

to infinity: either $\sigma_{n_k,m_k}(f,x)$ converges to f(x) a.e. for all $f \in L([0,2\pi]^2)$, or for any function g(t) with $g(t) \downarrow 0$ as $t \to \infty$ there is an $f \in g(L) L \log^+ L([0,2\pi]^2)$ such that

$$\limsup_{k\to\infty} \sigma_{n_k,m_k}(f, x) = +\infty \quad \text{a.e. on } [0, 2\pi]^2.$$

Analogous results hold for (C, α, β) summability $(0 < \alpha \le 1, 0 < \beta \le 1)$.

References

- [1] C. P. Calderón, Some remarks on the multiple Weierstrass transform and Abel summability of Fourier-Hermite series, Studia Math. 32 (1969), 119-148.
- [2] N. A. Fava, Weak inequalities for product operators, ibid. 49 (1974), 184-197.
- [3] M. de Guzmán, An inequality for the Hardy-Littlewood maximal operator with respect to the product of differentiation bases, ibid. 42 (1972), 265-286.
- [4] -, Differentiation of Integrals in Rⁿ, Lecture Notes in Math. 481, Springer, 1975.
- [5] B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.
- [6] M. A. Krasnosel'skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961 (transl. from Russian).
- [7] H. Lebesgue, Sur l'intégration des fonctions discontinues, Ann. Sci. École Norm. Sup. 27 (1910), 361-450.
- [8] B. Mélero, A negative result in differentiation theory, Studia Math. 72 (1982), 173-182.
- [9] S. Saks, On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235-252.
- [10] E. M. Stein, Note on the class Llog+L, Studia Math. 32 (1969), 305-310.
- [11] -, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press,
- [12] A. M. Stokolos, An inequality for equimeasurable rearrangements and its application in the theory of differentiation of integrals, Analysis Math. 9 (1983), 133-146.
- [13] -, On the differentiation of multiple integrals by bases of rectangles, Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), 477-480 (in Russian).
- [14] P. L. Ul'y a nov, Embedding of some function classes H_p^{ω} , Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 649-686 (in Russian).
- [15] A. Zygmund, Trigonometric Series, vol. 2, Cambridge Univ. Press, 1959.
- [16] -, A note on the differentiability of multiple integrals, Colloq. Math. 16 (1967), 199-204.

DEPARTMENT OF MATHEMATICS AND MECHANICS ODESSA STATE UNIVERSITY Petra Velikogo 2, 270000 Odessa, U.S.S.R.

Received March 27, 1986 (2159)

On subspaces of H^1 isomorphic to H^1

by

PAUL F. X. MÜLLER (Linz)

Abstract. We show that any subspace of H^1 which is isomorphic to H^1 contains a complemented copy of H^1 . H^1 is proved to be primary.

Introduction. This work is best regarded as an appendix to the book *Symmetric Structures in Banach Spaces* by W. Johnson, B. Maurey, G. Schechtman and L. Tzafriri ([JMST]), where the result analogous to our Theorem 1 is proved for L^p spaces (1 .

We use their notation and follow their arguments rather closely.

I feel obliged to indicate at which point the treatment of H^1 spaces requires different tools than that for L^p spaces (1 :

In trying to find complemented subspaces in the range of embeddings on L^p , JMST rely on the following martingale inequality due to E. M. Stein: Given an increasing sequence of σ -fields $(\mathscr{F}_n)_{n\in\mathbb{N}}$ in [0, 1] with corresponding conditional expectations $(E_n)_{n\in\mathbb{N}}$, for any $1 there exists <math>C_p \in \mathbb{R}^+$ such that for any sequence of measurable functions $(f_n)_{n\in\mathbb{N}}$ the following holds:

$$\int \left(\sum_{n=1}^{\infty} |E_n f_n|^2\right)^{p/2} \leqslant C_p \int \left(\sum_{n=1}^{\infty} |f_n|^2\right)^{p/2}.$$

There exist examples (cf. [St], p. 105) showing that this inequality does not hold for p = 1 or $p = \infty$.

Here we modify the selection process of [JMST] in such a way that projections can be constructed which are bounded on H^1 . At this point the third component of the vector measure used below becomes crucial.

Definitions and notation. Recall that H^1 is the closed linear span of the $L^\infty\text{-normalized}$ Haar system

$$\{h_{ni}: (ni) \in \mathcal{A}\}$$
 where $\mathcal{A} = \{(ni): n \in \mathbb{N}, 0 \le i \le 2^n - 1\}$

under the norm

$$||f||_{H^1} = \int S(f), \quad S(f) = (\sum a_{ni}^2 h_{ni}^2)^{1/2},$$

with $f = \sum a_{ni} h_{ni}$.

