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Rational spaces and the property of universality
by

S. D. Iliadis (Patras)

Abstract, The main result of this paper is the following: In the-family of all rational metrizable
spaces, there exists a universal element 7. Moreover, this element has the so-called property of
finite intersection for the subfamily of all rational continua, that is, for every rational continoum X
there exists a fixed homeomorphism ix of X into T such that if ¥ and Z are non-homeomorphic
rational continua then the set iy(¥)Niz(Z) is finite. ‘ :

Introduction. A Hausdorff space is said to be rational (tesp. rim-finite) if it has
a countable basis of open sets with countable (resp. finite) boundaries. Obviously,
every rim-finite space is regular and every regular rational space is one-dimensional
and, hence, is contained topologically in 3-dimensional Euclidean space. In this
paper a “rational space” means a rational metrizable space.

Nébeling (see [5]) proved that in the family of all rim-finite spaces, in the family
of all rim-finite compact spaces and in the family of all rim-finite continua there
does not exist a universal element.

Also, it is well known (see [4], Vol. II, § 51. IV) that in the family of all rational
compact spaces and in the family of all rational continua does not exist a universal
element.

Recall that a rational space X has rim-fype <a, where o is an ordinal number,
if it has a basis B of open sets such that the a-derivative (see [4], V. 1, § 24. IV) of
the boundary of every element of .B is empty.

In [2], it is proved that in the family of all (locally connected) rational compact
spaces having rim-type <o and in the family of all (locally connected) rational
continua having rim-type <« there does not exist a universal clement. Also, this
is true for the family of all (locally connected) rational spaces having a basis of open
sets such that the boundary of every element is a compact space whose a-derivative
is empty.

A space X is said to be scattered if every non-empty subset of X contains an
isolated point. A rational space X is said to be rim-scattered if it has a basis of open
sets with scattered boundaries. Since for every rim-scattered space X there exists
a countable ordinal number « such that the rim-type of X < «, in the family of all
rim-scattered spaces there does not exists a universal element.
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In Section I of this paper we give a notion of r-partition of a metric spéée and
prove that aspaceisa rational space if and only if it is homeomorphic to an r-partition
of a subspace of the Cantor ternary set with the quotient topology.

In Section II we construct some special topological spaces which are used
in Section III where we give the main result: in the family of all rational spaces
there exists a universal element 7. Moreover, this element has the so-called propert):
of finite intersection for the subfamily of all rational continua, that is, for every
rational continuum X there exists a fixed homeomorphism iy of X into T such that
ff é’ and Y are non-homeomorphic rational continua then the set iy(X)iy(¥)
is finite.

L. r-partitions of subsets of Cantor’s set.

1. By L, n = 1,2, ..., we denote the set of all ordered n-tuples i... i, where
ik=00r l,k=1,..,n Set Ly ={@}, L"= (JL, and L = (JL, For n=0,
k=0 n=0

by iy ... i, we denote the element & of L. We say that the element i, ... i, of L is a part
of the element Jj ... ji, if either n = 0 or 1 <n<m and §;, = j for every k <n. The
elements of L are also denoted by 1, J, I, etc. If i = i, ... i, € L, then by i0 (vesp. i1)
we denote the element iy ... 5,0 (resp. iy ... 1,1) of L.

By 4,, n=1,2,..., we denote the set of all ordered n-tuples iy ... Iy, Where

ir, k=1, ..,n, is a positive integer. Set A, = {@} and 4 = (J 4,. The elements
n=0

of A we denote by &, B, etc. Let aed,, fed,, & = iy v iyy B = Jji ... jy. We write
B >&if either & = @ or 1 <n<mand i = ji for every k < n. Obviously, if &, Bed,
and f>a then B = & Also for every &e A, the set of all elements B €, such
that B> & is countable.

By C we denote the Cantor ternary set. By Cj, where I =i, ...i,eL, n>1,
we denote the set of all points of C for which the kth digit in the ternary expansion,
k=1, ..,n, coincides with 0 if i, = 0 and with 2 if i, = 1. Also, set Cy = C.
We remind that the sets Cj, i e L, constitute a basis for C. For every point ae C
and for every integer n>0, by I (a, n) we denote the element ie L, for which
a € Cp. Obviously, this element is uniquely determined. For every subset F of C
and for every integer n = 0, 1, 2, ... by st(F, n) (it is called the n-star of Fin C)
we denote the union of all sets Cj, where ieL,, such that C;nF 5 .

.For a subset O of a space X by J, IntQ, Fr Q and | Q| we denote the closure,
the interior, the boundary, and the power of Q, respectively.

2. Let X be a metric rational space.

that:LEMMA 1. There exists a basis B = {U, i =1,2,..} of open sets of X such
M) U, = T,
(@) IFrU| <R, and
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(3) for every xeFrU, the number of elements of B the boundary of which
contains x is finite.

Proof. Let {V,, i=1,2,..} be a basis of X such that |Fr V| <N, for every
i=1,2,.. The elements of basis B we construct by induction such that:

1) V.U, (2) diamU;<2diamV;, (3) - [FrU} <No, (4 U; = IntU; and
(5) there exists a numbering {X;, Xz, ...} of the set FrU; such that x,; ¢ Fr U, if
k<i—1, j<i—1, i> L

Set U, = IntV, and let {x,y, X5, ..} be an arbitrary numbering of the set
Fr Ulo

Suppose that for every i <n we have constructed the set U; and a numbering
{xu, Xiz, ..} of the set FrU, such that properties (1)~(5) above are satisfied for
i<n. '

We shall construct the set U, and a numbering x,i, X,z -
such that properties (1)~(5) are satisfied for every i<n+1.

For every point x;;, i<n—1, j<n—1, by O, we denote an open set such
that:

Q) 0,,=9if x; ¢ Fr v,

(2) xi;€ Oy, if x;;eFrV,

(3) [Fr 0, <Xy,

(4) diam O,,, <}diamV, and

(5) if xy # x5, I<n—1, t<n—1 then x, ¢ FrOx,
Set U, = Int(V,u | 0y,). Obviously,

i€n—1
jsn—1

of the set FrU,

) V.cU,

(2) diam U, < 2diam V,,,

(3) [FrU,l <N,

(4) U, = IntU, and

(5) x;; ¢ FrU, if i<n, j<n Let {X,1, Xu, ...} be an arbitrary numbering of
the set FrU,. ‘

Thus, we may assume that the set U; is constructed for every i =1,2,.. It
is clear that the system B = {U,i= 1,2, ..} is the required basis. The proof of
the lemma is complcte.

