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to infinity: either g,, ., (f, x) converges to f(x) ae. for all feL([0, 2n]?), or
for any function g(f) with g¢g(t)|0 as t—oo there is an
feg(L)Llog* L([0, 2r]? such that

Emsup oy, m (f, ) = +00  ae. on [0, 2n]%
k—o0

Analogous results hold for (C, a, f) summability (0 <a < 1,0 <f < 1).
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On subspaces of H' isomorphic to H'
by
PAUL F. X. MULLER (Linz)

Abstract. We show that any subspace of H' which is isomorphic to H* contains a
complemented copy of H'. H' is proved to be primary.

Introduction. This work is best regarded as an appendix to the book
Symmetric Structures in Banach Spaces by W. Johnson, B. Maurey, G.
Schechtman and L. Tzafriri ([JMST]), where the result analogous to our
Theorem 1 is proved for L7 spaces (1 <p <o0).

We use their notation and follow their arguments rather closily.

1 feel obliged to indicate at which point the treatment of H' spaces
requires different tools than that for L? spaces (1 <p<oo) .

In trying to find complemented subspaces in the range of embeddings -On.
P, IMST rely on the following martingale inequality duq to E. M. Ste;n.
Given an increasing sequence of o-fields (F)en in [0, 1] w1§h correspcindmg »
conditional expectations (E,),.x, for any 1 < p < co there exists C p_eR such
that for any sequence of measurable functions (f).y the following holds:

(3 1B APP? < G (3 AP

There exist examples (cf. [St], p. 105) showing that this inequality does
not hold for p=1 or p=oco. '

Here we modify the selection process of [JMST] 1? such a way that
projections can be constructed which are bounded on H'. At this pomt the
third component of the vector measure used below becomes crucial.

Definitions and notation. Recall that H' is the closed linear span of the
L*-normalized Haar system

{hy: (n)esd} where of = {(n): neN, 0<i<2"~ 1}
under the norm
1/llgs = SN, SN =Can ha)' 2,

with f =Y ay by
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BMO is the space of integrable functions f on (0, 1] such that
[ fllowo = sup(II™* [(/=£)?)"* < co.
1

Here the supremum is taken over all dyadic intervals I, and f; = [I|™* |, f.
Given feH' and a collection of dyadic intervals &, we write

fae=Y < by
Ie9

We identify (ni)e o/ with the dyadic interval (27", 27"(i+1)]. &y de-
notes the o-algebra generated by {(27"i, 27"(i+1)]: (n)eofy}, where
oy = {(ni)e o: n < N}. Subsequently the letters I and J are reserved for
dyadic intervals. Observe that for f =Y a,h, we obtain

I/ Mlemo = sup (11~ 3 sl |J)*2.
I Jel

THEOREM. 1. Let X be a subspace of H'. Assume X is isomorphic
to H'. Then X contains a smaller subspace Y, complemented in H! and
isomorphic to H*.

Proof. Let T: H' — H! denote the embedding of X into H?,
Part a: Reduction. Without loss of generality we assume that
T(hy), (ni)esof/, is a block basis

with respect to the Haar basis in H*. (This is justified by standard arguments
as given eg. in [JMST], pp. 254-255) Define

on—

1
v, = S( Z T(h,,;)).
i=1
Then there exist #, Re R* such that

fan(o"<R)>ﬂ, VHEN

(cf. [IMST], pp. 265-266).
Put

2"-1

By={I: Y T(hy), by 0}.
i=0
A standard stopping time argument gives us a collection of dyadic intervals
&y = 4, such that

2n-1

v, AR = S( .;) T(h,,i)-x@"). )

icm®
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Next define
Vo(A)=S*( Y T(h))AR?
(niy <A
where A is taken from &,.

