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On functions of bounded n-th variation
by

S. N. Mukhopadhyay and D. N. Sain (Burdwan)

Abstract. Following Sargent [15], a definition of bounded th variation for real valued functions
is introduced and it is shown that this definition is equivalent to that of Russell [11]. Various prop-
erties of functions of generalized bounded variation are established.

1. Introduction. One approach to get a definition of functions of bounded
variation of higher order is based on the concept of higher order divided differences
(cf. [9], p. 24). This was followed by Russell ([10], [11]) and others (see, for example,

"[2]). This method was also followed in [7] to define absolute continuity of higher

order. Another approach was due to Sargent ([14], [15]) who introduced the concept
of absolute continuity of higher order which involved the notion of generalized
derivatives, Sargent was concerned with the descriptive definition of the C8-
saro-Denjoy integrals which needed the concept of absolute continuity of higher
order. She did not specifically mention bounded variation but her method suggested
a definition of bounded variation of higher order. The two approaches are different.
Therefore, it is natural to ask if these two approaches have any connection. The
purpose of the present paper is to give an answer to this question. Following Sargent
[15] (see also [4]) we have introduced two definitions of bounded variation of order
n which are analogous to the concept of ¥ Band ¥ B* of [13], pp. 221-228, and showed
that on intervals these definitions are equivalent to that used by Russel [11].

2, Definitions and notation. Let f be defined in some neighbourhood of x. If
there are real numbers og(=f(x)), ¢; ..., &, depending on x but not on / such
that

r

\ i
Fx+h) = Z ui% +o(h),
. =% i ,
then «, is called the Peano derivative of f at x of order r and is denoted by fi,y(x).
Clearly, if fi)(x) exists then Jw(x) exists for all 4, 1 €i<r. Also, if the ordinary
rth derivative f®(x) exists, then f;,)(x) exists and is equal to f*(x). The converse
is true for r =1 only. . :
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1
(r+)(2+1)[f(’) zf(i)(x) - x)]

We define the four Peano derivates denoted by Fiy 1y (%), fore1y (), Fov1y(x) and
Jo+1)(x) and defined by the upper and lower limits of ygry(f, x,2) as t —» x+or
t - x—as the case may be. If fiy1y(0) = fih1y(¥) or firusy (%)= fiu1y(x) the
-common value is called the rzglzt-hzmd or left-hand Peano derivative of fat x of
order (r+1) and is denoted by f(,m(x) or f(,H,(x) respectively.

Let n> 1 be a fixed positive integer and let f(,,)(x) cxist and be finite. Define

Let fiy(x) exist. Write

Yo+ 15 X, 1) =

'yn(fsx t) ./‘(n)(x) lf t # X,
G (1) = { ifr=x.
‘Similarly, if fi,,(x) exists and is finite define
- _ Imfx, ) —fay(x) it £ x,
8"“”"’)“{0 if = x.

Let us suppose that f is defined in [¢, b] and let [¢, d] < [a, b]. Let fi,— 1) exist at ¢
-and dand let f(:’) (c) and fizy(d) exist. (Of course, if ¢ = a or b = dor both, the existence
of fin-s) will mean one-side derivative fi,~qy at these points.) Let

B,(f, le, d]) = max[max i (f, ot ;_;(d*c)),

o<r<n
max {-s; ((/", d, d— C(dwC))H,
0<r<n n

o,(f, e, d]) = min[ min & (f, ¢, ot - (d— c)) ,
0<rsn n

min {—-a,',’ (f, 4, d- f(d-c)>}] ,
osrsn (| n
wu(f: [07 d] = _n(f; [C; d])"‘ﬂ]n(f: [C, d]) .

Since  @,(f,[c, d) = 02> w,(f,[e,d]), we have wf,[c,d])=>0. The quantity
w,(f, ¢, d)) is called the weak oscillation of f on [c, d] of order . Similarly, writing

@y (f, e, d) = max[sup & (s e, 1), Sup {—& (f,d,0}],
Q:(f, [e,d]) = min| inf 8: (fs e, t)a inf {—'6,,- (f, d, t)}] ’
cst<d cgt<d

(D:(f, [c,d]) = m:(f: [e, d])—C_O:Cf: [e, d]) »
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the quantity w}(f,[c,d]) is called the strong oscillation of f on [c, d] of order n.
Since @,(f,[c, d) <@} (f,lc, d]) and w,(f,[c, d]) >} (f.[c, d]), we have

0,(f,[c, d) < wi(f,lc, d)) .

