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On diamond sequences
by

Pierre Matet * (Berlin)

Abstract. It is shown that the principle Oy is equivalent to the existence of a size 2¥ family F
of partitions of # into » many pieces such that whenever 4,, a< x, are pieces chosen from distinct
members of F, the diagonal intersection of the A4,’s is stationary. Various strengthenings of $ are
considered. We also investigate reflection properties of diamond sequences.

0. Our set-theoretic notation is standard. Let us recall some definitions.

Let u be an infinite limit ordinal, and let S < u. We say that 5, Sa, o<y, is.
a $,(8)-sequence if for every 4 < p, the set {xeS: 5, =4 N a} is stationary
in p. The principle ,(S) asserts the existence of such a sequence. (1) is
abbreviated as O,.

If <>, holds, then p is an uncountable cardinal satisfying =

Given cardinals 4> p and a set S<[A]™4, <, (S) asserts the existence of
a sequence 5, Sa, ae [A]7", such that for any 4 < A, the set {aeS: 4 na =5}
is stationary in [A]"*. Such a sequence is called a <, ,(S)-sequence.

If p is regular and S <y, then OS) and O, (S) are easily seen to be
equivalent.

For the duration of this paper, » will denote a fixed uncountable cardinal.
We let (%)* denote the collection of all partitions X of x into » many pieces X (o),
o <.

A collection I of subsets of x is said to be an ideal over x if E e I whenever
EcAuBford, Bel. Weset IT = {Acx: A¢1}. Iis x-complete if [ is closed
under unions of fewer than % of its elements. I is normal if every regressive function
fi A—>x, AeI", is constant on some BeIt. Given Ael*, we sct

1|4 = {Bcu: A n Bel}.

NS, denotes the ideal of non-stationary subsets of s.
The author wishes to cxpress his gratitude to Hans-Dieter Donder and
Jean-Pierre Levinski for many helpful discussions.

* The author gratefully acknowledges the support of the Deutsche Forschungsgemeinschaft.
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1. In this section we investigate the properties of some families of partitions
which are associated with diamond sequences.

Recall that by Ketonen’s lemma (see, e.g., Proposition 1 in [M1]), 2% = %
holds iff there are X, e (»)", a < 2, such that for each /: 2* — x, there is a uniform
x-complete filter F, over » with each X,(i(a)) in F,. We shall show that if we
further require that each ¥, be normal, then the corresponding statement is
equivalent to ,.

The following is a joint result with R. B. Jensen.

ProrosiTioN 1.1 (Jensen, Matet). Given S <, the following are equivalent:

(1) O(8) holds.

(i) There are X, € (%), o <2, such that the set

S 0 A{X (9 (@): o <oc}

is statz‘bndry in % whenever f: 3 — 2" is one-one and g: % — . ;

Proof. (i) = (ii): Let s, S, o <, be a fixed &, (S):-sequence, and select a bi-
jection v from % to xxxxxxx. For each uex, choose a function j,: 2% — o
with the following property: in case v[s,] consists of all (8,y, §,v) in axaxuxa

such that fy(y) = & and g(B) = v, where g e o®, fp & 2 for every fea, and Jo # 1y
whenever f # 9, then for every fea, j /,,) = g(f). Now define H: 2"xx—x

by’ letting H(F, «) = j(F}d). Pick Gex”, and F, c 2%, w <, such that F, # F,

for o #-fi. Denote by K the collection of all (8,9, 8, v) in 2 X% x % x 5% such that
Fy(y) = 6 and G(f) = v. Let C denote the set of all o & » suchthatran(G} o) S a,
va] = axaxaxa, and Fyb o # F,} o for all B, y e o with § 5 y. Since C'is closed
and unbounded, the sel T of all oe C N S with v™*[K] N a = s, is stationary

in %. Clearly,” H(F;, o) = G(f) Whenevel o ET and fea. The desired partitions

are then easily defined from H.