3. We say that an upper semi-continuous partition (see [3], Ch. 3) D of a space
X is an r-partition if every element of D is a non-empty finite set and the set of all
elements of D consisting of at least two points is countable.

Let X be a rational space and B = {U;; i =1,2,...} a basis of X with the
properties nientioned in Lemma 1.

Set FrB = FrU; uFrtU,u..., 4y =U; and 4} = X\U,, i=1,2,.. For
every iy ... i,e L, we set X;, 4, = Al n..n4}. We now construct a subset S(X)
of C and a map ¢(X) = g of S(X) into X. The point @ of C belongs to S(X) if and

1*
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only if Xj, 1y 0 X, 2y N ... # D. We observe that, for every point a € S(X), the set
Xita, 1) 0 Xia, 2y 00 - 15 2 singleton. If {x} = X, 13N Xig 2y ... then we set g(a) = x:

\

LimMA 2. The following propositions are true:

(1) If xe X\FrB then q~(x) is a singleton.

(2) If x @ Fr B then the number of elements of the set q“l(\:) is a ﬁmte number
which is larger than or equal to two.

(3) The map q is continuous.

(4) The map q is closed. :

(5) T{1e partition D(X) = {g~'(x): x & X} of S(X) is an r-partition.

Proof. By the definition of the map ¢ we have that if ae CinS(X), ic L,

> 1, then g(a) € X;. We also observe that if x e Xj then ¢7%(x)n C; # @, Indeed,
let x € X3, where I = iy ... 4, Then, for every 1 <k <n, we have x € 4f,. For every
k>mn, let i, be 0 or 1 such that x € 4} . Denote by j(m), m = 1, 2, ..., the element
iy vio By OF Ly, Thin, X € Xjmy. Obviously, j(n) = i and if m <7 then j(m) is a part

of j(t). Hence (]IC;(,,,) #@. Let {a} = () Cjem. It is clear that g(a) =
ny= m=1
ae Cy,y = Ci. Now we prove the propositions of the lemma.

(1) Let x e X\FrB. By the above, ¢~ *(x) # @. Let a,be g *(x) and 4 # b.
Then there exist an integer » and elements 1,7 of L,, f # j such that ae C; and
be Cj. Hence, x = g(d) e X7 and x = q(b) € X5. X i = iy... i, and j = j, ... j, then
there exists k< n such that i # j,.

This means that x e 4% and x e A¥. Hence x ¢ Fr U, whlch is a contradiction.

(2) Let x € FrB. Then there exists k& such that x e FrU,. Hence, x € 4% and
x € A%, This means that there exist two different clements I and j of L, such that
x € Xjn X;. Hence ¢ 71 (x) " C; # @ and ¢~ (x) n Cj # @. Consequently, the number
of elements of the set g~!(x) is larger than or equal to two. We show that the set
g7 (%) is finite. There exists an integer n such that x ¢ Fr U, for every k > n. This
follows by the properties of the basis B. We prove that for every ie L, the set
g ') Ci is a singleton or empty. Indeed, if a,beqg () C;ieL,, a#b,
then there exist elements j(1) and j(2) of L, j(1) s j(2), m > n, such that a & Ciy,
be Ciay, CjuysGi, Cie < Ci. Hence, x = ¢(a) & Xjq) and x = ¢(b) € Xj). If
J() = jy oo ju and j(2) = jj ... jl, then, since j(1) % j(2) and i isa part of j(1) and
J(2), there exists n <k < m. such that j, # j;. This means that x e 4%~ 4%, that is,
x € Fr U, which is a contradiction.

x and

- 3) I.gt q(@) = x and U be an open neighbourhood of x in X. There exist an
integer n and ie L, such that xe U, U, s Uand ae . If i = i ... i, then i, = 0,
because xe 4y and x = g(a) e X7. Hence X;c U, U. Since g(CinS(X)) < X;
and the set C;nS(X) is an open neighbourhood of @ in S(X), the map ¢ is
continuous.

(4) In order to prove that the map g is closed, it is sufficient to prove that if
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x e X\g(F); where F is an closed subset of S(X), then there exists a: nexghbourhood
U of x such that ¢~ }(U) € S(X)\F. :

Let F be a closed subset of S(X), x € X\g(F) and {z, y e } be the set of aII
clements i of L, for which Cing~'(x) # . Since g™ 1(x) is ﬁmte and the set Fis
closed, we gan assume that » is so large that ClnF = & for every k = 1,‘.‘., m.

Obviously, xe X;, ieL, if and only if i€ {i, ..., in}- .

Let U be an open neighbourhood of x in X such that if x¢ X3, IEL,, then
UnX; = @. We prove that ¢~ '(U)nF = @.

Let ye U If ¢ )N Ci # O lEL then ye X;. By the chome of U, xeX,

). Thus, 'l(y)EUC,’.: and q"‘(U)CﬂC,,,, that s,
k=1

¢~} (U)nF = @. Hence, the map ¢ is closed.

(5) By propositions (1) and (2) of the lemma, every clement of the partition
D(X) is finite. If the element d = g~ !(x) contains at least two points of S(X) then
by proposition (2) of the lemma x e FrB. Hence, the set of all these elements of
D(X) is countable. "

Since the map ¢ is closed, the partition D(X ) is upper semx-con‘cmuous (see,
for example, [3], Ch. 3, 12). Thus, the partmon D(X) is an r-partition of S(X)
The proof of the lemma is complete. ‘

and ie{ij,..,

4. THEOREM 1. A space is a rational space if and only if it is homeomorphic to
an r-partition of a subspace of the Cantor ternary set with the quotient topology.

Proof. Let X be a rational space. We may assume that X is a metric space.
Consider the subset S(X) of C, the map g(X) = g of S(X) onto X and the partition
D(X) of S(X) constructed in Section 3 with respect to a basis B = {U:i=1,2,..}
of X having the properties of Lemma 1.

From Lemma 2 it follows that D(X) is an r-partition and that g is closed,
Let p be the projection of S(X) onto D(X) and i the map of D(X) onto X for which
iop = g. Obviously, the map i is uniquely determined. Since p and ¢ are continuous
and closed, the map i also is continuous and closed. Hence, i is a homeomorphism,.
because it is “one-to-one”.

Conversely, let X be homeomorphic to an r-partition D of a subset S of C
with the quotient topology. Let p be the projection of S onto D. Since D is an r-par-
tition, the map p is perfect (that is, it is closed and the pre-image of each point
is compact). Since S is a regular space with countable basis, the space D also is
a regular space with countable basis (see [3], Ch. 5, Theorem 20).