Let E < [a, b] and let fi,-y), f(:,'), S €xist on E.The weak [resp. strong] variation
of fon E of order n, denoted by V,(f, E) [resp. V¥(f, E)], is the upper bound of the
sums Y, 0,(f, [¢o di]) [resp. Y. o} (£, [, 4] where {[c,, dil} is any sequence of
non-overlapping intervals whose- end points belong to E. If V,(f, E)< o0
[resp. V¥(f, E) < o], then f is said to be of bounded variation in the wide sense,
or simply, of bounded variation [resp. bounded variation in the restricted sense}
of order n, briefly V,B [resp. V,B*], on E and is written fe V,B(E)

[resp. fe V,B*(E)].

The function f is said to be of generalized bounded variation in the wide sense, or

simply, of gencralized bounded variation [resp. generalized bounded variation in

the restricted sense] of order n, briefly V,BG [resp. V,BG*] on E, if E is the union

.of a countable collection of measurable sets on each of which fis ¥, B [resp. V,B*].

If fis V,BG [resp. V,BG*] on E, we write fe V,BG(E) [resp. fe V,BG*(E)].
Since w,(f,[¢, d]) < wy (f,[c, d]), we have V,B*(E) < V,B(E) and

V,BG*(E) < V,BG(E) .

Let Xxg, Xy, -, X, be (n-+1) distinct points (not necessarily in linear order)
in [a, b]. The nth divided difference of f at these points is defined by

Jx)

Qn(f! Xos Xq veey xn) = o (x)

i=0

where

w(x) =

]:[(x—-xj).
I=1

If Q,(f, Xy X15 «nrs %) 2 O for all choices of the points xo, Xy, ..., ¥, in [a, b], then f
is said to be n-convex in [a, b]. Clearly, a function f is 0-convex if and only if fis
non-negative, f is 1-convex if and only if f is non-decreasing, and f is 2-convex if
and only if £ is convex in [a, b}

3. Preliminary lemmas.

Lemma 3.1. Let f be defined in [a, b] and let [c, d] = [a, b]. Let fiu—1) exist at ¢
and d and let f3i(c), fun(d) exist and be finite. Then

[ fo (D) —fy (0 < Ko (f, [c, d])

‘where K is a constant depending only on n.
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Proof. Writing
4%, B) =,=Z§(— 0y (1) feetrn,

if follows from the definitions of & and &, that (cf. [15], Lemma 1)

n

(e, h) = h"f(,T)(C)—f-h"Z (-1 (;’) %a;" (f, ¢, c+rh),

r=0

n

410 =1) = DA DH > (< (1) S 7, i

r=0
Taking h = i;}g, we have
A,,(C, h) = (_'1)" An(d: —h) )

and hence

o) — a0l = |Z( 1)"— {8:: (f.c,etrh)—g, (f, d, d—rh)}

< " " N ) .
S (r)n—! lex (fy €5 c+ri)—e; (f, d, d—rh)| .

r=0
Denoting by ».* (resp. ¥,”) the summation over the terms for which
& (f, ¢, c+ri)—o; (f, d, d—rh)
is positive (resp. negative) and noticing that |
20,(f,le,d) <ef (f, ¢, c+ri)—¢; (f, d, d—r)<2B,(f,[c,d]) for 0< r<n,

we have

+ n
a@-£r@1< Y (1) S omire, )
+ Z (F) =5 (=201, e, apy
<"ZZ (f) S le, D

r=0

= Ko,(F,[c; d)
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where
n
r”
K=2 g (r =
'l nl
r=0

Lemma 3.2 Let fe V,,B(E) where Ec [a,b]. Then
() if = infE€ E then f is bounded on E,
(ii) if B = supEe E then f is bounded on E,

(iif) if fiuy exist on E then fuy is bounded on E.

Proof. Let V,(f, E) = M. By Lemma 3.1 we have, for any x€ E ~
o @)= lf(?S(a)l < /o () o @) <Keon(f [ XD < KM .

Hence
[ ) < KM +| f(,,)(oc)] for all xe E.

Thus fu is bounded on E. Slmllarly,
| fo O S KM+|fy(B)|  for all xe E,

and so f is bounded on E.
Finally, let x, € E be fixed. Then by Lemma 3.1 we have, for any x € E,

[ fem @) =1 fin (o)l < | fons(36) —fen%0)] < Ko (f, ) < KM
where J is the interval with endpoints x and x,. Hence
fin() S KM+ fyn(oio)|  for all xe E,
and hence ]‘(,,) is bounded on E. -

“‘COROLLARY 3.3. If fe VB([a b)) then f(,,) and f(,,) are bounded on la, b) and
(a, b], respectively.

 The proof follows from (i) and (ii) above.

" 'LEMMA 3.4, Let Sy exist on Eca, b] and let f € VB(E) Then f(,,) is. of
bounded variation on E.

