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Compact-covering numbers
by

George Baloglou (Lawrence, KS) and W. W. Comfort (Middletown, CT)

Abstract. A compact cover of a topological space X is a family .4 of compact subsets of X
such that X = (J %; and #(X), the compact-covering number of X is the least cardinal which
arises as the cardinality of a compact cover of X. Here we study the cardinal function %, with
emphasis on its behavior with respect to products.

The anticipated equality x(’I'E X) = lIIIx(X,), from which follows the implication

5] &

%(XD) < (YD) = n( 1D XD < 2 (11 ¥, is equivalent to GCH; assuming MA+—ICH it is not
iel el
difficult to find (Tychonofl) spaces X and ¥ with #(¥)<x(X) and »(X*) <x(¥Y®),
Writing X = Y if (X% = »(¥P) for all cardinals B, we find several conditions sufficient

to ensure that X =~ ¥ whenever #(X) = %(Y); in general, however, we know of no upper bound
on the number of w-inequivalent spaces ¥ for which %(Y) = »(X).

§ 1. Introduction. Working in ZFC, we follow the standard notation and termi-
nology of Sct-theoretic Topology; our basic references are [9] and [13]. For an ordinal
¢, the set & with the discrete and the order topologies is denoted & and (&),
respectively. Unless otherwise stated, no scparation axioms are assumed.

Compact-covering numbers (defined as in the abstract) have been useful in
a variety of mathematical settings, including for example locally compact topological
groups (sce [6] (§ 3)) and separable, metrizable spaces (see [7] (§ 8)). It is the theory
of products of compact-covering numbers, however, that seems to generate the most
interesting questions for both the topologist and the set-theorist.

The best known compuct-covering number is the “ubiquitous” cardinal d,
the compact-covering number of the space o of irrational numbers. The cardinal d
has been introduced by Katétov [16] and studied in depth by Hechler [11], [12].
For a variety of topological results related to & and to other “small uncountable
cardinals” reflecting combinatorial properties of the integers, the reader is referred
to [10] and [7]; some of the relations among these cardinals are investigated in
[10], [7] and [19].

The Baire category theorem for R implies that d > w; hence d = o, = 2% under
CH. Further, it is known (see [11] or 2.3 below) that cf(d) > w, and Hechler has proved
[11], [12] that the inequalitics @, < cf(d) < d <2 are the only possible restrictions
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on d (in ZFC). For example, there are models of ZFC where d = o, <2° (sec [13],
p. 261). Yet, there do exist (in ZFC) subsets P of R (Bernstein sets) such that
#(P) = 2° [7]; see [4] for details and for an example (provided to us by Rae Shortt)
of measurable P < R such that x(P) = 2°,

Assuming Martin’s axiom together with the denial of the continuum hypothesis
(MA.+1CH), R can be covered by no less than 2° nowhere dense sets [18]; con-
sequently, d = 2°> w, under MA+ "ICH. This result (first derived implicitly by
Hechler [12] — sce also [4] and [13], pp. 261, 586) yiclds the following (casy, yet
surprising) example, which bas largely motivated our work.

1.1. THEOREM. Assuming MA-+ T1CH, there exist (Tychonoff) spaces X, ¥
such that w(Y) < x(X) and #(Y?) > »(X*).

Proof. Let Y=o and X = {w;). Clearly, %(¥) = v <, = %(¥) and
#(X“) = o, (see 2.6 below); then as indicated above from MA+—1CH we have

#W( Y =d=2>0 =xX°.

Among the ofher cardinal functions, the ones that are most closely related
to %(X) are the familiar Lindelof degree L(X) (= least « such that every open,
cover of X has a subcover of cardinality not excceding o) and the compact weight
kw(X); the latter — studied by Katétov [16], [17], Arhangel’skil [3] and van Douwen,
[7] — is defined as the least cardinality of a k-base of X, (A k-base of X is a family
% of compact subsets of X with the property that for every compact K< X there
is Ce ¥ such that K< C.)