(i) - (i): Choose Z,, o < x, such that each Z, is a partition of % into two picces
Z(0), Z,(1), and that 4{Z,(g(0)): o <3} ¢ NS,|S for all ge2”. We shall actually
define 2" many O,(S)-sequences. Let & € 2" be given, and set s, = {B <u: & € Z,(h())}
for all o <. Then fix 4 S, and define g e 2* by letting g(@) = A(e) il w e A, It
is easily Verlﬂed that for every y < %, we have v” =Anyifl ye A{Z(g(a)): o <x}.
Hence s“, < 15 a OlS)- -sequence. Now lct h, ke2* be given with 4 s k. If
ﬁ <% is such that h(f) s¢ k(B), then clearly s % sf for all a>f.

We shall prove below a more general two-cardinal version of that result (sec

Proposition 1.6). Before we do that, we qha]l present some consequences of Pro-
position 1.1.
We start by stating an easy corollary.

‘COROLLARY 1.2. Given S < x, the following are equrvalent

@ OuS). : ‘
(i) There are f,: 2° — %, a<n, such that Jfor every h: 2"—-»% and  every
gi % 2%, dhe set of all we S with hogla = Jaogtu is stationary in x.
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(il) There is a function H from 2*x2* to the power set of % such that
|H(e, B) n H(e, Pl < forall e, B,y < 2% and that A{H(f (%), g(e)): o0 < 3} NS, |S
whenever f: u — 2% is one-one and g: u — 2%,

We denote by Y, the collection of all those families X, e (2)*, « <2%, such
that 4{X ) (g(a)): «<x}¢NS, for all g: x - x and one-one f: x —2" Let X,
@ < 2%, be such a family, and let &: 2% — ». We define a collection F, of subsets of s
by letting 4 € F, iff there are f % —2* and a closed unbounded subset C of »
such that

Cnd {Xf(x)(h(f(a))): w<xt S A.

It is not difficult to see that F, is a x-complete normal filter over ». Note that
X, (o)) € F, for all o< 2%,

We let ND,, denote the set of all those S < x such that <,(S) does not hold.
Devlin [D] observed that ND, is a x-complete ideal.

PROPOSITION 1.
F,nND, = @.

Proof. Letf: x — 2" be given, andlet § denote the set 4{X ¢, (4(F (@)): a <2}
Select one-one functions g, /, from # to 2% such that the range of Iis the disjoint
union of the ranges of f and g. Denote by C the collection of all « < » such that
both ran(f } «) and ran (g} o) are included in ran(/} &). Note that C is closed and
unbounded. For each o<, set s, = {f<o: ae Xu(i(g(B))}. Given Acx,
choose mex* so that m(a) # A(l()) iff I(«)e g[x—A] It is easy to verify that
C N A{Xy(m(@): o<} is included in the set {xeS: s, = 4 na}. Hence s,
a<x, is a O (S)-sequence.

3. Let X,, «<?2” be a family in Y,, and let h: 2% — x. Then

Further properties of ND, can be derived from Proposition 1.3, We first extend
a result of Devlin [D].

COROLLARY 1.4. Given subsets S, ¢ ND,, « < x, of x, there are pairwise disjoint
sets T, =S, «<x, with T, ¢ ND,.

Proof. First make the following observation. Let S< x with S'¢ ND,. Then
by Proposition 1.1 and Proposiiion 1.3, there are pairwise almost disjoint E, S5,
o < 2% with E, ¢ ND,. The result now follows from Theorem 2.1 of [BHM].

" Jensen [J] showed that NS, = ND, holds in L whenever % is regular. This
property can be restated as follows.

COROLLARY 1.5. NS, = ND,, iff every partition X of x into % many stationary
sets is a member of some KeY,.

Proof. By Proposition 1.3 and the proof of Proposition 1.1.