"Proof. Let {(C}, di)} be any sequence of non-overlappmg mtervals with end-
points in E. Then by Lemma 3.1 :

|ﬁn)(dk) —ﬁn)(ck)l < KCU,,(f ’ [ck: dk]) i
and since fe V,B(E), the result follows ‘

LeMMA 3.5. Let f be continuous and let fi,..1) éxist in [a b] “Then the upper and
lower bounds of -each of foy: fin> oy and fay in [, 'b] are, respectively, equal to'the
upper and lower bounds of 1! Qu(f, Xos X1 uvs %) Where Xo, X1, ... X, are any n+1
distinct points in [a, b]. :
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Proof. For n = 1 the result is well known. [13, p. 204]. So we suppose n>2.
Let m be the lower bound of fi;, say and suppose that m is finite. Then the function
— n
F(x) = f(x)—ﬁ(f—"f)— is such that Fi(x)>0 for all x in [2,5) and hence F
n!
is n-convex (see [3, Theorem 19]). So for any (n-1) distinct points x,, Xy, ..., X,
in [a, b], Qu.(F, xo, Xy ..., X,) > 0. Considering the determinant formula for Q,
(see, for example, [6, p. 183]), we have

Qn(x"’ X5 Xg eues xn) =1 and Qn(xi7 Xop Xgy eves xn) =0
for 0<ig<n—1 and therefore

nlOL(f, Xg, X1p ooy X)) =1,

Let ¢>0 be arbitrary. Then there is Xo € [a, b) such that fih(xe) <m-+e.
Since

o)) limsupy,(f, xo, 2) = Fn(%o) ,
t—+xq

there is x; # x, such that y,(f, xo, X;) <m-+e.
Since by [5, Lemma 4.1]

2) Lim ... im 1! Q,(f, Xq, %15 tay voes 1) = 7(f> Xo5 X1)
th=Xo 2=+ xo )
by repeated application, there are distinet POInts X, X3, ..., X, different from Xo» Xy
such that :
n!Qn(f: X0s Xy ones xn) <m+e.

This completes the proof when m is finite,

If m = — o then for any N> 0 there is x4 € [a, b) such that f(,f,(xo) < —N.
Hence by (1) and (2) there are distinct points xy, Xz, ..., X, different from x, such
that n!Q,(f, xo, X1 ..., %) < =N. Thus, inf n!Q,(f, X1, Xz5 e, %) = — 00, If
m = o0, the argument is similar. The other cases follow similarly.

LEMMA 3.6. Under the hypotheses of Lemma 3.5 if at least one of fy, fors Jon
and f, is bounded, so are the other three and f™ 1) exists and is absolutely continuous.

Proof. The first part follows from Lemma 3.5, For the second part, let £, be

. Y

bounded and let | f x| <k for x € [a, b). Then the function F(x) = f(x)+k g—-—v!fl—?«

n

is such that E{:,(x) >0 for x € [a, ) and so by [16, Theorem 1] F,- 1yis continuous

and non-decreasing in [a, b]. Thus Fu-1y is the continuous derivative F® 1 and

F® exist a.e. S0, fyu1, is the continuous derivative 7o and £ exist a.e. Since

f(:)is bounded, by Lemma 3.5 the both sided derivates S Ty are also bounded

and so f® is C,_ (P integrable in [a, 5] and £ Vs its C, P integral [1]. Since ¢

is ‘bounded, it is L-integrable in [a, b, and f (""‘”‘is its L-integral. This completes
the proof. .

icm
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LemmA 3.7. If fe V,B([a, b)) then £ exists and is absolutely continuous in
[a, 8]

Proof. Under the hypothesis, f is continuous in [, b]. In fact, if n = 1 then
since fe V1 B([a, b]), f) and £, exist and so £ is right as well as left continuous
and if n>1 then since fe V,B([a, b]), Ju exists and so f is continuous. Therefore:
the result follows from Corollary 3.3 and Lemma 3.6.

Lemma 3.8. If Fe E < [a, b, then

W) V.(f, )< V(f, E),
(i) V¥(f, F)< VA(f, E),
and hence
(ili) V,B(E) =V,B(F),
(iv) V,B*(E) = V,B*(F). .
The first part follows from definition and the second part follows from the:
first part.

LemMmA 39. If Ec[a,b] and a<c<b, then

Vi1, E) 2 Vi(f, Enla, e+ V,(f, Enle, b])
and .
V¥, E) 2 Vi(f, Enla, c]+V¥(f, Enle, b)) .