We show that D is a rational space. Let ¢ € D and U be an open neighbourhood
of din D. It is necessary to see that there exists an open set ¥ of D with a countable
boundary such that de V< U.

Obviously, for every n = 0,1,2, ..., the sets st(d,n)nS and S\st(d, n) are
open subsets of S. For every open subset Q of S, by U(Q) we denote the union
of all elements of D which are contained in Q. Obviously, U(Q) is an open subset
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of D. Hence, U(st(d, n) nS) and U(S\st(d, n)) are open subsets of D. The boundary
FrU(st(d, ) nS) of the set U(st(d,n)n.S) in D is contained in the set

DN(U(st(d, ) S) L U(S\st(d, n))) .

This set consists of the elements d’ of D for which d’ ~(st(d, n)S) % 0 and
d' n(S\st(d, )} # @. It means that 4’ contains at least two points. Hence the set
FrU(st(d, n) n S) is finite or countable. Obviously, if » is a sufficiently large integer,
then the set ¥ = U(st(d,n) n<S) is contained in U.

Thus, the space D and, hence, the space X is a rational “pace. The proof of the
theorem is complete.

II. A special constructions of rational spaces.

1. By C(1) we denote the set of all points of C which are the end points of the
components of the set [0, 1]\C. Let y(0), (1), »(2), ... be the sequence the elements
of which are all finite subsets of C(1) which are not singletons. We assume that
»(0) = @ and if n # m then y(n) # y(m).

In this section, by 4 we denote a set of pairs (S, D) where S is a non-empty
subset of C and D is an r-partition of S. It is possible that S; = S, and D, = D,
for two different elements (Sy, D) and (S,, D,) of A.

By A(S) we denote the set of all subsets S of C such that there exists a pair
(S, D) which belongs to 4. If (S, D;) and (S,, D,) are different elements of 4
then Sy and S, we consider as different elements of A(S).

Let (S, D)e A. By D(1) we denote the subset of D which consists of all
non-degenerate elements of D. For every subset Q of D(1), by Q* we denote the
union of all eléements of Q. ' ‘

We suppose that for every element i € L there exists a subset A(i) of 4 such
that: ‘

(1) AD) = 4, :

@) ADNAG) =B if L,jely, k20, i # 7,

(3) A(3) = A(i0)u A(i1) and

(4) for every (S, Dy), (Sz, Dy) € 4, (S, Dy) # (S,, D,) there exist an integer
k>0 and elements i,je L, i# j, such that (S, D,) € A(Q) and (S,, D,) € 4(j).
Obviously, the above supposition is true if and only if the power of A4 is less than
or equal to continuum. '

" We say that elements (S, D,) and (S;, D) of 4 are n-equivalent,n = 0,1,2, ...
and write (Sy, Dy) ~ (S, D) if

(1) there exists an element i€ L, such that (S, Dy), (S,, D,) € A(i) and

(2) for' every element de D, there exists an element d’'e D, such that
st(d n) = st(d’, n) and conversely, that is, for every element d of D, there exists
an element d’ of Dy such that st(d, n) = st(d’, n).

By A(n), n'=0,1,2, ..., we denote the set of all #-equivalence.classes of 4. It is
easy to sée that the set A(n) is finite.
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_Consider the set Cx A(S). In this set we define a subset J(4) as follows: the
element (a, §) of Cx A(S) belongs to J(4) if and only if aeS.

2. LEMMA 3. For every integer k = 0,1,2, ..., for every &, and for every
§ed, where q <k there exist a subset A(®) of A(S) and subsets x(@) and U(x(7), k)
(it is possible that A(F) = @, x(@) = @ and U(x(#), k) = B for some &, § and k)
of J(A) such that:

(1) A(®) = A(S).

@) If &, & € 4; and & # & then A(@)n4(@;) = 9.

) I Jedy_y, k=1, then AF) = U A(@).

ySa,aedx

(4) The set A(#) is contained in some element of the set A(k) and if (S, Dy),
(S, D)€ 4 and Sy, S, € A(®) then either y(k)e D; and y(k) € D, or y(k) ¢ Dy
and y(k) ¢ D,. )

(5) The set x(&) is non-empty iff there exists (S, D) € 4 such that S € 4(&) and
y(k) e D.

(6) If x(&) # & then x(&) = (y(k) x A@)NJ(4).

(7) The set U(x(7), k) is non-empty iff x(3) # &..

(8) If x(7) # @ then there exists an integer (¥, &) >k such that

Gi) if &, Gy, .o € Ay, & # a5, 1 # j, A(&) # @, then limi(3, &) = o and

iy UG, k) = U ((str(a), 13, ) x 4@) 0T (). ~

ySa,aedr

©) I¢ (S, Dye 4, S A@), Te Ay g<k—1, k>1, de D and
- @x{SPNU(x(@), k) # &
then dx {5} € U(x(¥), k—1). o

_Proof. We prove the lemma by induction on the integer k. :
. Let k= 0. We set A(@) = A(S), x(@) = @ and, U(x(®),0) = B. Obviously,
properties (1), (2), (4)~(8) are satisfied for &k = 0.

Suppose that the sets A(&), x(&) and U(x(7), k) are constructed for every k<m
such that properties (1)-(9) are true if k <m. :

We construct the sets A(&), x(&) for every &e 4, and the set U(x(3), m) for
every 7€ A4, g<m such that properties (1)~(%) of the lemma are true if k< m.
""" Let B be an arbitrary clement of 4,,_;. Consider the set A(B). If AP) =9
then we set A(@) = @ for every aed,, &> p. ‘

Let A(P) # O, (S, D) € 4 and S e A(f). Since D is upper semicontinuous, there
exists an integer ¢3>m such that for every jed, 0<g<m-1, 7<B (hence,
AP A@F) if y(gye D (hence, x(7) # @) de D, dnst(y(g), t); # @, then
d < st(y(k), t(%, B)). If there exists an integer ¢, 0<< g < m—1, for which- y(q) e D,
then by #((S, D), f) we denote the minimum of the above integers .

If for every g, 0<g<m—1, we have y(gq) ¢ D then we sct t((S, D), f) = m.