It is easy 10 see that L(X) < 2(X) < kw(X). The equalities s(X) = L(X), »(X)
= kw(X) hold for locally compact spaces and for certain other classes of spaces;
see Section 4 below. It is worth mentioning here that Xatétov [17], and independ-
ently Galvin, have shown that kw(Q) = d (see also 7.

Most of the results proved here appear in the doctoral disscrtation [4], written
by the first-listed author under the supervision of the second-listed author. We arc
pleascd to thank Eric K. van Douwen, Fred Galvin, Anthony W. -Hager, Thomas
J. Peters, Lewis C. Robertson and Johannes Vermeer for helpful remarks and
conversations.

§ 2. Concerning the numbers ( TT X). In the following two simple lemmas,
lal

we observe that continuous functions and closed subspaces do not raisc the compact-
covering number and we obtain upper and lower bounds for #(T] X).
il

2.1. LeMMA. Let X and Y be spaces, and suppose cither thai
(a) there is a continuous function Jrom X onto Y, or
(b) Y is a closed subspace of X.

Then s(Y) < w(X).
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2.2. Lemma. Let {X,: iel} be a set of non-empty spaces and X = H X
Then far
@ «(X)< H “(X1);

(b) sup{x(X)): iel}< %(X)‘;
© if Ul <, then x(X) = Hx()ﬁ);

(d) if each X, is non-compact, then %(X) > |I|.

Proof. We only prove 2.2(d). If %(X)<|I| there arc a compact cover
of X and a (not necessarily one-to-one) function i -+ X, from I onto #'. Since
X, is not compact there is pye X \m[K ]. This defines a point

p={psieheX.
Since X = |J & there is ie I such that pe Kje A", It follows that

Py = mp)en;[K],
a contradiction.

We see next that when the spaces X; of 2.2(d) are homeomorplic, the inequality
%(X) > |I| can be strengthened to of(%(X)) > |I]; this result generalizes tho inec-
quality c¢f(d) > @ and is of independent interest.

2.3. THBOREM. Let X be a non-compact space and B . Then of o X)) > .

Proof. Define ¥ = X* and 9 = cf(x(¥)), and suppose y<f. Since Y7 is
liomeomorphic to ¥, there is a compact cover A of Y? such that

] = 2(¥") = x(Y).
Since " is infinite and p = cf(|#']) we may write
oA = A,

n<y
with each |#',| <|#'|. Since {m,[K]: K& A} is not a cover of ¥, there is
pie INU {m[K]: Ke o'}

This defines a point p = {p(y): 4 <> e ¥?. Since ¥ = {JH and A = '9 Ay
there are n <y and Ke A, such that pe XK. It then follows that <y

p) = m,(p) & m[K];
this contradiction completes the proof.

2.4. Remark. It is tempting to try to strengthen 2.2(d) and 2.3 into the
statement that cf(x( [T X)) > | for every set {X;: iel} of non-compact spaces.
tal

To see that this cannot be done, let f and v be any cardinals whatever with y >1
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and 3 w, choose A>p" with cf(d) = w, and let X = Ax 9" it is casy 1o sce
that (X) = 4, so that cef(x(X)) = & <f.
We need two more lemmas before we present the main result of this section,

2.5. Lemma, Let {X 2 iel} be a set of non-compact spaces and X == 11X,
and define fat
o =sup{x(X)iiel}, J=[ielin(X)=a},
& = sup {e(X): ie INJ).
If either |J| = cf () or § = «, ther »(X)> .

Proof. From 2.2(b) we have »(X) 2 . We assume #(X) = o, we choose a com~
pact cover A" of X such that || = o, and we write
A= ) o,
n<ef(e)
with each [ <o If |J| = cf(@) we let {i(): n<cf(@)} be a faithfully indexed

subset of J, and if & = & we let {i(): n <cf(&)} be a faithfully indexed subset of
INJ such that

%(A,i(o,)) > I'%/‘nl '
In either case {m,[K]: Ke#,} is not a cover of Xigp» S0 there is
p(m) € X\ {my[K]: Ke A}

