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measure of X has to be 0, i.e., if the measurability condition of Theorem 4.4 is
redundant. We do not have an answer to this question. All we can offer is-an example
to show that the condition that X have inner measure 0 does not imply

B(X) = 9'(X).

ExAMPLE 4.6. By [2], p. 146, there exists a set X < R such that neither X nor
X¢ contains an uncountable closed subset of R. For this X, both X and X°
have inner measure 0. (Regularity of the Lebesgue measure.) Then X, = R.
We show that X is a Baire space, so that (by Lemma 4.3)-#'(X) 5 9'(X).
Let Uy, U,, ... be open subsets of R such that every U,n X is densc in X. Then
each U, is densein R, so () U, is a densé Gjs-subset of R. For every interval J of R,
neN

Jn () U, is an uncountable Borel set, therefore contains an uncountable closed
neN

subset of R ([4], p 151.) and therefore is not contained in X°. It follows that

N (U,n X) is dense in X.
neN. . . .
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On derivatives of functions defined
on disconnected sets, II?

by’

A. .C. M. van Rooij (Nijmegen)

Abstract. Let X be a totally discormected subset-of R without isolated points, let .@‘(X) be
the first class of Baire on X and let 2’(X) be the set of all functions X — R that have prlmxtlYes
on X. Then &'(X)= B (X). We show that D'(X) isa “Jarge” subset of Z(X). Thus, &'(X) contains
all approximately continuous functions on X; and if 1, 9eB(X) are such tha§ f®)< g(x) for all x
in-X, then between f and ¢ there is an element of Z(X). -

5. How large is 2'(X)? We now know that, at least for certain se'tg X with
empty interiors, @'( X) is a proper subset ‘of BUX). Qur present purpose is to-show
that it has to be a large subset. (Th. 5.6, Th. 6.1.) ‘

Let Y< X< R. We call ¥ a clopen subset of X if it is both relatively closed

latively open. . .
o \r;eav\‘f,illymalice “use -of the following observation. If X< R, X = [%] and- if ’01/
is an opeh cover of X, then there exists a cover of X by countal.ﬂy m.any palrWlsé
disjoint subsets Xy, Xy, ..., €ach of which is clopen in X a:lld contained in an element
of %. (As X¢is densc in R, % has a refinement ¥ consisting of clopen subsets of X.
By using the Lindelsf property of X one obtains a countable subcover (V)yen of ¥

Now set X, = V\(Viu...uV,_() (meN).) o
LemMa 5.1, Let X< R, X =‘!3. ‘Let. A be a relatively closed subset of X. Let

Ve C(X), Yi(x) = Q.for all xed, 1/1(xn).>0 for a]l x€ X\Ai Let he C(X). Then

there exists ar jin C(X) with ‘

JJ"'h] < ‘ﬁz
J=0 on X*\A4.

Proof. For x€&X\4, let U(x) = {ye X\4: h(x)—?'h_(y.)l <y (»)}. By Th}{
above remark, there exist a family (¥,)pen of pairwise d‘.S.J'Olm, clopen subsets?
X\A, covering XN\4, and a family (%,),y of clements of X\d, such that ¥, = U(x,)

* This paper is a continuatior; of [7], using-the saie notatibns. - .. o
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for every n. Define j: X - R by

ooy JE(x)  if xe A4,
Jx) = {h(x,,) if neN, xeY,.

Then |j—h] <. Each Y, is open in X, so j" = 0 on X*\4 and j is continuous at
all points of X\A. From the inequality | j— | <y it follows that j is also continuous
at the points of 4. M

Further, we need a technical lemma:

LEMMA 5.2. Let A = R be closed, Fe C(4) and S < {ae A%: F is differentiable
at a}. Then F has an extension h in C(R) that is differentiable at all points of S (so
that &' = F" on S).

If FeLip(4), then h ecan be chosen in Lip(R).

(Theorem 5.5.3 of [5] is a special case.)

Proof. Step 1. Assume that every element of S is a two-sided accumulation
point of 4.