Divide the set A(B) into equivalence classes as follows: Let (Sy, Dy), (S2, D)€ 4
where S;, S, € A(P). We say that S; and S, belong to an equivalence classof AP
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if and only if #((Sy, Dy), B) = #{(S2, D), B), the elements S, S, belong to an element
of the set A(m) and, either y(m) € D, y(m) € D, or y(m) ¢ Dy, y(m) ¢ D,. Obviously,
the number of equivalence classes of the set 4(B) is finite or countable.

Hence, there is an one-to-one correspondence between these equivalence classes
and a subset of elements & of 4, for which & > . By 4(&) we denote the equivalence
class which corresponds to thé element & of 4,,. If there is no equivalence class which
corresponds to the element & of 4,, &= B, then we set A(F) = .

Thus, for every &e 4, we construct the set 4(&). Now, we construct the set
x(®), &ed,. If there exist (S, D)e 4 such that SeA(@) and y(m)e D then we
set x(%) = (y(m) x A@) "J(A). If for every (S, D)e 4, Se A(®) we have y(m) ¢ D
then we set x(&) = @. ‘

Finally, construct the set U(x(P), m), 7 €d, g<m. If x(7) = @& then we set
U(x(3), m) = @. If x() # @ and ¢ = m then we set

U(x(m), m) = (st(y(m), m) x AF)) 0 J(4)

Let x(7) # @ and g <m. Let Ge A, 7< &, A(G) # O. There is a uniquely de-
termined element § of 4,.; such that f<& and hence A(®) < A(f) # &. If
(S, D) € 4, S € A(%) then we set 1(7, & = max {#((S, D), ), (j, B)}. By the construction
of the set 4(%), the number #(7, &) does not depend on the element (S, D).If A(®@) = &
then we set (7, &) = #(, B)+1.

We set

and (5, 7) = m.

U, m) = U ((st0(g), 13, D) x 4@) nI(4)).
ySa,xed;
It is easy to see that the properties (1)-(6) for & = m follow by the construction
of the sets A(&) and x(@), &€ 4,
We prove that property (7) is true for k = m. If x(7) = @ then by the construction
we have U(x(7),m) = &. If g<m, x(7) # O, 7 €4, then there exists (S, D)e 4,
S'e A(F) such that y(g) € D. There exists an element & e, such that Se A(X).
Then
(), 15, @) x A@) ") # B,
and hence
‘ Ux@, m) # & .

Property (8) for k = m follows by the construction of the set U(x(), m) and

number #(3, &). We observe that if § e 4,, then
Ux), m) = (st(y(m), m)x A@)OI(d) = U (st(y(m), m) x A®) I (4) .
) %%, 28.dm

Now, we prove property (9) if k = m. Let (S, D)ed, SeA®), Ted,
gsm—1, de D and (dx{S})n U(x(7), m) # @. Obviously, U(x(7), m) # B. By
property (7), x(7) # @. By properties (4) and (5), ¥(q) € D. There exists an element
%ed, such that S'e A(&) < A(5). ‘

By property (8), (dx {S})n((st(y(q), 17, o‘c))xA(&))nJ(A)) # . This means
that dnst(y(q), 17, &) # @. Let A@) S A(B), Pe A,,_,. Then, i(7, &) <((S, D), f).
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By ‘the definition of the number #((S, D), f) we have desi(y(q), 17, B)). Hence,.
dx {8} =(st(y(g), 13, B)) x {S})mJ (4) € U(x(7), m—1). The proof of the lemma
is complete. ‘ i

3. By T'(4) we denote the set whose elements are all -sets x(&) # &, &€,
k =0,1,2,.. and all singletons {x}, where x belongs to J(4) and does not belong.
to any set x(&). We observe that different sets x(%) are disjoint.

By U(d4) we denote the set consisting of:

(1) all sets U(x(&), n) for every x(&) and for every n=10,1,2,...,and

() all sets of the form (( U C)) x A(@)) nJ(A), for every subset k of L, and for
every & e/, fek

If Ue U(A) then by O(U) we denote the set of all points d of T(4) which are
contained in the set U. If U has the form U(x(&), n) then we set O(x(&), n) = O(U)-
If U= ((U C)xA@)J(A) then we set O((U CYx A@&) = OU).

ielh i€l
By 0(4) we denote the set of all sets of the form O(U), Ue U(4).
In the further the closure of a set Q is also denoted by cl(Q).

LEMMA 4. The set O(A) forms a basis of open sets for a topology on T(4).

Proof. It is sufficient to prove that:

(1) if deT(4) then there exists an clement O of O(4) such that de O and

(2) if de 04N Oy, wWhere Oy, 0, € O(4) then there exists an element O € O(4)
for which de 0= 0,nO0,.

Let de T(4). If d = x(8), &e4,, then d< U(x(&@), n) for every n>k. Hence,
de O(x(&),n) e O(4). If d = {x}, x = (a, S) then d= C;x A(&) where a e C; and
S € A(®). Hence, de O(C;x A(&)) € O(4).

Let de 0y, 0,, where O,, O, € O(4). First, suppose that d = {x}, where
x = (a, S). Then there exist iy, i, €L and &, &, €4 such that"

de O(C;, x AEy)) 0,
and de O(Cy, x A(@,)) < 0,. Since ae C;,nCy, and S A(&) N AF,), there exist
ieL and & e/ such that ae C; = C;,nC;, and § € A&) < AG,) N A(&,). If we set
0 = O(C;x A(®@)) then we have
de 0 = 0(C:x A@®) = O(C;, x A(#1)) N O(C;, x A(#;)) S 0,1 03
" Now consider the case where d = x(&), &e A, We prove that there exists an
integer n(1)>0 such that O(x(&),n(1))< O. Indeed, let O have the form
O(( U C)x A(d)). Then, since x(#) € Oy, we have y(k) < U C; and A(@) < 4(9).
It aln 1€ln

There exists an integer m > k such that st(y(k), m) g_U C;. Let n(1) be an arbitrary

1eln .
integer larger than m. Consider the set U(x(%),7n(1)). Since A(%) < A(S) and
(&, B) = n(1) for every Bed,y, we have U(x(@), n(1)) s(U G)x A(), that is,
0(x(@, n(1)) £ O((U C)x 4@)) = 0. Teln