There also exist p = (p;: ieJ) e X such that Pigy = p() for i < cf(e), and as in
the proof of 2.3 there are 4 < cf(&) and K& %' u such that p @ K. It then follows that
17(71) = ni(l))(l)) € ni(tﬂ[K]!

a contradiction.
2.6. Lemva. Let o be an infinite cardinal and 0 < p < cf(x). Then 26({odPy = of (@),
Pro?f‘. Ex'oxn w({o) = cf (@) and 2.2(b) follows 2({ad®) 3= cf (). Now ot
o = sup{eg: &<ef(e)} with cach op <o and for cach ¢ <'of(e) define
Ky = (ot 130 = fx @ Cad's x, <y for all 4 < f}.

$i11ce ‘ﬁ§°f(°f) and supfoy: E<cf(@} =« for every x = Gyt o ol
there is & <cf(a) such that x e Ky, Thus (od? = U Ky, and since cach Ky is
compact we have x({op’) < cf(w), as required.  ¥5T®

2.7. ToeoREM. The following are equivalent.
(@) The generalized continuum hypothesis (GCH).

(b) Every set {X;: iel} of spaces satisfies ([ X)) = [[#(X).
iaf iagl
() Every space X and cardinal B satisfy w(X") = (X ))”u.

(d) Every infinite cardinal o satigfies u({a*Y*) = 2°.
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Proof. (a) = (b). For notational simplicity set ] X, = X, Using 2.2(¢) and
iel

Tychonoff’s product theorem, if necessary, we may and do assume that each X
is non-compact.
With a view to invoking 2.5 we define

=sup{n(X ) iel}, J={iel »(X)=«a}, and
§ = sup{n(X): ie INJ},
and we consider three cases separately.
Case 1. a< |, From 2.2(a) and 2.2(d) we then have

H1* < (X)) < [To(X ) S el [ s= 21 1)
iel

so that s(X) = [[»(X) = {I".
tal
Case 2. [I| <a, and cither [J] 3z cf (@) or § = o From 2.5 we then have

a<u(X) < [[oe(x) <ol (@Y = 2% = 0",
fal

5o that s(X) = [ =(X}) = a™.
iol

Case 3. [I| <o, and |J| < cf(e) and § < «. These three incqualities yield, with
(1), the relations 27 <, el <o (see [13], p. 49), and 2° <. From 2.2(b) we
then have
e<u(X)< [Tou(X) = [ToXx) T =(X)
ieJ ieJ tal\J
oMl s gl i g 122 M vt = 0,
so that ®(X) = []x(X) = o
fal

(b) == (c). This is obvious. ‘
() = (d). It follows from (c), replacing X by (o' and f by «, that

KoY = (G D) = () 2
() == (w), From (d) and 2.6 we have
2w (Y = o
for every infinite cardinal o, as required.

2.8. THEOREM. The following statements are equivalent, and GCH. implies cach
of them,
() Ir w(X) < #(Y) for each icl, then x(J] X)) <l :I‘} Y).
tal [

() If (X)) = w(Y)) for each iel, then %(ll“[[ X)) = x( H Y).
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Proof. That (i) = (ii) is clear. Now given X, Y; asin (i), let Z; be the “disjoint
union” space X; U ¥; and note that »(Z ;) = »(Y)). Since X, is closed in 2 ; the
space [] X is closed in []Z; and from (i) and 2.1(b) we have

iel ial

"(‘I!II XI)SW(HZI) = “(H Y).

That GCH implies (ii) is immediate from the implication (a) = (b) of 2.7.

2.9. Remark. We did not determine whether or not conditions (i) and (i)
of 2.8 imply GCH.

§ 3. The relation ., For every infinite cardinal o we write
A() = {X: %(X) = o},

and for spaces X and ¥ we write X & ¥ if %(X”) = %(¥") for all cardinals f. Tt is
clear that the equivalence relation =~ respects the classes A(x) in the sense that
if XY then %(X) = %(Y).

To fix ideas we summarize some of the results of Sections 1 and 2, using the
notation and terminology of the preceding paragraph.