We conclude this section by giving the proof of the two-cardinal version of
Proposition 1.1,
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ProPOSITION 1.6 (Jensen, Matet). Assume % is regular, let 12 x be any cardinal,
and let S < [A]*%. Then the following are equivalent:

(1) < 2(8)-

(i) There exist X,, o< 2% such that each X, is a partition of [A]%* into A<*
many pieces X,(B), B <A™, and that the set S 0 4{Xy(g(@)): o < A} is stationary
in [A°* whenever k: A — 2* is one-one and g: A — A=,

Proof. (i) — (ii): Let 5, S @, ¢ e [A]°*, be a fixed O, 2(8)-sequence, and select
a bijection v from A to AxAx Ax i For each ae[A]“% choose a function j, from
2° to the power set of ¢ with the following property: in case v[s,] consists of all
(x, B,y,0) in axaxaxa such that f,(8) = y and & € g(c), where g is a function
from a to the power set of a, f, € 2° for every ae a, and f, # f; whenever o # §,
then for every a € a, j,(f;) = g(¢). Now define a function H from 2*x[1]%* to
[AI* by letting H(F, @) = j,(F} d). From here on, proceed as in the proof of
Proposition 1.1.

(ii) = (i): Select Z,, o < 4, such that each Z, is a partition of [A]<* into two
pieces Z,(0), Z,(1), and that the set § " 4{Z,(g(®)): & < A} is stationary for all
ge2" For each he2*, w. define a <>, ; (S)-sequence s, ae[A]<% by letting
sh={oea: ae Z,(h(2))}. Note that if 4, k € 2* and o < A are such that 4(«) 5 k(«),
then s! # s whenever « € a.

As regards Proposition 1.6 (ii), there may be room for improvement, since
. < . . .
in case 2*“"> 2% the length of the sequence whose existence is asserted is not
maximal.

2. We now concern ourselves with some combinatorial principles that
strengthen $,,.

First, it is natural to ask whether other ideals can be substituted for NS, in
the statement of Proposition 1.1. So let I be an ideal over s with » ¢ I. Puiting I in
the place of NS, in the formulation of two versions of diamond, we obtain the
following principles.

ulT] asserts the existence of a sequence s, S o, a < %, such that {ais, = Adno}
¢ I for every A < x.

O] is said to hold if there are P,, a <%, such that cach P, is a collection
of subsets of o with |P,<a, and that {a<x: dna¢P,)el for all 4 Sx.

Thus if S < is stationary, then ¥[NS,|S] is the usual OX(S).

Some brief remarks are in order.

We observe that by Proposition 1.3, &, implies $,[ND,]. It is shown in [M2]
that if % < 2* for some cardinal A < #%, then O is equivalent to O,[{4 S %: 4 <A},
In that case one has an attractive reformulation of diamond in terms of partitions,
i.e. O, holds iff there are X, € (x)", « <, such that A{X,(h(#)): &« <x} # @ for
all ke %", We do not know whether that holds in general. We remark that Sl [#]°7]
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holds whenever % is regular and the set of all uncountable cardinals g <% such,
that ,[[1]*#] holds is unbounded in x.

A collection K of subsets of x is said to be greedy if whenever 5, S ¢, ¢ <%,
there exists 4 € such that {«: 5, = 4 N a} € K. Clearly, $,[T] holds iff T'is not
greedy. Also, note that }[7] fails whenever I is greedy.

Assume V = L, and suppose I extends [x]“* and is normal. Then by a still
unpublished result of H. D. Donder and J. P. Leviuski, {,[7] holds, and OX[1]
fails iff 7% is greedy.

Recall that an I partition of » is a maximal family H of members of I'* such
that 4 n Bel for any distinct 4, Be H. Now assume >,[I] holds, and choose
s,Sa, a<s, such that {u:s,=Ana}el* for all 4=x Let G consist of all
Bcx such that B = {a<x: s, = A na} for some A <Sx. Clearly, G is a family
of pairwise almost disjoint members of I*. We note that G is a maximal such
partition in case I extends [»]<* and ([]“*|4)™ is greedy for all AeI™. Also, G
is an I partition if x N I* = @& and (J|4)" is greedy for all 4eTI™.