1eln

s
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Let O, have the form O(x(B,), n,), B, € A,,. Since O; # &, we have x(8,) 5 .
If x(&) = x(B,) then, setting n(1) = ny, we have d € O(x(®), n(1)) = O(x(B,), n;) = Oy,
Hence, we may suppose that x(&) # x(B,). We show that y(k)ny(k,) = . Let
(8, D)e 4 where Sed(@. Then y(k)e D. Since x(&)e O(x(By),n,), we have
A@) = A(By). Hence, SeA(By) and y(k) e D. If y(k) = y(ky) then k = k, and
& # By, because in the opposite case x(&) = x(B,). From this it follows that
A@®@ " A(By) = O which is a contradiction. Hence, p(k) # y(k,). Since y(k) and
y(ky) are distinct elements of the partition D, y(k)ny(k,) = &. There exists an
integer #, >0 such that st(y(ky), to)nyk) = @

Let S'e A(®). Since A(&) < A(f,), there exists' a uniquely determined element
jed,, 7= P, such that e A(j). Since x(&) = U(x(B,), ny) and y(k) x {8} = x(@),
we have y(k)x{S} < U(x(B;). ny). By the structure of the set U(x(F,), n,) (see
Property (8) of Lemma 3)) we have y(k) x {S} < st(y(ky), t(B;, 7)) % A(7). Hence,
y(k) =st(y(ky), t(By, 7). This means that #(By, 7) <t,. Let

t= mfxx{t(]ﬂ, N AF) A #* T} .
Y
Then t<f, and st(y(ky),t)=2y(k). There exists an . integer n>0 such that
st(p(k), n) = st(p(k,), £). Hence, for every 7= J, for which A(F)nA@E) # O we
have st(y(k), n) < st(y(ky), t(B;, 7)) and, consequently

st(y(), n) x A7) = st(y(ky), 1By, 7)) x A®) -

From this it follows that d = x(%) & O(st(y(k), n)x A@®) < O(x(Bp), m1).
By the preceding there exists an integer n(l) such that
O(x(@, n(1)) = O(st(r k), n) x A@) < O(x(By), ny) = Oy .
Similarly, there exists an integer n(2) >0 such that O(x(o'c), n2)) € 0,. Let
n(0) = max{n(1), n(2)} and set O = O(x(&), n(0)). Then,
de 0 = O(x(®), n(0)) = O(x(®), (1)) " O(x(@), n(D) € 0, " 0, .
Thc proof of the lemma is complete.

In the remainder of this paper we lét T(4) have the topology having O(A) for
a basis of open sets. Obviously, the set O(4) is finite or countable.

LeMMA .5. The space T(A) is a Hausdorff rational space.

Proof. We prove that the space T'(4) is a Hausdorfl space. Let dy, d; & T(4)
and d; # d,. Consider the cases:

(1) dy = {(a1, S0}, d2 = {(az, 82},

) dy = {(ay, Sy)}, d, = x(5), e, and

() dy = x(@y), 8, e dy, and d, = x(&,), &, € Ay,

In the first case, either @ # a;, or Sy # S,. If @, # a, (resp. Sy # S,) then
there exist an integer 2> 0 and elements 7, j€ L, I # J (tesp. &, &, € A,, &; # az)
such that a, € G and a; € Cj (tesp. Sy€ A(&;) and S, € A(&;)). Set

Uy = (Gx A®)) nJ(4)
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and U, = (C5x A(@))nJ(4) (tesp. Uy = (Cy x A&E)) NI (4) and

U, = (Cox A@)) nJI(A) .

Then d; € O(U,), dye O(U,) and O(U;) " O(U,) =

In the second case, either S, ¢ A(%), or a, ¢ y(k). Let S; ¢ A(&) and &, be
element of A, for which SeA(@d,). Setting U, = (CyxA@))NnJ(4) and
U, = (Cy x A@&) nJ(4), we have d; € O(U,), d, € O(U) and O(Uy) n O(U) # ©.

Let a, ¢ y(k) and n>0 be an integer for which st({a,}, m)nst(y(k),n) = @.
Setting Uy = (st({a,}, M) x A(@))nJ(4) and U, = (st(y(k) n) x A@)) ~J(4),
we have d; € O(Uy), d, € O(U,) and O(U)nO(U,) =

Finally, in the third case, either y(ky)ny(ky) = Q, or ylki)nylk,) # 3
and A@E)NA@E) = S. If p(ky)ny(k,) = O then there exists an integer nz>0
such that st(y(ky)), W) nst(y(kz), n) = O,

Set U, = (st(y(ky), n) x A@)nJ(4) and U, = (st(y(ks), n) x A@)nJ(4).
Then, d, € O(U,), dy e O(U,) and O(U)AOU,) = @

Let A(G,) N A(&,;) = @. Setting U; = (Cyx A(E,)) nJ(4) and

U, = (Cox A@))nJ(4),

we have d; € O(U,), dye O(U,) and O(U;)nO(U,) = @. Thus, the space T(4)
is a Hausdorff space.

We prove that the space T(4) is a rational space. For this it is sufficient to
prove that if Ue U(d) then FrO(U) s {de T(d): Und # @, (J(A\U)na # B}.
Let de FrO(U). Then, d¢ O(U), that is, d¢ U and, hence, (TANU)Nd £ .

Let U= (( U C)xA@®)NJ(4), where /, is an subset of L, and dedy. Let

ieln
d e T(A). We show that if dn U = @ then there exists an element Uy of U(4) such
that de O(U,) and O(U;) " O(U) = @. Indeed, if d = {x}, x = (a, S) then either
a¢ U Ciorae | C and Se A(B), where fed,, B # & In the first case, let
ieln ieln
jeL, and aeCy Setting U, = (Cjx A(@))nJ(4), we have deO(U;) and
O(U)NOU) = @. In the second case, let Uy = (Cpx A(B))nJ(4). Obviously,
de O(U,) and O(U)) A O(U) = @. Thus, in both cases d ¢ FrO(U).
Now, let d = x(&,), & €, If A@&;) " A(@) = S then we set

U, = (Cyx A@E)) NI (A) .
If A@)NA@ # D then y(k))n( U C)) = @. Hence, there exists an integer

ieln

>0 such that st(y(ky), )n( U C) = @. Set Uy = (st((ky), 1) x A@)) NI (A).

ialn .
In both cases we have that de O(U,) and O(U;)n O(U) = @, that is, d ¢ FrO(U).