3.1, TueoreM. (a) Assume GCH. Then for every infinite carding o« the cluss
A(@) contains exactly one =-equivalence class.

(b) dssume MA.--~1 CH. Then for every regular cardinal o such that o <« < 2°
the class A() contains at least two ~-equivalence elusses.

Proof. (a) is the implication (a) = (c) of 2.7.
- (b) Since xeA(®) and {a)eA@), it is enough to show x(x”) 5 x({a)").
Using 2.6 and 2.1(b) and arguing as in 1.1, we have
#({o)™) = a0 < 2% = (") < #(®).
In 'ﬂw next lemma we obtain an inequality that strengthens 2.2¢a) and yields
the main result (3.4) of this section.

3.2. LemMaA. Let {X: i} be a set of spaces, and set X = || X, and
P= ;[’II%(X ). Then %(X) < u(P). fal

Proof. Let {K;: ¢ <a} be a compact cover of P with o = #(P) und for i€
Ictt{L,,,,(:;; xch 2} be a compact cover of X i+ For ¢ <o the projection m, from P
onto #(X;) takes Ky to a compact (hence finite) subset of %(X,), so the set M«
defined by ) (1) w0 the set My

My = {L,: nemnlK}

is a compact subset of X,. For <o we set

My = an.a:S‘
iteal
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it is cnough to show thut [My: &<a} is u cover of X, Given x = (x;: iel)e X,
for iel there is n, < 2(X)) such that x, e L, . This defines a point
p={_{n:ielyel.
There is & <« such that pe Ky, and for iel we have
= m(p) & m [Kyl.

Tt follows that
X6 Ly = My g,

§0 that x ¢ My, as required,

3.3, Remark. Tt is immediate from 3.2 that for every a2 o the discrele space o
is “maximal” in A(x) in the following sense: for every X e A(x) and cardinal f,
we have #(X") < x(x").

3.4, TuroreM, If X contains a closed, discrete subspace of cardinality »(X),
then X o x(X). |

Proof. With o = »(X) we have of course X e A() and »(X)e A(w). For
every cardinal # the inequality %(X”) < x(o") is given by 3.3, while the reverse ine-
quality follows from 2,1(D).

3.5. CoroLLARY. If X is a non-compact, o-compact, Ty space, then X = .

Proof. The space X is not countably compact, hence X contains a closed
copy of @ ([1], p. 20).

3.6. Remark. We do not know whether in 3.5 the hypothesis that X'isa T
space is redundant.

The next result (first pointed out to us by David Feldman) gives a sufficient
condition for the rclation X o ¥ and simplifics the proofs of the subsequent
corollaries,

3.7, Turorem. Let X and Y be spaces. If there s a continuous funcrion f from X
onto Y such that £ (K is compact (In X) whenever K is compact (in Y), then XY,

Proof. Let f be a curdinal, The inequality s ¥*) < #(X?) follows from 2.1(a).
The reverse inequality follows from the observation that if & is & compact cover
of ¥* then

{};[ﬂf"“(vra KD: Ke o'}
is a compact cover of X",

3.8, CoROLLARY. Let X be a space containing no irifinite compact subset. Then
X o2 (X)),

Proof. If | X| < this is clear. If |X|> 0w, then |X] = #(X), and any one-
to-one function from x(X) onto X satisfies the conditions (on f) in 3.7.
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3.9. CoroLLARY. If there Is a perfect map [ from X onto Y, then X Y.

Proof. If K is a compact subset of ¥, then £~ 1(K) is compact in X, (See [9],
p. 236.)

3.10. Remark. Tt has been pointed out by Johunnes Vermeer thal the invariance
of compact-covering numbers under perfect maps can provide an alternative proof
of 3.2, similar to his proof of the inequality L( | X)) < - 2 (X)) 151

6l it

le

§ 4. Concerning hemicompact, chain-compact spages. We first define and briefly
discuss the spaces we investigate here.