Extend Fto a function h: R — R by interpolating linearly on the bounded com-
ponents of the open set 4° and making / constant on the unbounded components.
It is elementary that A is continuous and that 4 € Lip(R) in case Fe Lip(4). Let
s€S; we prove that A'(s) exists,

Take ¢> 0. There exist a,be R such that a<s<b and |OF(x, -F@)|<e
as soon as x € Anfa, (]\{s}. As 5 is a two-sided accumulation point of 4, we
can choose such a and b in 4. Then the graphs of hlta, 5y and A,y are contained
in the convex hulls of the graphs of F| Ania,s) 04 F ¢, by, vespectively. It follows

that |®h(x, 5)— F'(s)| < ¢ for all x in [a, b]\{s}. Consequently, 4 is differentiable
at s.

Step 11. In order to make the above applicable we construct a closed set B R
and a continuous function G: B > R such that

B> 4; F= Gl,; GeLip(B) if FeLip(4) ;
G is differentiable at all points of § ;
every point of § is a two-sided accumulation point of B.

(If this can be accomplished, the lemma is proved by applying Step I to B and G.)

Let S* = {se§: s¢clodn(s, o)}, S~ = {se8: s¢clodn(—oo, )} As
ScA4* we have ST S~ = @.

For se §*U S~ choose positive numbers oy and B, such that
if se.S*, then (s, s+a,) = 4°,

if se S, then (s—u,, 5) = 4°,

3, <ay, B, <o,

if xed and |x—s| < B,, then [F(x)—F(s)| < o

S
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and define a set By by
B, = {2s—x: xed, |x—s| < B}

IfseS*, then B, [s, s+B < [s, s+a); if se S~ then B, = (s—,, s]. Therefore,
B,nA = {s} for all seS*uUS". ‘ -
By distinguishing special cases and exploiting the relation 3f, < «, one obtains

if seS*US™, xeB,, ae 4, then |x—a 25|s—dl,
M if 5,teS*US™, x€B,, ye B, then |x—y|=3ls—1].

Thus, the sets B, (se St US™) are pairwise disjoint.
Define )
B=AduU{B,: seStusT}.
One easily proves that B is closed in R and that all points of S are two-sided

accumulation points of B.
For x e B we can define Xe 4 by

¥=x Iifxed,
=g ifseStusS™. xeB,.

(% is the point of A4 that is closest to x.) Formula (1) yields

(2) |—5| < 3|x—y| for all x,yeB.

If x € B, then both % and 2%—x lie in 4. Thus, we can define a function
G:. B— R by

G(x) = 2F(X)—F(2%—x) (x€B).

Then G is an extension of F. It follows from (2) that G is ct?nti_n.uous and that
G e Lip(B) in case Fe Lip(4). It remains to prove the differentiability of G at the

points of S. L
Take ceS. We show that lim®G(x, ¢) = F'(c) leaving 111Tn to the reader.
xe xqc

xeB .
If ce S*, then B, is a right neighborhood of ¢ in B, and for all x in B, we have

G(x) = 2F(c)— F(2¢c—x); then certainly lim #G(x, ¢) = F'(c). Thus, we may assume
i
cg St
Let g> 0. There exists a positive 8 such that

() ifxed,x ¢ |x—c| <0, then |[F(¥)—F(e)| < 1 and |9F(x, )—F'(c)| < &

As ¢¢ S™ we can choose 8 such that c+ded.
Let x e Bn(c, c+9]; we are done if we can prove
() |8G(x, )~ F'(c)| < 3e+85.

. . s b a—
Without testriction, let x ¢ 4. (See (3).) Then ther¢ isa quue s msi wS~ with
x e BN{s} (viz. s = X). We distinguish two cases, 5 € S~ and seS*.
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Case 1. se S™. We have x<s, (x,8) c(s—fs, s) = (s~a,, )= 4% . c+de d
and c¢+6 > x; it follows that.c—,{-é > 5> x> c. Then according to (3),
(O NF@—F(O)l < and |®F(s, 0)—F'(0)l <

From this we deduce (%), observing that |x—s| and ]G(x) G(S)l are very small
c0mpared to:s—c. One-easily verifies

(x—¢) (s—)|BG(x, c)— BF(s, ¢)|= ](s o) (G~ G(s)) +(s—x) (G() = G(0)|
(S AIG(H) =G|+ (=G =GO
= (s~ QIF ()= F(2s=x)| +(s— X)|F ()~ ~F()|-
< (5= OIF(5)—F2s=R)|+(=2)
Now [x—s| < B, whence, by our choice of .f;, |F(s) ~ F(25 —x)| < o? . Furthermore;

as ¢<s and ce 4, we have s—c2 o, and x—¢ = (S c) (s—x) = ocs. ﬁ,;i-ozs
Thus,

|BG(x, )~ PF(s, ¢)] < (x— c)' -l +(x— c) 1(.9 c) 1(s x)