Proof. Let {(a, b,)} be a sequence of non-overlapping intervals with endpoints.
in Enla, c] and let {(c;;d)} be a sequence of non overlapping intervals with
endpoints in En[c, b]. ' »

Then

V(f, E)‘> }; o, (f, [@ bk])+; o,(f, [e, di))
and
Va(f, E) = ; o (£, [a beD +Zil oy (fy lew di) -

Since {(a, by)} and ,{(_c” d)} are arbitrary, the results follow.

LemMA 3.10. ¥,B(a, b)) < V,-1B*([a, b]), V,B*([a, b])<V,-1B*([a, b]) .

Proof. Let fe V,B([a, b]). Since

o (s X, D) Hfen () = & (fs %, D+fiiy () = v, %, 1)

and .

X0, 0) = ealfex, 1) = a2, 1),
we h#yc‘ : | ‘

a)n—l('f:'[cl d]) < Ld—:;-"c'[ {wu<f’ [e, d])""M}
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whenever ‘[c, d] < [a, b], M being any number gréater than, the upper bounds of
1£;F1 and | fi73| which are finite by Corollary 3.3. Since f'e V,B({a, b]), it follows from
above that fe V,-1B(la, b]). The proof for other part is similar.

Applying Lemma 3,2 (iii) instead of Corollary 3.3, we get from Lemma 3,10
the following lemma.

LeMmA 3.11. If f exist on E < [a, b] and if fe V,B(E)(resp. f&
feV,1B(E) (resp. fe V,- B*E)).

LevvA 3.12. If f) exists in [a, b] and if at least one of iy, fors1y> Jine sy
and for1y is bounded, then fe V,B*([a, b]).

Proof. Let f,\1) be bounded and let
]f(:+1)(x)[ <M

Then, since f(1) exist, fis continuous and so 4s irt Lemuma 3.6 f5, , is L-integrable
and

V,B*(E)), then

for xe[a, b).

j( n()dt = foy(X)~f(@) .

Let [e, d] = [a, b]. Then for each x e [c,d) and te[e, d), x # ¢, there is, by the
mean value theorem [8], a ¢ between x and ¢ such that

low (fs %, O] = I8 (f, %, 1) = L&~y ()]
E i
= 1 ey () d ] < MIE—3] < Md~d]
Hence oy (f, [¢, d]) <2M(d—c) which shows that fe V,B*([a, b]).

LemMA 3.13. The spaces V,B(E), V,BX(E), V,BG(E), V,BG*(E) are all linear
spaces.

Proof. It can be verified that .
B,(f+g, le, d) <B,S, e, )+, e, d],
and this, thh a similar. inequality gives
(f+9, [e, d) <o/, [c, d])+w..(9 [c CON
This shows that f, g € V.B(E) imply f+g € V,B(E). Also if.o is any constant, then
(o e, d]) = lalw,(f, [c, d])-

This shows that fe V,B(E) implies ofe V,B(E). . -
Let f, g€ V,BG(E). Then there are {E;} and {Fj} such that UE,

= U F; and feV,B(E) for each i and geV,B(F) for each J. Let
E,, = EnF;. Then E= (J{J E;;. Then, fljom Lemmai3.8, £, g e V,B(E,;) and so by
iyJ !

icm®
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the above f+¢ € V,B(E;;), and hence f+g € V,BG(E). The case af e V,BG(E) for
any constant « is clear.
The other cases can be proved similarly.;

4. Main results.

THEOREM 4.1. If f is D*-mtegrable onla,blandfeV, B" (E),then Fe V. lB* (E)
where

F(x) = jf(t)dt
Proof., We have -
x+h
F(x+h)y—F(x) = jf(t)dt
xl-h n~1
- 2 o x|
x . r=0
~ hr'l'l hn+
= Z(r+1)'ﬁr)( ) ( +1)|f(n)( )
r=0 )
x+h

J‘ =" a,, (fs x, t)dt.

Since e (f, x,t) = 0 as ¢ — x+, we have F(,,(x) f(,..,)(x) for 1<r<n and ,

IRUTIS : L Faan () ff(n)(x) = fo(x) |
enidsio‘ SR o ‘ ;""j

"..‘.(.H« o x+h !

s
PR

En-ll(F X5 x+11)—— hn+1

J(z x) & (f,xt)dt - N

Since fe V,B*(E), it follows that Fe V. B¥(E).