Suppose that U = U(x(®), n) where &ed, and n>k. Let de T(4) and
dnU = @, First, let d = {x}, x = (a,S). If S¢ A& then there exists an element,

Bed, P+ asuch that Se A(B). In this case we set Uy = (Cgx A(B)nJ(A).
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If Se A(@) then there exists 7 e, such that Se 4(f). In this case

a¢st(y(k), 1(&, 7)) .
Let je L,y and ae Cj. Obviously, Cinst(y(k), #(&, 7)) = . Set
Uy = (Cix A@)nJ(A) .
In both cases de O(U,) and O(U)nOU) = @, that is, d ¢ Fro(U).
Now, let d = x(&,), 8; € dy,. If A& )N A@F) = S then we set
U, = (Cox 4@)nJ(4).
If A@ )N A(@@) # @ then it is easy to prove that for every Bed, for which
AP)nA@) # B, B=a,
we have st(y(ky), #(&, B) nst(y(k), 1@, P)) = @. Let
t = Iriin{t(a,ﬂ): B=za,Bed, and AB)nA®@E) = T} .
B
We have st(y(ky), 1) nst(y(k), £) = @. Set U, = (st(p(ky), 1) X A(&;)) nJ(A). In both
cases de O(U,) and O(U;)n O(U) = @, that is, d¢ Fro(U).

Thus, if de Fr O(U) then dn U # @ and (J(A\U)nd # @. The proof of the
lemma is complete. ‘

5. LEMMA 6. The space T(A) is a regular space.

Proof. Let de T(d4) and O(U) be a neighbourhood of d. We shall find an
element U; € U(4) such that de O(U,) < cl(O(U,)) € O(U).
Consider the cases:
1) d={(@, S} U= (U C)x4@)nJ(4), where L, L, Ze 4,
felk
(2 d=(a,S), U= Ux(@),n), Ged;, k<n.
() d=x@&), Gedy, U= U(x(3),n), n>k,

(4) d= X(D_ﬁ), &1 EA'IU U= ((_U Ci) X A(&z))f“-’(A), where 56-2 EAnz: Ik ng‘

and fekh
(5) d= x(&l)’ &1 EAM’ U= U(x(o_‘z): n)’ &2 GAnz’ nzn,, x(al) # x(az)-
In the first case we have ae ) Cjand S e A(%). We may assume without loss
ie N i
of generality that /, = {i}. Consider the pair (S, D)e 4. S nce D is an upper semi-
continuous partition, there exists an integer ky >0 such that if

d"eD, d"nst({a}, k) # @

then 4" = Cj. There exists an integer k, >0 such that st{a}, k) ny(t) = @ for
every set y(1), 0 <t<n, for which a ¢ y(t). Let m = max{ky, kg, n}, j€ L, a€ Gj,
% ed, and Sed@E). Set U, = (Cyx 4@)D)NJ(4). We shall prove that
de0(Uy=c(0(U))=OU). Obviously, de o(U,)=Oo(U). R ‘
Let d'e cl(O(Uy)). By the proof of Lemma 5 we have d'nU, # . If d' is
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a singleton then d'e O(Uy) < O(U). Hence, we may assume that 4’ = x(f), § €d,.
Consider the case #, < n. Obviously, A(&) < A(f). Let a ¢ p(n,) then, by the choice
of the element j of A,, we have y(n,)nCj = @, that is, st(y(my), m)n Cj = @.
Set U, = ((st(y(n;), m) x A(B)) nJ(4). Then, d’'e O(U,) and o(U)nOo(U,) = B,
that is, d’ ¢ cl(O(Uy)). Suppose that a e y(n,). Since {(a, S)} is an element of T(4)
and the different clements of T'(4) are disjoint, we have {(2, S)} = x(B) which is
a contradiction, because y(n), and hence x(f) is not a singleton.

Now, suppose that-n; > 1. Obviously, 4(B) = A(&). We prove that y(n,) < C.
If y(ny) & Cj then st(y(n,), m) & Cs. Since dn U, # @, we have that y(n,)n Cj # 0,
that s, Cyest(y(n),m). Also, A(B)nA@E)# . Let (S, D)eAd and
S, € A(B) N A(&,). Then the sets S and Sy belong to an element of the set A(m).

Since y(n,) is an element of Dy, there exists an element d of D such that
st(d”’, m) = st(y(n,), m). This means that d"’ " Cj # ©; hence d” nst({a}, ky) # &
and d" &£ Cr which is a contradiction. Hence, y(n;)< C; and 4’ U, that is,
a’e O(U). ;

In the second case, there exists an element f e A, such that (2, S) e (st(y(k),
@, B))x A(B)) " J(A)S U, that is, de O(U') < O(U), where U’ = (st(y k), 1(&, B)) %
x A(B))nJ(4). Hence the case follows by the first case.

Consider the third case. There exists an integer #3>n such that if 0<m<n
and y(R)ny(m) = @ then st(y(k),t)ny(m) = @. Set U; = U(x(&), z+1). Let
d'ecl(O(Uy). Then d'nU; # @. Let (S, D)e4, Bed, Fed.y, SeAF),
AF) <= A(B) and (2, 8)e d' " U,. X d’ = {(a, S)} then. obviously d’e O(U). Let
d’ = x(8), 8 e A, By the structure of the set U, (see property (8) of Lemma 3) we
have aest(p(k), ), and hence st(y(k), f)ny(g) # @. Obviously, y(k), y(g)e D.
Hence either ¢ = k, or ¢ > n. In the first case, d’ e O(U). In the second case, since
S e A(5), we have A(5) < A(B). On the other hand,

(G@*x{SHnUx@, 1+1) = @ .

By property (9) of Lemma 3 we have y(q)x {S} < U(x(@), ). This means that
y(@) sst(y(k), ¢, 71)) S st(y(k), 1(&, B)) where 7, e 4, and B<§; <7 Hence,

(@) = (7(9) x A@)) "J(4) = () x AB)) NI (4)

= (st(y (k), H&, P)x AP nJ(Ad) = U(x(&), n)
that is, d’ e O(U). ‘
In the fourth case we have
yn) s U G and A®&) S A®@E,) .

ialg

There exists an integer m>n; such that st(y(n),m)s U C. Obviously,
. . . -i‘el,,

(st(y(ny), m)x A@&@)) "I () = U.

Hence, U(x(%,;), m)< U. Thus, the case follows from the third case.
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Consider the fifth case. Since
- x(@) # x(d;) and A@) N A@,) # B, () ny(ny) = B.

Hence there exists an integer ¢ such that st(y(n,), #)ny(ny) = @. If e, and
(8@, B)=1 then
(st (ny), 18z, BY) x ABY) N JT(A)) " x(3,) = B .