Due to the L®-boundedness of the range of v,, ne N, there exist (for
given Ae &,) disjoint finite subsets N;, je N, of the natural numbers and
positive real numbers a, with

Yoa,=1
neNj
such that
Z oz,,v,,(A) =A1(A)
neNj
converges in L2 (hence in L' and almost everywhere). This limit is denoted
by A(A). Consequently, there exist &, ce R* such that
1 1
inf{ max A((n))>2e, [A(4)<cl4|
n pl1<ig2” 0
for any Ae & (for all that cf. [JMST], pp. 266-268). Subsequently we will use
the following notation:
Z “iﬂ( Z T(hm'))XE,,=:)*j(A):

neN; (ni) =4
2o ( X hw)=1y;(4),
nij (ni) <A
where (,) are the same as in the construction of A;(A).
Egorov's Theorem implies (cf. [JMST], p. 256) that there exists a
measurable subset G « [0, 1] such that for (m)e .o/

8 lim sup|A; (n)) ()= 4 () @] =0,
(+%) [ max A((ni))>e.
Gosisan-1
Now define

v(A) ()= A(A () 26 (@)

for every measurable set A = [0, 1]. (x) and (x«) imply (cf. [JMST], pp. 250,
251) that there exist ne R*, a measurable set E (< G) of positive measure
and a measurable function ¢: E — [0, 1] such that for
M@):=lim max v(n, D))
1

n—=oo 0Sj<2"—
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the following holds:

1) M(t) > n for teE.

2 Xo—1OM() <v(A)(t) for every measurable set 4 = [0, 1] and
almost every te[0, 1].

3) There exists ce R™ such that for every measurable set 4 = [0, 1] we
have @~ (4) <c|A4].

Now we are prepared for
Part b: Selection process.
Step 0a. Fix g, >0 and choose mye N large enough that
leGp |4((0, 12)(2) = Amq (O, 1])(t)| < &g.
Define
Ioo = {I: {Amg (0, 1]), k) 5 O}

Observe that Iy, has finite cardinality. Put Foo = (0, 1]. Consider the
nonatomic vector measure
Boo: Foo— R, F—(IF|, lo™ *(F)l, (@ ™" (F) 0 I)rerg,)-

As an application of Lyapunov’s Theorem there exist (for ¢, given) a natural
number k; and disjoint subsets Fyo, Fyy of [0, 1] lying in &, such that

[Fif(l4e)™" < 3|Fool <IFyl(1+e4),
o™ HF (L 4e) ™" < 3o (Fooll <o~ (Fy)l(1+¢y),
lo™ (Fy) n1l(1+2) 7" <3lo7 (Foo) 01| < o7 (Fy) N II(1+6y)
for je{0, 1} and Iely,.
Step Ob. Find ;e N and disjoint sets G,;, je{0, 1}, in #), such that
[Gi;AG )| <&, where Gyji= @~ (Fy).
Next choose m; > m, large enough that the following holds:
(i) supreg [Am, (Fi)(6)~AF)(0)] <.
(i) inf{I: IeN,, (Fy)} > 2.
(iii) For In;i={I: InGy;# @ and (A, (Fy), by> # O}
sup {I|: Tel;} <27,

We continue and arrive at

we have

Step na. Here we are given a nonatomic vector measure (with finite-
dimensional range)

Mt Fy— R F—(Fl, |0~ (F)], (0~ (F) " )rer,,)-

icm
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We apply Lyapunov’s theorem and obtain, for &,,, >0 given, a natural
pumber k,;; > k, and disjoint subsets of Fy;, Fpiq 2 and Fopq g1 in & oy
such that

|F 1,200l (L+€ns 1) S 3Fpl <|Fper,204 1 (1804 1)s
lo™ (Fus 1.2i+j)|(1+8n+1)—1 Yo ' (F <107 (Furr2i4 ) (1 Ee1)s
[0  Fre 1,200 O (L840 0) " S l@7H(F) NI
<o (Frrr,2i0) NI (L +E4 1)
for Iel, and je{0, 1}.