THEOREM 4.2, If g is (n+1) convex: in [a, b], then g € V,B*(, B]) for m’y
[a ﬁ] (a b). If mareover, g(,,)(a) and Gm(B) exist and are ﬁmte, .hen

ge VB (la, b)) -

Proof. If n = 1, then since: g is.convex in [a, b] for every [o, Bl =(a, b), gs‘“"
and gy exist and are finite in [«, B) and (x, Bl respetiively, and are non-decreasing:

3 ~ Fundamenta Mathematicae 131.3
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Moreover, for xg, X, € [&, Bl, x; <X,,
X2 x2

jga)(u)du - f g0 = glr)—g (xs) -

x1 X1

Let [¢,d] = [a, f]. Then, for c<t<d,
g1 —9(0— =gy (©

t—c

let (g, c, 1) =

<90 d)— g ()

i
- f Loy () — g (©)]

and similarly |e7 (g, d, 1)} < 9(1,(d)— g3, (c). Hence

o¥(g,lc, d) <2097 (D -9 (@] .

So if {(e;, dy)} is any.sequence of non-overlapping subintervals of [«, f] then
; w){ (gs [Cb dl]) < 2 ; [g(—l)(dl)—g:-l) (ci)]
<2 Zt lg7 (di)~ga)(cl)]

<2088 B -9 @]
Hence g € V,B*([o, B)). ‘
If gfiy(a) and g(3y(b) are finite then by the above argument

Z i, e, d; D <2 Z [g(l)(dx) 9(1)(01)] <6 [gay(b)— 9(1)(‘1)]

Hence g € ViB*([a, b]).

We suppose n3>2. Let [«, 8] <(a, b). Since, g is (n+1) convex in [a, ] by
[3, Theorem 7], the (n— 1)th derivative g " of g exists and is continuous in [, B,
and gz,) and gg, exist, are finite and non-descreasing in [«, B]. Thus & (g, x, ¢)
and g, (g, x,t) are defined for xe [, B],¢€e[x, Bl. Since g has continuous
(n~1)th derivative in [x, f] for any closed subinterval [c,d]< [, ] and for
x€(e,d),tele, d] with x # ¢t we have by the mean value theorem

g" O —g" (x) - (¢~ x)g(,,)(x)
E—x

where ¢ lies between x and #. Since g is éonvex (cf. [3. beollaf’y 15(a)]) and
continuous in [«, B], it is absolutely continuous there, and so

(1) . 15:(“]!-&.:’:)"

(n—1)

- 3 . ;
@ ‘ J gipudu = g" () —¢" V).
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By the value theorem there is A such that
O8N I £I<n)(u)du = fl(f x)

where g(,,) x)<Ai< g(,,)(é) or g(,,) (x) = /'L = g(,,) ©® accordmg as x< E or x> é
So, from m, 2, 3,

@ & (9, %, 1) = A—giy(x) .

Since x € [¢, d), t € [¢, d) and since g(’;) and g, are non-decreasing with the ﬁroperty
that

%) g(T-) (ENES g(;)(xz), H(;) (x3) < g(:)(xs)

whenever « < x; <x, < f, o < x5 < § (the first part follows from Theorem 2 coupled

with Theorem 6 of [3], while the second part follows from Theorem 7(b) of [3]).
we have

6 NG 9@ <A—gl(x) < I (d)— 90y (©). A
From (4) and (6) we get

9 (=9 (@D <& (g, %, 1) < gy ()~ g8y () -
Similarly for xe (¢, d], te[c,dl < [a, B], x 5 t, we have

g(t)(c)“g(_n)(d) <& (g,x,1)< 9(;)(‘1)—9(*;.)(0) :
So, ‘

)] or(g, [, 1< 2[gem @ ~g5y(O] -

Let {(c;, d)} be any sequence of non-overlapping subintervals of [x, f]. Then since
94 is non-decreasing, from (5) and (7)

}; wi(g, [e,d) <2 Eij 9 () =g ()
<2 ;Z [g(f.)(d,) —92:) (e

<20g8 B -9t @)

Hence g € V, B*([«, 8]), pr oving the first part.
For the second part, if g(,,) (a) and gg,y(b) are finite, then app]ymg the above
argument. we have

Z @y (g [Ch di]) <2 Z [g(n)(d) g(n) (Cl)]
<6 [gm(®) ~ G m @],

and hence g € ¥,B*([a, b)).
3‘
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TreoREM 4.3 (JORDAN DECOMPOSITION THEOREM). V,B(la, b)) = {f = g~h;
g and h are k-convex in [a, Bl for k=0, 1, ... (n+1) and g% (a), K (a), g% (B), h"‘)(b)
exist and are finite} = V,B*([a, b]) )
where, for example, "')(a) is the right-hand dertvatzve of g