205" o 4205 oyt [)’s<4ocs 42(x o<

VAN

Now (¥) follows from (4).
Case 2. se S,
We have x e (s, s+ﬁ)<:(s sS40 u) =A%, c<x< c+c3 ced and, c+5eA 50,

c<s and s+pB,<c+6., But cqés,nsmce seS* and c¢S+ Thus, ‘Wwe havé
c<s<Xx<S+P, <+,

In particvlar, c<s< c+38. Then (3) 1mplles

(ON. T eFs, 9-Fl<
I;ut(;)lso (25 —x)— cl Ts—x)+(s~ ) < |§—x| +]s=¢] = x—c < §, 50 that, égain“
y 3 g .'
|®F(2s=x, ¢)— F’(c)l if 2s=x s ¢. .
If 25—x % c, 111en by substitution one ﬁnds D

25~Xx—¢

DG (x, ¢)—F'(c) = 2 — (<17F(.s RO 4 (c))~ .

((IJF(ZS X, c) F'(c))
whence, recalling ¢<s<x and |25—%—c¢| <x—~c,
G (x, ) —F'()| < 2:|DF(s, ) = F'(c)| +|BF(25~x, €)= F(c)l

If 25— = ¢, then it turns out thai (bG(x c) = cDF(s c), s0 thath(x, ¢)—=F ’(C)[ <e.
In any case, we have (x). LD :

CIff: X'— R'and & is a set of functions, then by “f has a primitive in F" we
mean that there exists a g in & such that g'(x) = f(x) for all xe X.
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. The restriction of a function fto a subset Y of its domain is denoted by: £} Y.

Levma 5.3. Let X < R, e P'(X). Then there exists a covering of X by countably
many relatively closed subsets Xy, X, ... such that for each n, f| X, has a primitive
in Lip(R). SRR

Proof. Choose Fe C(X) with F' = f in X*.

For neN, let Z, = {ae X: if xe Xn(a, a+n""), then |PF(x, g)| Sn}. Then
(Z,)nen is & covering of X by relatively closed subsets. For each n write Z, as a union
of countably many relatively closed subsets Z,i, Z,,, ... with diameters smaller
than n~* Then F|Z,; e Lip(Z,;) for every n and i

We see from. this- that there is a covering (X,),en of X by bounded relattvely
closed subsets such that F|X, e Lip(X,) for all n. Furthermore, each X, is a union.
of a countable set and a relatively closed subset without isolated points. From
all this, it follows that we may assume that F e Lip(X) and that either Xisa smgleton
set or X = X* The first case being trivial, let us suppose X = X*. By uniform
contmulty, Fextends to a function F in Lip(X). The graph of F is the closure of the
graph of F, so that F is differentiable at all points of X. Now apply Lemma 5.2. |

This brings us to the centralltheorem of the present section.

THEOREM 5.4, Let X < R have empty interior; let f: X —'R. Suppose there is
a covering (X ),en 6f X by relatively closed subsets such that f| X, e 9'(X,) for every B.
Then fe @’(X ). (The condition that X have empty interior is necessary.)

Proof By Lemma 5.3 we may assume that there exist /;, by, ... in Lip(R) such
that %, = f on X, (neN). Furthermore, suppose X # . o '

For neN, let ¥, (x) = dist({X}, X;u... UX,) (x& X). By Lemma 5.1 we can

find j,, j, ... € C(X) with, for every n,
J1=0,
o Ijn+1 (hn+ju_'hn+ 1)] _"‘/Jrn

Jwrr =0 00 XN(X( L. VX,
For neN, let g, = h,+j,. Then g,€ C(X), g, = &,
X*n-Xn\(Xlu"' UX.n"'l)

27"y, In particular, g, = g, on X;U..UX,, so. there is a.