This extends Theorem 4.5 of [Ty].

PROPOSITION 2.1. Assume » is regular, let S'<x be stationary, and let 1 be
an ideal over x such that C n Se It whenever C is a closed unboynded subset of .
Further assume that >}(S) holds, and that either % is successor and I is x-complete,
or else % is limit and I is normal. Then there are X,e(x)*, a<2% such that
A{X (g (@): a<x} ¢ I|S whenever f: % — 2% is one-one and g: u — .

Proof. Let J denote the collection of all those D = such that D =4 U B
for some 4 € NS, and B e . Then J is an ideal over x with U NS, < J. Note that
if Iis x-complete (respectively normal), then J is also x-complete (resp. normal).
Moreover, C 0 SeJ* for every closed unbounded C < x.

We first show that {,[J]|S] holds. Pick functions H, from [a| to the power
set of axo, a<zx, such that for every B<xxx, we have

{a<x: B (uxa)éran(H,)} e NS,|S.

We claim that there is a § < » with the following property: for every 4 < , there

is a BSxxx such that 4 = {y <x: (B, y) e B} and that the set of all xe S with

Joe| > B and B n (e x o) = H,(p) belongs to J*, Suppose otherwise. Select a counter-

example 4, for each B <, and set B= {) {f} x 4y. Pick a closed unbounded
B<x

set C < % — {0} such that B n (¢ x &) eran(H,) foralla e Cn S. Defineg: Cn S — x
by letting g(a) = B iff B (xx«) = H,(B). Then g is constant on some DeJ™,
a contradiction. So let g be as in the claim, and choose s, <o, a <%, so that
se= {y: (B, ) & H(B)} whenever || > . Ttiseasily verified that {ue S: s,= A na}eJ*
for all 4 = . The proof of Proposition 1.1 now goes throughif we substitute J for
NS,. Hence there are X, € ()", « < 2%, such that A{X ;¢,(g (@)): o < %} ¢ J| S whenever
f: % — 2% is one-one and g: % — x. It remains to observe that I]S<J|S. )

Comparing Proposition 1 of [M1] with Corollary 1.2 (jii), we are led to the
formulation of the following problem. Assume that x~* = x, and let I be an ideal
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over x which is not 2*saturated. Does there then exist a function H from 2* x 2%

to the power set of x such that [H(x, f) N H{x,y)| < for all «, f,y<2% and

that () H(x, g(«)) € I't whenever E 2" and g: E-—2%? It isnot difficult to sce
aeE .

that the answer is yes in case I = [»]“* and x is strongly inaccessible.
Given a cardinal A > %, ,(4) asserts the existence of a family X, € (x)*, a < J,
with the property that for every / € %*, there is a stationary subset.S of % such that

’S— N X, (h(@)| <% for all ae[A]*"

This principle was introduced by Tall in [Ta] (we actually reformulated Tall’s
statement in terms of partitions). Note that there is mo conflict of notation, as
Ox() is equivalent to' . Also 2% = 2% follows from <>,(A).

Tall also considers the following assertion.

Py(x) is said to hold if whenever T,, a <1 <2% are subsets of % with cach
diagonal intérsection statiomary, there is a stationary T % such that |T— Tl <x
for every a <.

This is immediate from Proposifion 1.1.

PROPOSITION 2.2. Assume that Oy and Ps() both hold. Then $,(A) holds flor
every cardinal )= x with 1% < 2%,

3. We now concern ourselves with situations when diamond sequences can be
defined from others. ‘

Let us first deal with initial segments.

Assuming V =L, Jensen [J] shows the existence of a universal diamond
sequence. That is, there are s, S o, o any ordinal, such that for every regular un-
countable cardinal p, 5,, a <y, is a ¢ -Sequence.