Hence there exist finitely many elements j,, ..., B,, of 4,, such that

5@ < (606 1 B)x ABI)NI(A)

Moreover y(ny) = ( st(y(n,), #(&z, ) and A(G,) = U A(B). Let ¢ be an integer
i=1 m i=1
such that st(y(n,), ) = ) st(y(ny), #(&z, B.))- Then,
=1

3= (316 0), 9 x 4G IA) £ U (1001, 1, BA) < AGD) NI = U

Thus, the case reduces to the fourth case. The proof of the lemma is complete.

COROLLARY 1. The space T(A) is a rational metrizable space.

III. The existence of a universal element.

1. Let S be a subset of C and D an r-partition of S. For every element je L,
n=0,1, ..., by Dj we denote the set of all elements d of .D for which dn Cjo # D
and dnC5, # & (we consider that @0 = 0 and @1 = 1). It is easy to see that Dj
is a closed subset of the quotient space D.

LemMMA 7. For every rational space X there exists a subset S(X) of C and an
r-partition D(X) of S(X) such that:

(1) the space X is homeomorphic to a subset of the quotient space D(X),

@ D*(X)(1) = C(), and

(3) if Y is a rational space and D(X)(1) = D(¥)(1)
then S(X) = S(¥) and D(X) = D(Y).

Proof. By Theorem kl, there exist a subset S;(X) of C and an r-partition
Dy(X) of §(X) such that the quotient space D,(X) is homeomorphic to X.

Since D}(X)(1) is a countable subset of C, there is a homeomorphism (see,
for example, 1], Ch. 4, exerciss 4.3. H(e)) i(X) of C onto C such that

(X)(DIXM) s C@).

By D,(X) (resp. D;(X)) we denote the set of all subsets i(X)(d) of C where d & D,(X)
(resp. de Dy(X)(1)). Also, we set S,(X) = i(X)(S4(X)). It is easy to sce that:
(1) Dy(X) is an r-partition of the set S,(X),
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(2) the space X is homeomorphic to the quotient space :D,(X), and
(3) Da(X) = Dy(X)(D).

Set S(X) = C\ U (Do XNND(X)}-
JjekL

By D(X) we denote the union of the set D,(X) and the set of all singletons.
{x} such that x & S(X)\S,(X). Obviously, the set D(X)(1) is countable. A straight-
forwara proof shows that D(X) is an upper semi-continuous partition of S(X).
Hence D(X) is an r-partition. It is easy to see that D,(X) is a subspace of D(X)
and D(X)(1) = D,(X)(1). Hence, D*(X)(1)  C(l). ’

Now, let Y be a rational space. Also, let S(¥) be a subset of C and D(Y) an
r-partition of S(Y) which are determined for the space Y as above.

Suppose that D(X)(1) = D(Y)(1), that is, the set of all non-degenerate elements
of the set D(X) coincides with the set of all non-degenerate elements of the set
D(Y). For every element jeL, we have DjX) = D;j(¥). Consequently,
Dy(X); = Dy(Y); and cl(D,(X )?) = cl(D,(Y )’;'-f). From this and the determination
of the sets S(X) and S(Y) we have S(X) = S(Y). Hence, D(X) = D(Y).

2. Let R be a family of spaces. An element T" of R is called a universal element
if T contains topologically every element of R.

THEOREM 2. In the family of all rational metrizable spaces there exists a universal
element.

Proof. For every rational space X, let S(X) be a subset of C and D(X) an
r-partition of S(X) which are determined in Lemma 7.

Let 4 be the family of all pairs g = (S(X), D(X)). We consider that if g and
r = (S(Y), D(Y)) are different elements of A4 then either S(X) # S(¥) or
D(X) # D(Y), and hence by property (3) of Lemma 7, D(X)(1) # D(Y)(1). There~
fore, the power of 4 is less than or equal to continuum and we can suppose that
for every ie L there exists a subset A(i) of 4 such that all properties mensioned
in II. 1 are satisfied.

Let T'(4) be the rational metrizable space constructed in Section II for the family
A. We prove that the space T(A4) is a universal element for the family of all rational
metrizable spaces.

Indeed, let X be a rational space. In the space T'(4) consider the set T(S(X))
of all clements d of T(A4) such that dn((Cx {S(X)}) NJ(4)) # G.

We prove that there exists a homeomorphism p(X) = p of D(X) onto T(S(X))..

Let d'e D(X). Then, either d’ = {a}, where aeS(X)\D*(X)(1), or
d’ e D(X)(1).

If d' = {a},ae S(X)\D*(X)(1), then the set {(a, S(X))} is an element of
T'(4). Indeed, in the opposite case there exist an integer n 2> 0-and & € 4, such that.
(a, S(X)) € x(8) # O. This means that S(X) € A(&), y(n) € D(X) and a ey(n). This.
is a contradiction because a ¢ D*(X)(1) and y(n) < D*(X)(1). Set

p(d) = {(a, S(X))} .
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Let d' e D(X)(1). There exists an integer n> 0 such that d’ = y(n). Also, there
exists a uniquely determined element & of 4, such that S(X) e A(F). We set
p(d’y = x(@). Thus, we define the map p of D(X) into T(S(X)).
We prove that p is “onto”. Let de T(S(X)). If d = {(a, S)}, then § = S(X)
and a e S(X). We have that a ¢ D*(X)(1). Indeed, in the opposite case, there exists
an integer n> 0 such that y(n) e D(X)(1) and a & y(n). Let ged, and S(X) € A(3).
Then (a, ) = (a, S(X)) € x(&), which is a contradiction bccause x(&) is not a sin-
gleton and dnx(E) # @. Hence, {a} € D(X) and p({e}) = d.
Let d = x(&), where &ed, Then, S(X)eA®@) and y(n)e D(X). Hence.
p(y@) = d. Thus, p is “onto”.
We prove that p is “one-to-one”. Let d; and d, be different elements of D(X).
Suppose that p(d;) = p(dy). Then, there cxists a e S(X) such that

(a, S(X)) e p(di) N p(dy) -

Hence, aed, nd, ‘which is a contradiction. Thus, p is “one-to-one”.

We prove that p is a homeomorphism. Let p(d') = d and let O(U) be a neigh-
bourhood of d in the space T(4). There exists an element U, € U(4) such that
de.O(U) =cl(O(U,)) = O(U). Let V' be the open subset of S(X) for which
V' % {S(X)} = U, n(Cx{S(X)}). Let ¥ be the set of all clements of D(X) which
are contained in the set V. Since D(X) is upper semi-continuous, ¥ is an open
neighbourhood of d’ in D(X). We prove that p(¥V) < O(U). Indeed, let 4" € V. Then,
d"" = V'. This means that p(d")n U, # @. Hence, p(d"") e cl(O(U;)) and conse-
quently p(d"") e O(U), that is, the map p is continuous.