4.1. DupNrTion. A space X is elain-compact i it i possible 1o write X = (J K,

N
with cach K, compact in such a way that Ky & Ky, whenever gy <, <o (We
write X = () K,1.)
n<o

Of course, every g-compact space is chain-compact. We remark, in passing
that every chain-compact space which is hereditarily separable or paracompact
is g-compact; the first of these statements is part of a more general result and can
be derived as in [15], p. 16 or [4]; the latter is o consequence of the fact that every
paracompact, chain-compact space is Lindelf [20] and of the following theorem.

4.2. Treorem, Let X be a non-compact, chain-compacet space. Then

() %(X) is a regular cardinal;

() (Galvin) s(X) = L(X); and

() X may be written in the form X = U &, T with cach K, compact und with

o = %(X). K
Proof. We may assume that Y = U K,T with a a regular cardinal, Since
. . ," ce
LX) € #(X), it suffices to show that if X = KT with cach K, compact and

. . e , . "
o regular then o< L(Y); arguing by contradiction, we do this by proving that if
X= UK, with regular e > L(X), then X is compuct.

<o

IfX= L<)K,,T with (regular) o> L(X), then - - us Las been pointed out by
H<a .

van Douwen - ¥ must be L(X)-bounded (1 e, every subiet of X of curdinality € L(X)
is contained in a compact subset of X); it follows then (see [21] p. 611 that X
is initially L(X)-compact (i.e. every open cover of X of cardinality = 7.0X) has
a finite subcover), henee X is compaet,
Alternatively, set X = l;)K,,T with (regutar) o > L(X) und let % be an vpen
‘ nea

cover of X; we may assume (hat o < U] S L(X). For cach i< e, choose finite
Uyp =¥ such that K, | %,. Since « is regulur and %] < L(X) <o there are
Aca and finite 7" <% such that |A ['= o and %y = 7" for all ped; clearly
A=, as required.
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The following definition generalizes Arens’ definition [2] of hemicompactness
(equivalent to kw(X) = o).

4.3. DEFINITION. A space X is hemicompact if it is possible to write ¥ = |J K,
1<x(X)

with cach K, compacl and in such a way that for every compact K< X there is

5 <x(X) such that K {J K.
n<é

It is clear from 4.3 and the definition of kw(X) that X is hemicompact whenever
kw(&) = #(X). The equality kw(X) == %(X) occurs frequenty (see for example
[7] and [[6]); an important instance is provided by the following theorem.

4.4, Tusorem [16]. Let X be a locally compact space. Then kw(X) = »(X)
(and hence X is hemicompaet).

Proof. It is enough to assume %(X) > w and to show kw(X) < x(X). Let o
be a compact cover of X such that [#'] = %(X), for every x € X choose a compact
set F(x) such that xeintF(x) and for Ke A choose finite A(K) < K such that

Ko | intF(x).
xa A(K)
It is then clear, writing

S = | {AK): Ke A} and W={ynﬁ(x):ﬂe[S]‘“},

that % is a k-base for X satislying
€] = |[S17°] = S| S 0| #| = u(X).
We arc ready for the principal result of this section.

4.5. Trrorem. Let {X;: fel} be a set of spuces, and set X = :EI:Xi and
P = ‘]_—_[ <%(X{)>.

el

(@) If each X, is hemicompact then »(P)<x(X).

(b) If cach X, is chain-compact then »(X)<»(P).

Proof. (a) Let (K & <a} be a compact cover of X with o = »(X), and
for iellet {L;,:n<x(X)} be a compact cover of X, with the property that
for every compaet K ez X, there is 6 <2(X)) such that K« L<JJL,‘,,. For &<

[l
and 70 X - X the natural projection, the set 7, [Ky] is a compact subset of X7y,
so there is & ¢ <x(X)) such that
TC;[Kc]ﬁ U L"”.