@1 4t g,

Proof. Let fe V,B([a, b]). Then, by Corollary 3.3, f(,,, and fi; are bounded
in [a, b) and (a, b), respectively. Hence f is continuous in [4, b] and so, by Lemma
3.6, ™1 exists and is absolutely continuous in a, b So f* exists and is finite a.e.
in [a, b). Also, by Lemma 3.8, V,(f, [a, x]) is finite for all x € [a, b]. Let

= {x: xe(a, b); f™(x) exists finitely}.
For xe S define
2p(x) = KV,(f, la, xD+1 P (x) ,
2q(x) = KV, la, 5~ (x)

where K is the constant posted at Lemma 3.1.
Clearly, p and g are non-decreasing on S. For, if x4, x, € S, ¥; < x5, then using
Lemma 3.9 and Lemma 3.1 we have

= K[an: [a) xl])_ Vn(f’ [a» xl])] +f(") (xz) "‘f"(xl)
= KV, (f, [0, %)) =1 f @ (x2) =™ (x) >0,

2[p(xz) —p(x0)]

and similarly 2[g(x,)—g(x;)] = 0. Extend p and ¢ in the whole of [, b] by defining

p(a) = insf px), pd= xesug p(x) for ¢e(a,b],
4@ = infg), aO = sup g@) for Eelo, )

Clearly, p and ¢ are non-descreasing in [a, 5] and costinuous at the points a and b,
Since fo, and fi; are bounded in [a, b) and (a, b], respectively, p and ¢ are also
bounded in [a, b). Let C = min[p(a), q(a)]. Then, writing u(x) = p(x)—C and
v(x) = ¢(x)—C, u and v are non-negative non-decreasing functions on [a, b] and
continuous at @ and b. Also, for x€ S,

F0(x) = p(x)—g(x) = u(x)=v(x) .

Since f#~* is absolutely continuous, it is indefinite Lebesgue integral of £, and
hence we have

n—1 n—
f(x) = j( )1)! u(t)de— J( i)! v(t)dt+P(x—a)v
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where P(x—a) is the polynomial in (x—a) given by

Pe=0) = f @+ =0 @+t L o0,
Writing
_ x(x_t)n—l x(x__t)n—l o
U(x) = J‘W u(t)dt, V(x)= J.——(n_——l)-r' U(t)dt y

the functions U and ¥ are k-convex for k = 0, 1,..., (n+1) and U®"? ang p*="
exist in [a, b]. Since uand v are continuous at a and b, UP (a), U (), V¥ (a), VI (B)
exist and are finite where, for example, U (a) is the right-hand derivative of
U™ " at a. Breaking the polynomial P into two parts P, and P,, putting in P, those
terms of P which have positive coefficients and the rest in P,, we see that

U+P1 and V-P,

are k-convex in [a, b] for k' =0,1,..,n+1.

Since f= (U+P,)—(V—P,), VB([a bB)c{f: f=g—h; g and h are k-convex
in [a, b]for k=0, 1, ... (n+1) and g (a), & (@), g©(b), K™ (b) exist and are finite}.

Next, let f = g~ h where g and h are k-convex in [a, b] for k = 0,1, ..., (n+1)
and g™ (a), K% (a), g (), ™ (b) exist finitely. Then it follows from Theorem 4.2
and Lemma 3.13 that f'e V,B*([a, b]). Since V,B*([a, b)) < ¥,B(la, b]), the proof
is complete.

From the above theorem it follows that on an interval the concepts ¥, B and
V,B* arc the same.

As we have already remarked, Russell {11]considered the definition of bounded k
variation, where k is a positive integer, using kth divided difference. He proved
that fis of bounded kth variation in [a, 6] if and only f = f; —f; where f; and f,
are r-convex functions in [a, b], 0<r <k, having finite right and left (k—1th
derivatives at a and b, respectively (see [11, Theorem 19]followed [12, Theorem 1).
Hence, from Theorem 4.3, is follows that fe V,B*([a, b]) if and only if f is of
bounded (n+ 1)th variation in the sense of Russell.

THEOREM 4.4. Let f be measurable and let fy, exist finitely on a measurable set
Ec[a,b]. Then there are a perfect set Ey < E such that W(E ~ Ep) is arbitrarily
small and two functions g and h such that

f=g+h

where g‘”‘) exsists and is continuous on [a, b] and hyy(x) = O for x € Eg, ¥ = 0,1, ..., k.
If, moreover, fe V,B(E) then g® is VB* on E,.

Proof. The first part is contained in [5, Theorem 3.1] (see also [17, IL, p. 73,
Theorem 4.2]). Only the second part needs a proof. We give an outline of the proof
of the second part, keeping all the notations of [5, Theorem 3.1}
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The polynomial @ considered in the proof of [5, Theorem 3.1] may be taken as
. ., x 1
! o(x) = I tk+2(1 __t)k+2dt/." tk+2(1 __t)k+2dt ;
6 6

the polynomial satisfies the requirements

00 =0, o)=1, o0 =oV1)=0
forj=1,2..., (k+2) and moreover
‘ wu) 043, o) = O((1-x)*"1*3)
for j.—l 2,. ,(k+3) (see [17, II, p. 74]).