-=fvon

and [g,4y—gul <
g: X - R with

g=g, onXu.uvkX, (neN).
Actually, g =lim g, pothlse on X, so that for every n,
oo
|93l ka |9k+ 1=l < Z 27 k‘l‘ < Z 2"k'/’n <‘/’n
‘ =

From this, we prove that g’ = f on X*.
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Let ae X*, ¢>0. There is a smallest n with ae X,. There is a 6e(0, 3]
such that |g, (x)—g,(@) —f (@) (x—~a)} <}e|x—al as soon as x lies in ¥ (a—46, a+95).
Then for such x we have

lg(x)—9(@) —f (D) (x— )| < |9(x) = g,(3)] +19,() ~ 9u(a) —F (@) (x— )|
SV, ()2 +elx—a| < [x—al* +delx—a] < O+ 3e)|x~a] < g]x—da|.
Thus, g'(a) = f(a). W
For the time being we need only a very special case:

COROLLARY 5.5. Let X < R have empty interior. Let 3 X — R. Suppose we have
relatively closed subsets Xy, X, ... of X whose union is X and on each of which f
is constant. Then fe 2'(X). M

Obviously, instead of “closed subsets” one may read “F,-subsets”.

COROLLARY 5.6. Let X = R have empty interior. For a subset A of X the conditions
(@), (B), (y) are equivalent.

©) 1,e92'(X). '

(B 1, B'(X).

(y) 4 is both F, and Gy in X.
(The conditions are satisfied if 4 is either closed or open in X))

Proof. We have proved () = (f) in Theorem 2.1. For (8) = (), see [1], Th. 4,
p. 142. If () holds, then 4 and X\4 are F,-subsets of X and we can apply Corollary
3.5 to prove (). B

THEOREM 5.7. Let X < R have empty interior. Let fy,f; € B*(X), f1(x) <fo(%)
Jor every x € X. Then there exists an f in D'(X) with fi <f<f.

Proof. For re @, put A(r) = {xe X: fi(x) <r <fy(x)}. Bvery A(r) is an
F -subset of X. ([1], Th. 4, p. 142.) The union of the sets A(r) is X. Thus, we can

find a sequence ¥, Y5, ... of closed subsets of X and a sequence 7y, r5, ... of rational
numbers such that

X=Y uY,u..,

Y,cA(r,) (meN).
Define f: X - R by

J&)=r, ifneN, xeX,: = ¥,\(Y;u..U¥,_,).
Then fi <f<fo, and fe 2'(X) by Cor. 5.5, each X, being an F, in X. M

In particular, if X< R has empty interior, then D'(X) is a uniformly dense
subset of #*(X). Compare Theorem 2 in [4].

We f)btain an unexpected bonus. (By an inferval of X we mean a non-empty
set that is the intersection of X with an open interval of R.)
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THEOREM 5.8. Let X < R and assume that X is of the first category in itself (so
that X* = X and X = @.) Then there exists an f in C(X) with

ff=1 on X
f is increasing on no interval of X.

(The converse is also true and much easier to prove.)

Proof. Cover X by countably many relatively closed subsets Xy, X, ... that
have empty interior relative to X. For every n, X, has emply interior in X; then
so has 4: = X;uX,U... Let ¥ be a countable dense subsct of X\A. Then ¥ = X.

AU Y has empty interior in R and both 4 and Y are F,-subsets of 4U Y, By
Corollary 5.5 and by the fact that 4 U ¥ has no isolated points we havea g e C(4UY)
for which ¢’ = 1, on AU Y. Let f=g|X. Then f' =1 on X.

Suppose f is increasing on some interval (¢, 5)n X of X. As g is continuous
and 4u Y <X, g is increasing on (¢, b))n(4u Y). Then ¢g' 20 on (a,h)n(4v Y),
00 = (a,H)n(Au )N Y = (a, b)) Y. It follows that @ = (a, H)nY> (a, )" X.
Contradiction. B

In the same vein we have:

THEOREM 5.9, If X is as above, then there exists an f in 9'(X) that is unbounded
on every interval of X and hence is nowhere continuous.

(If X is not of the first category in itself, then all A*-functions on X have con-
tinuity points. See [2], Th. 6, p. 109.)

Proof. Cover X by relatively closed subsets Xj, X, ... each of which has
empty interior in X, and put ¥, = X,\(X;U...uX,_y) (neN). Define
f&=n if xe¥, meN).
Each Y, being an F, in X we have fe @'(X) by Corollaty 5.5.