Conversely, let p~*(d) = d’ and let ¥ be an open neighbourhood of d’ in D(X).
We may consider that thete i an open set ¥ of S(X) such that the set ¥ consists
of all elements of -D(X) which are contained in the set ¥”. Since D(X) is upper
semi-continuous, there éxists an integer k such that st(d’, k) < V' and if d” € D(X)
and d'nst(d, k) # @ then d’'=V'. Let U= O(st(d’, k) % A(@)) " T(S(X)).
Obviously, U is an open neighbourhood of @ in T(S(X)). We prove that p~(U) = V.
Indeed, let dy&U. Then p~d))nst(d’, k) # @. Hence, p~*(d) S V"', and,
consequently p~(d,) € ¥, that is, the map p~* is continuous.

Thus, p is 2 homeomorphism of D(X) onto the subset T(S(X’ )) of T(A). Hence,
X is homeomorphic to a subset of T(4), that is, T(4) is a universal element of the
family of all rational metrizable spaces. The proof of the theorem is complete.

3. Let R be a family of spaces and R, be a subfamily of R. We say that a universal
element T of R has the property of finite intersection with respect to the subfamily
R, if for every element X € R, there exists a fixed homeomorphism iy of X into T'
such that if X and Y are different elements of R, then the set iy(X)Niy(Y) is
finite.
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COROLLARY 2. In the family of all rational spaces there exists a universal element
having the property of finite intersection with respect to a given subfamily with power
less than or equal to the continuum.

Proof. Let R be the family of all rational spaces and R; be the given subfamily.
Lét 4 be the family of pairs (S(X), D(X)) mentioned in the proof of Theorem 2.

For every space X € R, we consider a pair (S(X), D(X)), where §(X) is a subset
of C and D(X) is an r-partition of $(X) such that: the quotient space D(X) is
homeomorphic to X and (B(X)(1))* = C(1). By 4, we denote the set of all pairs
S, D(X)) X e Ry. We suppose that if X and Y are two different elements of
4, (it is possible that X and ¥ are homeomorphic) then (S(X), D(X )) and
(§ (Y), D(Y)) are different elements of 4,

Let A’ be the free union of the sets 4 and A4,. Obkusly, ‘the power of the
set 4’ is less than or equal to the continuum. Hence we can consider the space T(4")
constructed in Section II for the family 4. As in the proof of Theorem 2 we can
prove that if the element (S'(X), D'(X)) of 4’ correspond to the element X of R
or Ry then the subset T(S’(X)) (see the proof of Theorem 2) of T(A') centains
topologically the space X.

In order to prove the corollary, it is sufficient to prove that if X and ¥ are
different elements of 4; then the set T(S(X))nT(S(Y)) is finite.

Let X and Y are different elements of 4. Since S(X) and S(¥) are different
elements of 4'(S), there exists an integer n >0 and elements & fe4,, & # B, such
that S(X)e A'(3) and S(Y)e A'(P). From this it follows that if deT(4"),
(CxA'(®)nd # B and dn(Cx 4'(P)) # O then d = x(7) where 7e.4, &>7 and
B=#%. Obviously, the number of such elements, d is finite. Hence the set
T(B(X)NT(S(Y)) is finite. The proof of the corollary is complete.

We observe that the power of R, cannot exceed 2% and that there are 22°°
rational metrizable spaces.

COROLLARY 3. In the family of all rational spaces there exists a universal element

having the property of finite intersection with respect to the subfamily of all rational
continua.

COROLLARY 4. In the family of all rational spaces there exists a universal element
having the property of finite intersection with respect to the family of all closed sub-
spaces of a given rational space.

4. PROBLEM 1.
rational spaces?

Is there a universal element in the family of all Hausdorff

ProBLEM 2. Is there a universal element in the family of all plane rational
spaces ?

ProBLEM 3. Is there a rational space which contains toplogically every rational
continuum and which is not a universal element in the family of all rational spaces ?
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Let N be a cardinal number. We say that a Hausdorff space X is a N-space
iff there exists a basis B of open sets of X such that

(1) |B|< N and

(2) for every element Ue B we have |FrU|<N.

ProBLEM 4. Is there a universal element in the family of all regular (resp.
Hausdorff) N-spaces?
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On symmetric products
by

Juliusz Oledzki (Warszawa)

Abstract. Two notions X (n) and SP Xg of symmetric products of a Hausdorff compact space X

are studied, The n-fold symmetric product X(n) is a subspace of the hyperspace 2X of subsets of X
containing at most # points. For a group G of permutation of a set of » elements, the #-fold G-sym+

metric product SP¢ X is the orbit space of the permutation action of G on the n-fold cartesian product
X"of X. It is proved that some shape properties are invariants under the operation of these products.
An example shows that the fixed point property is not such an invariant (this is the negative answer
to the Borsuk and Ulam problem [1]). Examples of the symmetric product of somie one-dimension_;ﬂ
continua are considered. k T

1. Introduction. In the paper, compact Hausdorff spaces are considered. For
a space X, let 2% denote the space of closed subsets of X with the Vietoris finite

topology. For a metric space one can get the same topology by using the Hausdorff

metric. The n-fold symmetric product X () of the space X is the subspace of 2% of
subsets of X containing at most n points ([1]). The space X(n) can be obtained
([6], [18]) as a quotient space of the cartesian product X" with the following relation:
two points (Xq, .o, %)y (P1s s ¥u) € X" are equivalent if the sets {%15 e X} and
{P1s -wes yu} are equal. Denote the natural projection by =,: X" - X(n).

Let G be a group of permutations of a set of » elements. The n-fold G-symmetric
product SP%X ([17], [8], [5]) of a space X is the orbit space of the permutation
action of G on the cartesian product X" of X. Let ng: X" — SPGX denote the
identification map. Thus ©g(xy, ..., X,) = %g(Pis ..., ) iff for some g € G y; = Xy
for i =1, ...,n. If G is the group of all permutations of a set of » elements then
SP% is denoted by SP". It is easy to see that SP? X = X(2) for any space X.

Suppose that = is one of the maps 7, or ng. Let f2 X — ¥ be a map. The map
xf: X" — X" defined by f (X1, .. %) = (F(¥1)5 -, (%)) preserves fibers of the
map n. Hence we can define the map n(f): n(X")—> 7 (Y™") such that the diagram

20


Artur