<3,z
The set M) ¢ = {8, ¢-1) is a compact subset of (%(X)). For { <« we set

Me = iUI Mg

and we show that {Ms £<a} is a cover of P, establishing #(P) < %(X).
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Let p = & iel)eP and notice that (by the definition of %(X ) there exists
X € Xl\ U L[',,.
n<gt
The point x = {x;: ieI) e X so defined satisfies x & K, for some & < e, and it is
then clear for this ¢ that p e My. Indeed for ie I we have
U Ll,m

n<dy

X € W;[Ké]f.:

so that ¢, < 8; = M, and hence pe M.
(b) Let {Ky: & <a} be a compact cover of P with o = %(P) and for /¢ I use

4.2(c) to write X, = (J ) L,y 1 with each L, compact. For £ < g {he projection
n<r(Xy )

n; form P onto {x(X,)) takes K, to a compact subset =, [E] of (X )D. We denote
by w s the largest element of 7 [Ky] and we define
M: = HL'xl'l.E'

ial

It is enough to show that {Mj: £ <a}, a family of compact subsets of X, is a cover
of X. Given x = {x;: feI) e X, for i ¢ I there is i <#(X ) such that x; & L ,,.. This
defines a point

p={n ielyel,
There is & <o such that Pe Ky, and for ieT we have
menlkKl;
it follows that 5, < g, and hence
%€ Ly =Ly y o3

thus x € M,, as required,

4.6, COROLLARY. Let X and Y be hemicompact, chain-compact spaces such
that w(X) = s%(Y). Then X o Y.

?roof. With #(X) = (¥) = «, for every cardinal f we have
#(XP) = (o)) = u(¥P).

' 4.7. Rel.nark. Corollary 4.6 suggests the following question, Suppose that X
1s both chain-compact and hemicompact; does it follow that one can write
X = =<["J(X) KT with {Ky: & <n(X)} a k-base for X7 We are grateful to Alan

Dow .for providing a (locally compact) example showing that the answer

to this question is negative [8], The problem of finding such a locally

comPact space X is equivalent to the problem of finding a compact space K with

a point p such that one may write {p} = a<nt , Up| with each Uy open, but no local
(p
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busc at p is linearly ordered. (Given K take X = K\{p}; given X let K = Xu {p}
be the one-point compactification of X and notice (referring to [1], p. 65) that
Y (p, K) = x(p, K) = kw(X).) Dow’s compact space K is a suitably defined quotient
of the Stone-Cech compactification f(wx ¥) with compact Y chosen so that
Y= U Y with cach ¥; nowhere dense in Y (e.g., ¥ = {w;+1)° with

§<oy
o= < ¢>m)
4.8. QuusTioN. Doces the conclusion of 4.5(a) hold for all (not necessarily
hemicompact) spaces ?

4.9. QuresTion, Can the “hemicompact hypothesis” be omitted from 4.6?

It follows from 2.7 that a negative answer to 4.8 can be given only in models
of ZFC where GCI1 fails. On the other hand, an affirmative answer to 4.8 would
provide an analogue of 3.3 concerning the existence of “minimal” elements in
A(e) (for regular o> w): for every XeA(¢) and cardinal B, we would have

w({ad?) < n(XP).
We note also that an affirmative answer to 4.9 would provide a natural generalization
of 3.5

§ 5. The numbers 5(<x)’) and (o). In this final section we take a closer look
at spaces of the form of and (x)*, which, as we indicated in the previous sections,
play an important role in our work,

Concerning the numbers %({x)”), we already know that x((a)?) = %({cf (@)D"
for all o, f = o (this follows from 4.6), and that %({a)?) = cf (@) when 0 < f < cf (%)
(2.6). In order to say a bit more, we first need the following terminology and defi-
nitions which generalize concepts from [11].

Given an ordinal 0 and an infinite cardinal «, for f,ge’ we write
f<gif f(&) <g(&) for all £ <0, and f<* g if there is 7 < 0 such that f(&) <g(&)
for n<é<0.

5.1. DepNimioN. Given an ordinal 0 and an infinite cardinal o, D(%) (E(%))
is the least cardinality of a subset of % which is cofinal with respect to < (with
respect to <*).