BMO is the space of integrable functions f on (0, 1] such that

$$||f||_{\text{BMO}} = \sup_{I} (|I|^{-1} \int_{I} (f - f_{I})^{2})^{1/2} < \infty.$$

Here the supremum is taken over all dyadic intervals I, and $f_I = |I|^{-1} \int_I f$. Given $f \in H^1$ and a collection of dyadic intervals \mathcal{D} , we write

$$f \cdot \chi_{\mathscr{D}} = \sum_{I \in \mathscr{D}} \langle f, h_I \rangle h_I / |I|.$$

We identify $(ni) \in \mathscr{A}$ with the dyadic interval $(2^{-n}i, 2^{-n}(i+1)]$. \mathscr{E}_N denotes the σ -algebra generated by $\{(2^{-n}i, 2^{-n}(i+1)]: (ni) \in \mathscr{A}_N\}$, where $\mathscr{A}_N = \{(ni) \in \mathscr{A}: n < N\}$. Subsequently the letters I and J are reserved for dyadic intervals. Observe that for $f = \sum a_J h_J$ we obtain

$$||f||_{\text{BMO}} = \sup_{I} (|I|^{-1} \sum_{J \in I} |a_J|^2 |J|)^{1/2}.$$

THEOREM 1. Let X be a subspace of H^1 . Assume X is isomorphic to H^1 . Then X contains a smaller subspace Y, complemented in H^1 and isomorphic to H^1 .

Proof. Let $T: H^1 \to H^1$ denote the embedding of X into H^1 .

Part a: Reduction. Without loss of generality we assume that

$$T(h_{ni}), (ni) \in \mathcal{A},$$
 is a block basis

with respect to the Haar basis in H^1 . (This is justified by standard arguments as given e.g. in [JMST], pp. 254–255.) Define

$$v_n = S\left(\sum_{i=1}^{2^{n-1}} T(h_{ni})\right).$$

Then there exist η , $R \in \mathbb{R}^+$ such that

$$\int v_n \chi_{\{v_n < R\}} > \eta, \quad \forall n \in \mathbb{N}$$

(cf. [JMST], pp. 265–266).

Put

$$\mathscr{B}_n = \left\{ I : \left\langle \sum_{i=0}^{2^{n}-1} T(h_{ni}), h_I \right\rangle \neq 0 \right\}.$$

A standard stopping time argument gives us a collection of dyadic intervals $\mathscr{D}_n \subset \mathscr{B}_n$ such that

$$v_n \wedge R = S\left(\sum_{i=0}^{2^{n-1}} T(h_{ni}) \cdot \chi_{\mathscr{D}_n}\right).$$

Next define

$$v_n(A) = S^2 \left(\sum_{(ni) \subseteq A} T(h_{ni}) \right) \wedge R^2$$

where A is taken from \mathcal{E}_n .

Due to the L^{∞} -boundedness of the range of v_n , $n \in \mathbb{N}$, there exist (for given $A \in \mathscr{E}_n$) disjoint finite subsets N_j , $j \in \mathbb{N}$, of the natural numbers and positive real numbers α_n with

$$\sum_{n \in N_i} \alpha_n = 1$$

such that

$$\sum_{n\in N_j}\alpha_n\nu_n(A)=:\Lambda_j(A)$$

converges in L^2 (hence in L^1 and almost everywhere). This limit is denoted by $\Lambda(A)$. Consequently, there exist ε , $c \in \mathbb{R}^+$ such that

$$\inf_{n} \int_{0}^{1} \max_{1 \leq i \leq 2^{n}} \Lambda((ni)) \geq 2\varepsilon, \quad \int_{0}^{1} \Lambda(A) \leq c |A|$$

for any $A \in \mathscr{E}$ (for all that cf. [JMST], pp. 266-268). Subsequently we will use the following notation:

$$\begin{split} &\sum_{n\in N_{j}}\alpha_{n}^{1/2}\left(\sum_{(nl)=A}T\left(h_{nl}\right)\right)\chi_{\mathscr{D}_{n}}=:\lambda_{j}(A),\\ &\sum_{n\in N_{j}}\alpha_{n}^{1/2}\left(\sum_{(nl)=A}h_{nl}\right)=:\gamma_{j}(A), \end{split}$$

where (α_n) are the same as in the construction of $\Lambda_i(A)$.