We mention the following question. Given a transitive model M of set theory,
can one find a generic extension M[G] such that large cardinal properties are pre-
served, and that M[G] contains a universal diamond sequence ? ‘

4 =% is weakly compact if for every F: [A]* — 2, there is a B< A such that
either |B| = x and Fis constantly 0 on [B]?, or else B is stationary in » and F is
constantly 1 on [B]*% The weakly compact filter over » consists of all those 4 < »
such that %—4 is not weakly compagt. k ‘

PropositioN 3.1. (i) Let » be weqkly compact, let S < x be St(lﬁol’l(lky, arnd
let 5, <, be a $(S)-sequence. Then the set of all strongly inaccessible < x
such that s,, o <p, is a OulS N wW)-sequence, lies in the weakly compact filter over .
(i) Assume V = I, and let % be regular but not wealkly compact. Then. there

is a O,~sequence 's,, o <, such that Jor every regular cardinal j<u, s, @<, is
not a y-sequence. ' ‘

Proof. (i) follows from the characterization of the weakly compact filter in
terms. of indescribability (see [B2]).

icm

On diamond. sequences 41

" To show (ii) we usc results of [J]. Pick a stationary §<x such t'h.at‘ for every
regular uncountable cardinal u <, S M p is not stationary in p. Then let s, o <z,
be any <(S)-sequence such that s, = & whenever a ¢ S.

Say that § < is subtle if for cvery sequence s, S o, « <x, and every closéd
unbounded. set € < #x, there are o, f# in S C such that f<o and 5, N f = 55
The collection of all those § < x such that x-S is not subtle is a x-complete filter
[B1] known as the subtle filter over x.

Kunen showed. that <, holds whenever x is subtle. His proof can be modified
so as to yield the following.

PROPOSITION 3.2, Let S5, § <x, be subtle subsets of . Then there are s, S 4,
@ < 3, such that for every § <u, S, o<, is a <., (Ss)-sequence and the set of all
pe Sy for which s, o<y, is not a £:(Ss 0 y)-sequence is not subtle.

Proof. By induction on & <3, we define subsets Ny, M; and Ps, of x, and for
every o & N, subsets 55 and €2 of « so that each Pj lies in the subile filter over x,

N, consists of all infinite limit ordinals below x, and N = 96 P, for all 6>0.
n

We define 5%, C? by induction on & Nj, as follows. If possible, pick s5, C; suc?
that €2 is a closed unbounded subset of «, and that for every B e.f‘S;a N Nso G,
8B # s Otherwise put sf = Cy=@. Set M;= {oce{\’(,: C: =9} and
Py = (Ns=—S;) U (M5 N Sg). Note that the set (N; N S5)—M; is not subtle,(s since
otherwise one could find o, f in (Ny N S5)— M, such that f<e, $£Ap= s and,
€l B = Cj, u contradiction. Hence P, belongs 1o the subtle filter over ». Fn}avlly
choose s, S o, & < x, 5o that 5, = 52 whenever a & (N5 1 S) ——M,,.-It is easily verified
that s, o < ft, is a <,(S5 N p)-sequence for all ue Mz Now ﬁx de s and let A S x
and a closed unbounded subset C of » be given. Since M; is stationary, one can
sclect a u & M such that C s unbounded in zt. Then there is.an a€.§; 0 Cnu
with s, = A 0 o. Thus §,, x <%, is a v-:‘f;a,c(S‘,)-sequc11ce.

We next concern ourselves with the derivation of two-cardinal, diamond
sequences from a given diamond sequence. , . .
We first introduce some notatfon,” Let g < A be uncountable carclmals.< Given
a function f: [A1°¢ = A, we denote by C}‘ the set of all nonempty « € [A]** s‘uc‘h‘
that a ™ pe p, and F(d) € a for every nonempty finite' subset d of a. :
The following well-known result is essentially due to Kueker [Kue].

PROPOSITION 3.3. Assume % i,;' regiz/ar, and et A 2 % be any cardinal, leen, r/;e}
Jfollowing hold: i ) . ;
" <w .