5.2. TuvoreMm. Let o, f be infinite cardinals. Then u({a)") = D(*a) = E(*w).

Proof. The equality #({e)?) = D(’) can be proved as in [11]. Indeed, if
{gn: n< D)} is <-cofinal in %o, sct K, = []{g,(&)+1) and notice that
&<p
{K,: n< DP)} is a compact cover of {u)?; this establishes x({c)?) < D(’x). The
reverse incquality follows from the observation that if {K,: n < x( {oy?)} is a compact
cover of e, then {g,: n < x({x)")} — where g, is defined by

g8 = max(my[K,])+1
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for all £ < f — isa <-cofinal family in P, (Indecd, if f'e K, with some 5 < #({ed,
then f<g,.) .

The equality D(*s) = E(’) is lolklore among set-theorists. A printed Proof —
based on the observation that D("%) = B(®a) for all 0 < ff - can be found in [4],

who also investigated d = L("®) [12]. On the other hand, 5.2 shows that thy in-
vestigation of x({ad?) (when o fi= w) is o difficult problem, For example,, the
consistency of E(*'m) < 2" (und hence of (@) < 2”) with ZFC is an open proliem,
closely related 1o queslions in combinatorial set theory und in the theory of large
cardinals [14]. .
Concerning the numbers #(a), we do not have a set-theoretic characterizdtion
analogous to 5.2. The following theorem, however, provides some information on
x(af) and a connection between diserete spaces () and ordinal spaces ({edke

5.4, THEOREM. Let o and f be infinite cardinuls, Then
(@) = (ot Y (o).

Proof. The inequality 2 is immediate from 3.2 and 2.1(b), so we prove, -
For notational simplicity set s({x"Y) = y and let {K,: # <y} be a compact diivre

of {ar* ) we assume without loss of generality that cach K, satisfies K, = [ Ty it
¢<ll SRS TN

R1iAsY]

For {<f and 5 <y the set m[K,] is compact in {a*) and henee bowtid,

Topologized discretely, my[K,] is therefore homeomorphic to a (closed) subace
of the discrete space o, so K, = [ m[K,] can be viewed as a closed subspuce of
of and hence g

#(K,) < ().

If o7y is a cover of K, by sets compact in the topology which X, inherits from @y,
with |7,] < %(a), then o = () ', is w compact cover of (") with |47 < y-x(a"),
as required, ney

5.5. COROLLARY. Let 0 <n < w. Then s(wl) = w, w(w®). We note in particular
that (%) = 1(w”) = d. C

o
rog

Proof. Using 5.4 and 2.6, we obtain s%(wiy () = @,y %(wf): the result fullows
now by (finite) induction on .

N

5.6. TaeoreM. Let o and f be infinite cardinals with oz 2", Then w(of) = of,

Proof. Since cach compact subset K of «f projects ontoa finfte subset of cach
coordinate space, we have |K| < wf = 2% and hence

of (o) 27, o

If > 27 then the above inequality yields of & u(of) < o, while if & = 2 we have
u<uhy <ol = q
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Concerning the search for additional cquivalence classes in A(x) (for o > w)
and for spaces “strictly between” o and {a), we propose the following problem.

5.7. QuestioN. For infinite cardinals A, u, set

(2) Ty, = (gt 1) x (o, +IN\{(wy, @,)} and

(b) Ti,,—ﬁ = <wl+ 1> X (mu+ 1)\{(('02.7 wu)} >
are there models of ZFC where Ty 0 andfor T 3 are s-cquivalent to neither {wy)
no wy?

We leave it to the reader o formulaie the analogous questions for o> o,
and to check (using 2.1(b), 3.2, 4.6, and 5.4 wherever appropriate) that Ty, 1 32 0y4
anu Ty, = {cf(w,)). One notices in particular that for the familiar Tychonoff
plank 1y o we have Ty o o o, ; this relation, together with 3.8, suggests the following
question.

5.8. QuEsTION. Is there & countably compact, first countable (hence sequentially
pact) space X such that X ~ w,?

We hope that the questions raised in this paper will generate continuing activity
-sth a set-theoretic direction (scarching for models of ZFC with the appropriate
sinatorial properties) and a topological direction (achieving a betier under-
‘ing of the structure of topological spaces through their family of compact

S0
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