Egorov's Theorem implies (cf. [JMST], p. 256) that there exists a measurable subset $G \subset [0, 1]$ such that for $(ni) \in \mathcal{A}$

(*)
$$\lim_{i\to\infty}\sup_{t\in G}|\Lambda_{j}((ni))(t)-\Lambda((ni))(t)|=0,$$

$$\int_{G} \max_{0 \le i \le 2^{n} - 1} \Lambda((ni)) > \varepsilon.$$

Now define

$$v(A)(t) := \Lambda(A)(t) \chi_G(t)$$

for every measurable set $A \subset [0, 1]$. (*) and (**) imply (cf. [JMST], pp. 250, 251) that there exist $\eta \in \mathbb{R}^+$, a measurable set $E \subset G$ of positive measure and a measurable function $\varphi \colon E \to [0, 1]$ such that for

$$M(t) := \lim_{n \to \infty} \max_{0 \le j \le 2^{n}-1} v((n, i))(t)$$

the following holds:

- 1) $M(t) > \eta$ for $t \in E$.
- 2) $\chi_{\varphi^{-1}(A)}(t) M(t) \le v(A)(t)$ for every measurable set $A \subset [0, 1]$ and almost every $t \in [0, 1]$.
- 3) There exists $c \in \mathbb{R}^+$ such that for every measurable set $A \subset [0, 1]$ we have $|\varphi^{-1}(A)| < c|A|$.

Now we are prepared for

Part b: Selection process.

Step 0a. Fix $\varepsilon_0 > 0$ and choose $m_0 \in N$ large enough that

$$\sup_{t\in G} \left| \Lambda\left((0,1]\right)(t) - \Lambda_{m_0}\left((0,1]\right)(t) \right| < \varepsilon_0.$$

Define

$$I_{00} = \{I: \langle \lambda_{m_0}((0, 1]), h_I \rangle \neq 0\}.$$

Observe that I_{00} has finite cardinality. Put $F_{00} = (0, 1]$. Consider the nonatomic vector measure

$$\mu_{00}: F_{00} \to \mathbb{R}^k, \quad F \to (|F|, |\varphi^{-1}(F)|, (|\varphi^{-1}(F) \cap I|)_{I \in I_{00}}).$$

As an application of Lyapunov's Theorem there exist (for ε_1 given) a natural number k_1 and disjoint subsets F_{10} , F_{11} of [0, 1] lying in \mathscr{E}_{k_1} such that

$$|F_{1j}|(1+\varepsilon_1)^{-1} \leq \frac{1}{2}|F_{00}| \leq |F_{1j}|(1+\varepsilon_1),$$

$$|\varphi^{-1}(F_{1j})|(1+\varepsilon_1)^{-1} \leq \frac{1}{2}|\varphi^{-1}(F_{00})| \leq |\varphi^{-1}(F_{1j})|(1+\varepsilon_1),$$

$$|\varphi^{-1}(F_{1j}) \cap I|(1+\varepsilon_1)^{-1} \leq \frac{1}{2}|\varphi^{-1}(F_{00}) \cap I| \leq |\varphi^{-1}(F_{1j}) \cap I|(1+\varepsilon_1)$$

for $i \in \{0, 1\}$ and $I \in I_{00}$.

Step 0b. Find $l_1 \in \mathbb{N}$ and disjoint sets $\overline{G}_{1j}, j \in \{0, 1\}$, in \mathscr{E}_{l_1} such that

$$|G_{1j} \Delta \overline{G}_{1j}| < \varepsilon_1$$
, where $G_{1j} := \varphi^{-1}(F_{1j})$.

Next choose $m_1 > m_0$ large enough that the following holds:

- (i) $\sup_{t \in G} |A_{m_1}(F_{1j})(t) \Lambda(F_{1j})(t)| < \varepsilon_1$.
- (ii) $\inf\{l:\ l\in N_{m_1}(F_{1j})\} > 2^{k_1}$.
- (iii) For $I_{1j} := \{I: I \cap \overline{G}_{1j} \neq \emptyset \text{ and } \langle \lambda_{m_1}(F_{1j}), h_I \rangle \neq \emptyset \}$ we have $\sup \{|I|: I \in I_{1,i}\} < 2^{-l_1}.$

We continue and arrive at

 $Step\ na.$ Here we are given a nonatomic vector measure (with finite-dimensional range)

$$\mu_{ni}\colon F_{ni}\to \mathbf{R}^k \qquad F\to (|F|, |\varphi^{-1}(F)|, (|\varphi^{-1}(F)\cap I|)_{I\in I_{ni}}).$$