No interval of X is contained in a union of finitely many of the sets X.
Consequently, f is unbounded on cvery interval of X. M

6. The structure of 9'(X). As is known, on an interval the product of a derivative
and a continuous function may fail to be a derivative. ([1], p. 17.) For sets with
empty interior we prove that this is false. (Th. 6.1.)

Let X < R. In the proof of Theorem 2.2 ([7]) we have seen that, if fe C(X)
is bounded, then f can be extended. to an upper semicontinuous function on R
that is continuous at all points of X. It follows that any f in C(X) has an upper
semicontinuous extension fi: R = [~ o0,00] that is continuous at the points of X.
Then, sefting

Fo(x) = fi(x) if fi(x) is finite,

falx) =0 otherwise,
we have a measurable function f3: R - R, extending f and continuous at the points
of X. : : .

2 - Fundamenta Mathematicae 1312
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We say that a function f: X — R belongs to the set #/(X) if £ can be extended
to a measurable function R — R that is approximately continuous at all points
of X. (See [1], p. 18.) By the above,

C(X) = ot (X).
Furthermore,
(X)) = BYX).

Indeed, let fe .o/ (X). The function arctan of extends to a bounded measurable

function j: R — R that is approximately continuous at all points of X. If J is an

indefinite integral of j, then J' = j = arctan o f; so arctan o fe #1(X ) and fe B4(X).
Observe that #/(X) is closed for uniform convergence. ([1], 5.7, p. 24)

THEOREM 6.1. Let X< R, ¥ = @. Then

A(X) D' (X) = D(X).
In particular,
C(X)D'(X) = 9'(X)
and
A (X)= 2'(X).

(The condition ¥ = & is necessary: see [1], 5.5.(c), p. 21.)

Proof. Let fe #(X), g€ D'(X). Then fe B1(X) and there exists a covering
of X by countably many relatively closed subsets Xy, X;... such that for each n
fis bounded on X,
glX, has a primitive in Lip(R). (5.3.)
By Theorem 5.4 we may assume that fis bounded on all of X and that g itself has

a prin}itive, G, in Lip(R). Then G' is an a.e. defined measurable function and G
is an indefinite integral of G”.

Extend f to a bounded measurable function F: R — R that is approximately

conti1'1uous at the points of X. Let H be an indefinite integral of the locally integrable
function G'. We claim that H’' = fg on X.

Take ce X; we prove li:n S H(x, ¢) = f(c)g(c). Indeed, for x> ¢,
[P H(x, )~f(g(e)l= |(x—e)~* Ix F@G'(®)dt~f()g(e)l
< (x—97Y £ (FO~f @)G @)t +|f ()| (x— )" .lZc G'(1)dt—g(c)l

< e Gx—o)~* ! IF =T (Dldt+17()]-196 (x, )~g(c)] -

The ﬁr§t term in the last line vanishes as x tends to ¢ since J is bounded and
approximately continuous at c. ([1], 5.5, p. 25.) W
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iet X be as above and let f: X —» R. The condition fe &/(X) is sufficient to
guarantee £ 2'(X) = 2'(X) but in general it is not necessary. In fact, it is enough
to have a countable cover of X by relatively closed subsets Xy, X3, ... such that
for each n f|X, e #(X,). Thus, f could be 1.

It is reasonable to ask whether the condition may be weakened further to
fe @'(X); in other words, whether 2'(X) is a ring. It is, of course, whenever
9'(X) = #Y(X), which is the case if X is negligible. We now show that it is not
if the inner measure of X is positive. This leaves a gap: if the inner measure of X
is 0 but the outer measure is not, then we do not know if 9'(X) is a ring. Interestingly,
this is just the situation where we do not know if 2'(X) is he same as BY(X). (See
[7, 4.5.)

This leads us to considering a remarkable result of D. Preiss ([6]) who proved
that #Y(R) = 2'(R)2'(R)+2'(R): if, more generally, the identity

B(X) = 2'(X)2'(X)+2'(X)

is valid for all sets X, then the conditions “2'(X) is a ring” and “2'(X) = #(X)”
are equivalent for all X.

LEMMA 6.2. Define the function s: R —+ R by
s(x) = sinx™!  if x # 0; 5(0) = 0.