" () C} is a closed unbounded set for all 12 [A]S% = A e

(ii) Let D be a closed unbounded subset of [A°*. Then C% = D for some f: [A]™% = .

Proof. The casy proof of (i) is left to the reader. '™ .. o ~<w
Let us prove (ii). By induction on the size of d, define A€ P, de[A]°°, sgch
that d < A,, and A, & 4, whenever ¢ S d. Now let f: [A]S® — A satisfy the following
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conditions. Given a< 2, f({a}) = a+1. Let d & be a fixed finite subset of A
and let d,, n < p, be the increasing enumeration of d. Then f(d U {d,+1}) equals
the order type of dy; f(d U {d,+2n+2}) = o whenever n<p, € 4y, and a4,
has order type d,; and f(d v {d,+2n+3}) = B whenever n<p, fie A,. (@ and
B0 Ay, has order type d,. It is not difficult to see that C¥< D.

The following corollary is well known too (see, ¢.g., Lemma 8.2 in [B3]).

COROLLARY 3.4. Assume % is regular, and let A% be any regular cardinal,
Let S A consist of limit ordinals of cofinality < x. Then the following are equivalent:
() S is stationary in A.
(if) The set {ae[A1**: UaeS} is stationary in [A]%.

Proof. (i} — (ii): Suppose § is stationary. Given f: [1]°° - 1, choose
ae S C} and select b e [o]* with U b = o Nowdefine @ € Cf such thatd < 4 S o,
Then, clearly, N a = ¢. Thus (ii) holds. .

The easy proof of the converse is left to the reader.

This is immediate from Corollary 3.4.

PROPOSITION. 3.5, Assume x is regular. Let A x% be a cardinal, and let Sus
w < 4, be a Oy(S)-sequence, where S consists of limit ordinals of cofinality < ». Set
ta=an sy, for all ae[A]™, andput T = {ae [AI**: Y aeS). Thent, ae [A1°%,
is @ Oy, 5 (T)-sequence.

Let M be a transitive model of ZFC, and let 4 be a regular uncountable cardinal
in M. We consider the situation when a single Cohen-generic subset of 4 is added
to M. So let P consist of all those functions p such that dom(p) < [1]?, |dom(p)| <A,
and ran(p) 2. For p, ge P, set p< q iff g Sp. Define u: P — A by letting u(p)
be the least @ <A with dom(p) <[«

We first make the following observation, which seems to be new.

PROPOSITION 3.6. Let G be P-generic over M, and set
sy ={f<a: (UG (B,0) =1}

Jor every o < . Let S be, in M, a stationary subset of . Then 5,, o < A, is a {,(S)-se-
quence.

Proof. The proof is only outlined, as we closely follow the proof of Theorem
8.3 in Chapter VII of [Kun]. Let pe G and E, Cin M[G] be such that p forces
that Ee2?* and that C is a closed unbounded subset of A. By induction on ¢ <1,
define, in M, p,eP, y,, x, so that

(1) po = p, and p, < py for f<u;

(2) "(pa) < Par1 < u(.pavh 1);

() x: u(p) - 2;

(4) Pu+y forces that 9,,, € C and that E} u(p,) = x,;
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(5) ifo = {J o, then 7, zﬂy g, and p, forces that

(U 6G) (G, v) = EB)
Finally observe that the set D = {y,: @ <A} is closed unbounded. Hence y, €S
for some infinite limit ordinal o.
Proposition 3.6 can be generalized as follows.
ProrositioN 3.7. Let G and s, o< A, be as in the statement of ‘Propo.vition 3;‘6‘.
Let p< A be a regular uncountable cardinal, and set t, =4 N Sua for all ae 2]
Let § be, in M, astationary subset of [A]"F. Then t,, a € [A]™", is a Oy, 1(S)-sequence.
Proof. The proof is similar to that of Proposition 3.<6. Let p eG: and {?, fin
MIG] be such that p forces that Ee 2* and that f: [A]"® = A. By induction on
a< A, define, in M, p,€P, ¥4 X, ¥, S0 that:
Q) po = p, and p, < p; for f<a;
(2) u(P) < Vors <t(Put1);
(3) %a: u(ps) = 2, and yo: [u(PII*" > 4
(4) P+ forces that E} u(p,) = x, and that
()™ = Yas