Step nb. Find I,4;eN and disjoint subsets Gy4y,2:+; Of G, lying in
&> Such that

IGn+1,2|'+jAGn+1,2i+j| < Ep+i 27" where Gurr,2i45:= 07 (Frar,2i49)
Next choose m,,; large enough that the following holds:

(i) suprec IAm,,+1(Fn+1.2i+j)(t)—A(Fn+1.2i+j)(t)l <Eyyi1-

(i) inf {I: le Ny, , (Farp,zie} > 270

(i) For Topqzi4):= {r: Gn+1.zi+f nI+#0and <)»mn+1(Fn+1,2i+j), hy> 5 0}
we have
sup {I|: Ielysy2i4j) < 9Tttt
Finally, we put
y"’n (F”i) =1Gni»
Xy Ay (Fri) = Ko for all (mi)eo.

Part c: Projecting onto span {1y, (ni)e &}. In this section we will
verify the following statements:

A) it H' = H',  hy— gu extends to an  isomorphism  onto
span {g,;: (ni)e &},
B) j: H' = H, hy—k, extends to an isomorphism  onto

span [k, (ni)e &Y.

C) There exists a projection P bounded on H? onto span {k,: (ni)e <}
such that P(Tyn~ky) =0, (ni)e .

A, B and C imply that P:=Tij~ ' P is a bounded idempotent operator
onto span {Ty,: (m)e #}.

Ad A. This is proved in [JMST], p. 129.

Ad B. Define B,,,..:= G,; 0 Gy, (ni)e . Observe that:

(@) Bpy1,2i+1 UB, 1,2 © B,;.
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(b) There exists ce R* such that
¢ 127" |B,| < 27" (with ¢ independent of n).
Moreover, for teB,; we obtain
1< M@ <V(F) ) < A, (F) @)+ < S (ki) () + 5.
Hence for given (a,), (n)e «/, we obtain
HZa»s hni”tll 2y “ZanigniHHl = ¢y ||Zanl Tgni“H1
ZC3 .f(Za,z,, S2(k))* = ¢4 J(Zafi XB,,,-’?Z)I/Z
= csn [(Yak hE)M2.

Ad C. Observe fust that {I: <k,, b # 0} coincides with I,,. Fix Iel,
and (mj)e «/; then we get

Knl; =const for m<n, (ky=0 form<n,
I
jkfnj <G nI[ <27 (1-c for m=n.
I

Moreover, (k,), (n)e o, is a block basis w.rt. the Haar functions. Hence

P H' = HY,  f =3 <, kudkfllKnill3
is bounded iff
("' Py*: BMO —BMO, h,—k,
extends to a linear map on BMO. Let us check that this is just the case: Fix

(amy), (m)e o, fix (ni)e o/ and Iel,. The preceding discussion implies now

IN o é.(zamj kmj —(Zamj kmi)l)2 dt < z lIi o -fkg'j a'%'j
I

(mj) =(ni)
< Y M2 <Y g gl fRvto-
(mj) =(ni) (mj)

A glance at the definition of (k,) shows that P actually sends k,— Ty, to
zero.

THEOREM 2. For any bounded operator T on H', either T(H') or
(Id—T)(H") contains a complemented copy of H'.

Proof. Assume once again that (Th,), (n)e.o, is a block basis w.r.t.

the Haar basis in H'. Put
2n-y

vy =S(Y Th,),
i=0

211

vs=S8(Y (Id—T)h,), neN.
i=o

©
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Then there exist je{l, 2} and 8eR such that [v} > & for infinitely many
ne N. Now we can repeat the whole argument given above.

Remark. Taking into account that H' is isomorphic to (), H'), we can
use Theorem 2 to deduce that H' is primary. For a more elementary proof
of this fact see [M].

References

M} P. F. X. Miller, On projections in H' and BMO, Studia Math. 89 (1988),
to appear.

[JMST] W.Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures
in Banach spaces, Mem. Amer. Math. Soc., 217 (1979).

[St] E. M, Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970.

INSTITUT FUR MATHEMATIK
JOHANNES KEPLER UNIVERSITAT LINZ
Altenbergerstr. 69, A-4040 Linz, Austria

Received June 10, 1986 (2179)


GUEST




