(d}) =0 and hy(BL) —:"11 and lejn Hyst
M — I be such that h,, (M) =0. Let h={h}}i: M~ I bflﬂ diagonal
mapping. For j = 1,...,n we have then dj,ch™*(E;) and Bjch '(F,), where;
Ey = {(x)iZl e I"*1: x;= 0} and F; = {(v)j2i: x; =1} are opposite faces_c;l
" Let f,..1 X = I"*% be a function such that f,..(W = g and f,..[M = &

6 — Funcdamenta Mathematicae 131.2
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Since g is an essential mapping, its extension f,.¢ Is escential, Thus the fumily
{(F5E), fab ) _1; essential (sce [1], (’1‘."_"15‘ §8, Lemma :’Z) There exists
i1 € N\N, such that fi21(E, ) < Gy and fpi(Fyp ) & Dy, Then also

(6) the family {(f2(ED)s S s@D)s weos (S (B Aoy Dy )Y s
essential.
Since f74(Ep)> A, and f 34 (Fp= B, for j= 1, .., n, the basic open st

n
Varw = TTSx Uit i) x L, SxtABD

= Toeenstn

is contained in V. Since U, is open and dense in S, there exists a non-cupty
open basic in § set ¥,y such that ¥,y < Uy "V e Uy V, with diam v, 4

1
< ——. The set ¥, is of the form
n+1

for i¢ N,y 1, Where N, is some finite subset of N containing {i;, ..., i, (JUN,.
Since

Sy (A5, B < Sy (S ED. S (7)) for j=1, . n,

and
gt bl Lo
*SX(A’;nm » ‘B}‘wn) = “SX(C’WH" Din-l-l) ’
it follows by (6) that the family &/, = {(457Y, B DY)y is essential. The
induetive construction is compleled. 0
Now, since the space S with a metric ¢ is complete, we have () V, # @, Lot
n=]

o0
{KIL}Z € () V,; since ¥, = U, for every n, {K|L}%y &€ G and hence it is point-

n=1

n
finite. On the other hand, by (5), for every ne N we have () (K, ,0Ly) # @5 hence
0 Je=k
jﬂi(K,JnL;j) # 0, since X is compact. Thus {K|L,}7%, is not point-fniie, which

gives a contradiction.
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