(5) if « = U, then y, = U 7 and p, forces that
p<a

(U G)(8,7,) = E(6) for all 6<7,.
Finally set D = {y,: 6 <4} and h = UA 7. Note that D is a closed un-
o<

bounded set. Hence one can find ae S Cl such that {J a = y,, where « is some

limit ordinal. o
We conclude with the following observation of H. D. Donder, which is included

here with his kind permission.

PrOPOSITION 3.8 (Donder). Let Q consist, in M, of all functions q such that
dom(q) S 8 x A, where 6 = (A°%)*, |dom(g)| <4, and ran(g) 2, ordered by r‘ev-ersle
inclusion. Let G be Q-generic over M, and let p< i be a re<gular uncountable cardinal.
Then, in M[G], O a(S) holds for all stationary S< [AI°R. N

We shall need the following lemma, which is easily obtained by modifying
the proof of Proposition 3.7,

LeMMA 3.9. Let N be a transitive model of ZFC. In N, let p< 4 be regulaf‘ z:;z—
countable cardinals, and let t,, a&[A“F, be a y (S)-sequence, where LS.‘E [A]=R.
Suppose (R, <) is, in N, a A-closed notion of forcing, and let H be R-generic over N.
Then t,, ac A", remains a <, (S)-sequence in NLH].

Proof of Proposition 3.8. For each 4 &9, let G4 consist Of:l’}l qgeqG ?lCh
that dom(g) S Ax A. Let § be, in M[G], a stationary subset of [/}] . Then ; here
exists o< & with e M[G,]. By Proposition 3.7, p,(S) holds in MIG,] Gyl
Tt now follows from Lemma 3.9 that {, ,(S) holds in M[G].

for all § <y,.
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Diamond and A-systems
by

Alan M. Mekler? (Burnaby) and Saharon Shelah? (Jerusalem)

Abstract. The notion of a A-system generalizes that of a stationary set. In this paper variants
of diamond for A-systems are considered. In particular, a form of the weak diamond principle is
defined and shown to be consistent with the strong negation of the continuum hypothesis. An
application of these principles is given to the Whitehead problem in abelian group theory.

§ 0. Introduction. In [S2] Shelah introduced the notion of a A-system in order
to analyze cxactly how a non-free abelian group (or other structure) fails to be free.
A J-system is a generalization of a stationary set. In this paper we will consider
variants of < for -systems. In Section 1 we will define what is meant by a A-system
and remark that <> for all A-systems is equivalent to < for all stationary sets, We
will then introduce a new variant of ¢, a definable version of the weak diamond
principle. (The weak diamond principle was introduced in [DS]) We will show
this principle for 2 <2 is consistent with 2% = 2™, In fact it is true whenever
we add 2% Cohen reals to the ground model.

In section 2 we will give an application of the definable weak diamond principle
to the Whitehcad problem for abelian groups. We will show that it is consistent
with 2% = 2%t {hat every Whitehead group is free. That this result is largely of
technical interest secems in part a reflection on the psychology of mathematics.
Although wé are interested in knowing when statements are independent of CH,
there is little inferest in knowing when things are independent of "1CH. Of course
there is reason behind this view since CH has strong consequences while experience
has shown that -1CH has few consequences. However some mathematicians, in~
cluding Woodin [W ], have studicd the independence of statements from "1CH.

§ 1. l-systems. After reading the definition of a A-system, the reader may -find
it hc]pl‘ul to turn to Section 2 and sec how A-systems naturally arise.

DEFINITION. Assume 4 is & Legulau uncountable cardinal. A A-system is a labeled
subtree (S, (B,,, Syt €S> of “UA satisfying:
(O) B< > = 0;
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