We apply Lyapunov's theorem and obtain, for $\varepsilon_{n+1} > 0$ given, a natural number $k_{n+1} > k_n$ and disjoint subsets of F_{ni} , $F_{n+1,2i}$ and $F_{n+1,2i+1}$ in $\mathscr{E}_{k_{n+1}}$ such that

$$\begin{split} |F_{n+1,2i+j}|(1+\varepsilon_{n+1})^{-1} &\leqslant \frac{1}{2}|F_{ni}| \leqslant |F_{n+1,2i+j}|(1+\varepsilon_{n+1}), \\ |\varphi^{-1}(F_{n+1,2i+j})|(1+\varepsilon_{n+1})^{-1} &\leqslant \frac{1}{2}|\varphi^{-1}(F_{ni})| \leqslant |\varphi^{-1}(F_{n+1,2i+j})|(1+\varepsilon_{n+1}), \\ |\varphi^{-1}(F_{n+1,2i+j}) \cap I|(1+\varepsilon_{n+1})^{-1} &\leqslant \frac{1}{2}|\varphi^{-1}(F_{ni}) \cap I| \\ &\leqslant |\varphi^{-1}(F_{n+1,2i+j}) \cap I|(1+\varepsilon_{n+1}). \end{split}$$

for $I \in I_{ni}$ and $j \in \{0, 1\}$.

Step nb. Find $l_{n+1} \in N$ and disjoint subsets $\bar{G}_{n+1,2i+j}$ of \bar{G}_{ni} , lying in $\mathscr{E}_{l_{n+1}}$, such that

$$|G_{n+1,2i+j} \Delta \bar{G}_{n+1,2i+j}| < \varepsilon_{n+1} 2^{-l_{n_i}}$$
 where $G_{n+1,2i+j} := \varphi^{-1}(F_{n+1,2i+j})$.

Next choose m_{n+1} large enough that the following holds:

- (i) $\sup_{t \in G} |\Lambda_{m_{n+1}}(F_{n+1,2i+j})(t) \Lambda(F_{n+1,2i+j})(t)| < \varepsilon_{n+1}$.
- (ii) inf $\{l: l \in N_{m_{n+1}}(F_{n+1,2i+j})\} > 2^{k_{n+1}}$
- (iii) For $I_{n+1,2i+j}$:= $\{I: \overline{G}_{n+1,2i+j}\cap I\neq 0 \text{ and } \langle \lambda_{m_{n+1}}(F_{n+1,2i+j}), h_I\rangle \neq 0\}$ we have

$$\sup \{|I|: I \in I_{n+1,2i+j}\} \le 2^{-l_{n+1}}.$$

Finally, we put

$$\gamma_{m_n}(F_{ni}) = :g_{ni},$$

$$\chi_{I_{ni}} \cdot \lambda_{m_n}(F_{ni}) = :k_{ni} \quad \text{for all } (ni) \in \mathscr{A}.$$

Part c: Projecting onto span $\{Tg_n: (ni) \in \mathcal{A}\}$. In this section we will verify the following statements:

- A) i: $H^1 \to H^1$, $h_{ni} \to g_{ni}$ extends to an isomorphism onto span $\{q_{ni}: (ni) \in \mathcal{A}\}$.
- B) $j: H^1 \to H^1$, $h_{ni} \to k_{ni}$ extends to an isomorphism onto span $\{k_{ni}: (ni) \in \mathcal{A}\}$.
- C) There exists a projection P bounded on H^1 onto span $\{k_{ni}: (ni) \in \mathcal{A}\}$ such that $P(Tg_{ni}-k_{ni})\equiv 0$, $(ni)\in \mathcal{A}$.

A, B and C imply that $\tilde{P} := Tij^{-1}P$ is a bounded idempotent operator onto span $\{Tg_{ni}: (ni) \in \mathscr{A}\}$.

Ad A. This is proved in [JMST], p. 129.

Ad B. Define $B_{ni} := G_{ni} \cap \overline{G}_{ni}$, $(ni) \in \mathcal{A}$. Observe that:

(a) $B_{n+1,2i+1} \cup B_{n+1,2i} \subset B_{ni}$.

(b) There exists $c \in \mathbb{R}^+$ such that

$$c^{-1}2^{-n} \leqslant |B_{ni}| \leqslant c2^{-n}$$
 (with c independent of n).