@0
Let ay, a,, ... € R be pairwise distinct; let &, &,, ... be positive, Y. &,<w. Define
n=1

@ = Yasa-a) (k).
n=1
Then fe 9'(R). Let F be an indefinite integral of f*. Then F is differentiable and
F =f2+1Y 6 1wy -
n=1

Proof. f=9'(R) as se 2'(R) and 9'(R) is uniformly closed. ([3], p. 92.)

72 is a bounded #'-function and therefore has indeed an indefinite integral
F: R — R. If ae R\{ay, ay, ...}, then f? is continuous at a so that F'(a) = f*(a).
Now let neN, a = a,; we prove F'(a) = fXa)-++e.

Put g(x) = g,s5(x—a,) (x& R), h = f—yg. For x # a we have (1 being Lebesgue
measure)

x

OF(x,a) = (x—a)™* [f*dA

= (x—a)~ ! j'x(Zh(a)g +g%+(2g+h+h(a))(h—h(@)+ h(a)*)d A .

2%
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Now

lim(x—a)~ ljgd)l =0,

x=>a

Tim (x—a)™! fg"dl 182,

x—+a

I is continuous at a and 2¢g-h+A(a) is bounded, so

lim (2g(x) + 2(x) + (@) (h(x) —h(@)) = 0 .

Consequently, lim®F(x, a) = 04462 +0+h(a)? =
to prove. B *7¢

12 4+f(@)?, as we wished

COROLLARY 6.3. Let X be a subset of R such that 9'(X) is a ring. Then the inner
Lebesgue measure of X is 0.

Proof. It follows from the lemma that, if ay, a,, ... € R are pairwise distinct,
then

22“"1(,, } e D' (X)
Then according to Lemma 4.3 of [7] X cannot contain a Baire space Y with "Yc"f,}.
As we have seen in 4.5 and in the proof of 4.4, this implies that the inner measure
of X must be 0. &
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Free subgroups of diffeomorphism groups
by

Janusz Grabowski (Warszawa)

Abstract. It is proved that the group Diff’ k(X) of all C*-diffeomorphisms of a given Ck.manifold
X =1,2,...,0) includes a non-trivial arcwise connected with respect to the ‘Whitney Ck-topology
free subgroup Whlch consists (except for the identity) of diffeomorphisms which embed in no flow.

It is also proved that for each sequence of elements of Diff k(X) there are diffeomorphisms
arbitrarily close to the given ones which freely generate a subgroup in Dift*(X).

0. Introduction. The fundamental concept of the Lie theory is to investigate
topological groups by means of their one-parameter subgroups. For a classical
(i.e. finite-dimensional) Lie group G, the set L(G) of all one-parameter subgroups
has a natural Lie algebra structure, Moreover, there is a one-one correspondence

“between arcwise commected subgroups of G and Lie subalgebras of L(G).

The group Diff®(X) of all compactly supported C®-diffeomorphisms of
a C®-manifold X is a well-known model of an “infinite-dimensional Lie group”
with the Lie algebra I'®(X) of compactly supported C®-vector fields.

Despite of some resemblances, this group fails to have some propertics of
classical Lie groups, e. g. the image of the exponential map includes no neighbourhood

~of the identity (cf. [2], [4], [6].

The main aim of this note is to show that the situation is even worse, namely
that there are nomtrivial arcwise connected free subgroups of Diff;” (X) consisting

“of diffeomorphisms (except for the identity, of course) which embed in no flow.

_The main pari of the proof can be found in § 3 of this note and the idea of the

proof is the following (reduced to the case X = R).

Denote by "® a free group with r-generators. Elements of "® can be represented
by “words” ¢ = Af* ... 4}, where i e {l,...,r}, ju = £1, ji # —Jp+s providing
iy = iy4q, and “the empty word” 1. Set || to be the length of the “word” @ €"P
and write 5P = {p € "®: |p| <n}. For a group G and g,, ..., g, € G, we have the
..., g €G given by replacing A by gt
Let G = Diff*[0, 1] be the group of all C®-diffeomorphisms of the closed

\inﬁt‘erval [0, 1]. By a theorem of Kopell [4] there are g € G arbitrarily close to the
.identity in the natural C®-topology such that g” embeds in no flow and has no fixed

poifits in (0, 1) for n = 1,2, ... We shall call them Kopell-diffeomorphisms.
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