Since fe& Vi B(E) by Lemma 3.8, f'e V;B(E,), and hence, by Lemma 3.4, fy, is
of bounded variation on E,. Since w is increasing in [0, 1], the function A in [5,
Lemma 3.3] is ¥B* on E, and since g® = 1, g® is VB* on E,. Thus, by [5, Lemma
3.3], g® satisfies the additional property that g™ is ¥B* on E,. Supposing in
{5, Lemma 3.5] that g™ has this property, we are to prove that g™ in [5, Lemma 3.6]
has this property and. to do. this we are to ‘prove that the function A in [5, Assertion
(3.13) satisfies the additional property that A%™"*" is VB* on E,.
. Let (x; x,49)) be any fixed interval contiguous to E,. Then for any point
x;+t in (x5 x,+6,) we have

A(k«ro+l)(x1+t) A +6,)— Alxy) (k-—-ro+1)<6>.
I

5k- ro+ 1

c0(k-~m+ 1)(x) w(k—ra+ 1)(x

Since, by th'c‘property of 0, —— and e remain bounded in
[0,1], there isM such that
[w(k—ro+1)(x)l < Mmin [xm+z, (1 __x)ro+ 2]

for all xe [0, 1]. Hence
Co®TRt DOy < M for all xe0,1].

Also, as in Lemma 3.1

X ro—1
. : g ro—1 .
oo it 8) =il < Y (=1 (x Y )
| [Ago—1y(x; ’il) el 4 ( )(ro—l)! Ery ) X x;+r°_15t

—e,o_,(ﬁ, X0 X+ 6, —

J
’0“15')’.
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Hence
_r o1y (5 ) = B 1, (3
M-(h o+l)(x +t)[<M (o 1) ‘6,(_.,.“4.1(0 1)( )
ro—1 Lo . -
1 L J '
<L E Waro—l(ﬁs X X ro—l,a')
o i=0 .
. 1 |
et from s | By Xiok By, X6, 15
6 1

where L is a constant. Now, since f,y(x) = 0 for x € By, r, <r<k, we have

tro—l ' k
(r B g (R X Xy 8) = ———sk(ﬁ X X+ 1)
0 .
and
-t ro~ 1 —\k
((r )1)' s 503y 34 5y1) = k) exCh, 103, x4 1)
—

and therefore

—'-""—‘1 Epgm h Xy X, .
& F 1 i i
;‘ rot1 e T ro 1

< (ro—l)!<
k!

j51>

ro—1

£k<ﬁ» X, X+ r_!_15'>
0—

J 5_)

ro—1 y ’

. k—ro+1 -
<2( / ) LoD G ey 1480
l’o—l k!

. . ‘
i)— FErot i Ero—1 (E: X+ 05 X% +6;
i

j k—ro+1
ro—1

—(=1)f ot <ﬁ:‘xi: +&‘i= X+ 0,—

Hence

| A=t B (x4 )] < Cag (R, [, %0+,

where C is a constant. Thus oscillation of A%™*" on [x,, x,46,] does not exceed
2Cwy(h, [x,, ,%,+6;). Since fe ViB(E), by Lemma 3.8 fe V,B(E,). Also, since
§® is continuous and is VB* on E, (by induction hypotheses in Lemma (3.5) of
[5]), it can be proved as in Theorem 4.1 that §e V) B*(E,). Hence ke V,B(E,)
and therefore the series Yay(f, [x;, x,+6;]) converges. Hence A*7°* ¥ e VB:(EO)
This proves that the function A in Assertion (3.13) of [5] is such that Jlerot1)
VB* on E,. .

Let 1 be an indefinite integral of A% "°* " over [a, b] of order k. Setg = g+1
h = h—J] Then ¢® is continuous in [a, b] and g* € VB*(E,). Also h,(x)= 0 on
E, for ry—1<r<k, completing the proof of the theorem.
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THEOREM 4.5. Let f be measurable and let f,y exist on E < [a, b]. If f'€ V,BG*(E),

then almost everywhere on E; fiu4 1) and (feny)ap exist and are equal
Proof. Since fe V,BG*(E), E = U E,, where E; is measurable for each i

and fe ¥, B*(E)) for each i. Let i be ﬁxed Tt is sufficient to show that fius 1y = (fm)p
a.e. on E;. By Theorem 4. 4 there exist a perfect set F, < E,; such that WE, ~ F)
is arbitrarilly small and two functions g and 4 such that f = g-+h where g®
continuous in [a, b] and g® € VB*(F) and hy)(x) = 0 for xe F,, 0<r<n. By
Theorem: 4.1, g € V,B*(F;). Since fe V,B*(E), he V,B*(F). Let {(v;, 5)} be the
contiguous intervals of F;. Let