Moreover, for $t \in B_{ni}$ we obtain

$$\eta \leqslant M(t) \leqslant v(F_{ni})(t) \leqslant \Lambda_{m_n}(F_{ni})(t) + \varepsilon_n \leqslant S^2(k_{ni})(t) + \varepsilon_n$$

Hence for given (a_{ni}) , $(ni) \in \mathcal{A}$, we obtain

$$\begin{aligned} \left\| \sum_{a_{ni}} h_{ni} \right\|_{H^{1}} &\geq c_{1} \left\| \sum_{a_{ni}} g_{ni} \right\|_{H^{1}} \geq c_{2} \left\| \sum_{a_{ni}} Tg_{ni} \right\|_{H^{1}} \\ &\geq c_{3} \int \left(\sum_{a_{ni}} S^{2} \left(k_{ni} \right) \right)^{1/2} \geq c_{4} \int \left(\sum_{a_{ni}} \chi_{B_{ni}} \eta^{2} \right)^{1/2} \\ &\geq c_{5} \eta \int \left(\sum_{a_{ni}} h_{ni}^{2} \right)^{1/2}. \end{aligned}$$

Ad C. Observe first that $\{I\colon \langle k_{ni},\ h_I\rangle \neq 0\}$ coincides with $I_{ni}.$ Fix $I\in I_{ni}$ and $(mj)\in \mathscr{A};$ then we get

$$k_{mi}|_I = \text{const}$$
 for $m \le n$, $\int_I k_{mi} = 0$ for $m < n$,
$$\int_I k_{mj}^2 \le c|G_{mj} \cap I| \le 2^{-m+n}|I| \cdot c \quad \text{for } m \ge n.$$

Moreover, (k_{ni}) , $(ni) \in \mathcal{A}$, is a block basis w.r.t. the Haar functions. Hence

$$P: H^1 \to H^1, \quad f \to \sum \langle f, k_{ni} \rangle k_{ni} / ||k_{ni}||_2^2$$

is bounded iff

$$(j^{-1}P)^*$$
: BMO \rightarrow BMO, $h_{ni} \rightarrow k_{ni}$

extends to a linear map on BMO. Let us check that this is just the case: Fix (a_{nj}) , $(nj) \in \mathcal{A}$, fix $(ni) \in \mathcal{A}$ and $I \in I_{ni}$. The preceding discussion implies now

$$\begin{split} |I|^{-1} \int\limits_{I} (\sum a_{mj} \, k_{mj} - (\sum a_{mj} \, k_{mj})_{I})^{2} \, dt &\leqslant \sum\limits_{(mj) \, \in \, (ni)} |I|^{-1} \int\limits_{I} k_{mj}^{2} \, a_{mj}^{2} \\ &\leqslant \sum\limits_{(mj) \, \in \, (ni)} |I|^{-1} \, |I| \, 2^{-m+n} \, a_{mj}^{2} \leqslant \|\sum\limits_{(mj)} h_{mj} \, a_{mj}\|_{\mathsf{BMO}}^{2}. \end{split}$$

A glance at the definition of (k_{ni}) shows that P actually sends $k_{ni} - Tg_{ni}$ to zero.

THEOREM 2. For any bounded operator T on H^1 , either $T(H^1)$ or $(\mathrm{Id}-T)(H^1)$ contains a complemented copy of H^1 .

Proof. Assume once again that (Th_{ni}) , $(ni) \in \mathcal{A}$, is a block basis w.r.t. the Haar basis in H^1 . Put

$$v_n^1 = S\left(\sum_{i=0}^{2^{n-1}} Th_{ni}\right),$$

$$v_n^2 = S\left(\sum_{i=0}^{2^{n-1}} (\mathrm{Id} - T)h_{ni}\right), \quad n \in \mathbb{N}.$$

Then there exist $j \in \{1, 2\}$ and $\delta \in \mathbb{R}$ such that $\int v_n^j > \delta$ for infinitely many $n \in \mathbb{N}$. Now we can repeat the whole argument given above.

Remark. Taking into account that H^1 is isomorphic to $(\sum H^1)_1$ we can use Theorem 2 to deduce that H^1 is primary. For a more elementary proof of this fact see $\lceil M \rceil$.

References

[M] P. F. X. Müller, On projections in H¹ and BMO, Studia Math. 89 (1988), to appear.

[JMST] W. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 217 (1979).

[St] E. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970.

INSTITUT FÜR MATHEMATIK JOHANNES KEPLER UNIVERSITÄT LINZ Altenbergerstr. 69, A-4040 Linz, Austria

Received June 10, 1986

(2179)