‘M(x)={o if xeF,,

w:(h’ Vis 51) if xe (vi: 61) 4

Since ke V,B*(F), the sum Y. w,(h, v;, §;) is convergent. So, M € VB*(F). Since
g™ e VB*(F), M! and ¢g™*" exist and are finite in a subset G < F, such that
wWG@) = p(F,) Further, since g“ = fmy on F,, it follows that

(n+ 1)(-7‘:) f(n)ap(x)

at every point of G which is a point of density of G. Let £ € G be a point of density.
of G. Since { € F;, hy(£) = 0 for 0<r<n; hence

o WE+) = Sah, &, 640)
and hénce ' -
@ ety £, E+1) =0 for {+1eF,.

If é<v,<E+1t<$,; then

h<¢+z) @—;’l——il ety 9y, E41)

Hence by (1)

e, ¢, ¢+t)\=(‘f+’ )Ien(h Vi E41)
| ()

(5 )M(w) M@,

o (h, vy z)

So

Loz, ¢+t)[ ( )--}M(f+t) M.
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Since M'(£) exist and is finite, -and since £ is a pomt of denslty of F

enh, €, $+1)

y =0 as €+t—>6+0

through the points of the coxhtplementary‘ set of - F,-.f Hencé, vbyf ®

eu(h, &, E+1)

p -0 ast~0+.

Similarly,

ey(h, &, E+1)

" -0 ast—-0-—.

Hence A4 15(€) = 0. Thus

Tt () = 4" = (finen(®) -

80, fint1) = (fp)ap €. on F;. Since p(E; ~ Fy) is arbitrarily small, f,4 1 = (Fon)er
a.e. on E;.

THEOREM 4.6. Let f be measurable and et Jony exist on E<[a, b. If fe V,BG(E)
then (fiay exists a.e. on E.

Proof. Since fe V,BG(E), E =\ E, such that fe V,B(E) for all i. Then,
i

by Lemma 3.4 fi, is of bounded variation on E. Thus f, is VBG on E. By the
Denjoy~Khintchine Theorem [13], p. 222, it follows that (fy))s, eXists a.e. on E.
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Two examples concerning small intrinsic isometries

by

John Cebb (Moscow, Id.)

Abstract. Borsuk, and Oledzki and Spiez, have given examples in certain cases of arc length
preserving embeddings (intrinsic isometries) whose images have arbitrarily small diameters. We
give two additional examples, one negative and one positive, and raise several specific ‘questions
concerning further possibilities.

Introduction. Basic definitions and properties are in [1], [2], and [3]. If X is
a metric space with metric g, then the intrinsic metric on X induced by ¢ is given
by o4(x, ¥) = least upper bound {length (L): L is an arc in X containing x and y}.
For o, to be defined it is necessary that each two points of X lie in some arc of finite
length; for g, to induce the same topology as g, it is necessary and sufficient that, for
each x € X and each &> 0, there is a neighborhood U of x in X, such that for each
y e U there is an arc L of length < ¢ in U containing both x and y. Spaces for which
the two metrics are compatible are called geometrically acceptable (GA). All sets
we consider will be GA. A mapping of X onto Y is an intrinsic isometry if it is a iso-
metry with respect to the intrinsic metrics; or equivalently, if it preserves all arc
lengths (Borsuk [2]). A mapping fof Xinto ¥is an intrinsic embedding iff: X — f(X)
is an intrinsic isometry; here the intrinsic metric on f(X) is defined using arcs
in f(X).

We will say that X is intrinsically small in Y if, for each & > 0, there is an intrinsic
embedding f3 X — ¥ such that £(X) has diameter <e in the original metric of Y.
The three previously known results concerning intrinsically small spaces are:

(1) E" is intrinsically small in E*** (Oledzki and Spiez [6]; Borsuk [1] earlier
obtained E*"); '

(2) Bach l-dimensional polytope in an E" or in Hilbert space is intrinsically
small in E® (Borsuk [1]);

(3) No subset of E" containing an open set is intrinsically small in E” (Borsuk [2]).
We will add two more cxamples: a certain compact 1-dimensional subset of E?
is not intrinsically small in E?; and bounded cylinders in E* are intrinsically small
in E®.
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