i ©
cm STUDIA MATHEMATICA, T. LXXXVIIL (1988)

A function space C(K) not weakly homeomorphic
to C(K)xC(K)

by
WITOLD MARCISZEWSKI (Warszawa)

Abstract. We construct an infinite separable compact space K with the third derived set
empty such that the space C(K) ol continuous real-valued functions on K endowed with the
weak or pointwise topology is not homeomorphic to its own square C (K) x C(K).

1. Notation and terminology. Our terminology follows Engelking [6] and
Semadeni [12]. The real line is denoted by R and o is the set of natural
numbers; |A| is the cardinality of the set 4.

Given a space X, we denote by R the Tikhonov product of the
real line, X being the index set, and for every Y< X, my: R —R™ is
the projection; we shall write . instead of my,, for xe X. Given a function
f: XY we denote by dom(f) and ran(f) the domain and range of f,
respectively.

We write X = Y(fp), if X is (is not) homeomorphic to Y.

Given a compact space K we denote by C(K) the Banach space of real-
valued continuous functions on K endowed with the sup norm.

The space C(K) endowed with the weak topology will be denoted by
C, (K), while C,(K) will denote the space C(K) equipped with the pointwise
topology. .

2. Function spaces associated with almost disjoint families in . A family
o of infinite subsets of w is almost disjoint if any two distinct members of &/
have at most finite intersection. Let us recall that there are almost disjoint -
families of cardinality 2° of subsets of @ (cf. [9, p- 300 and p. 317]); in the
sequel we shall consider a fixed (but arbitrary) almost disjoint family 7
which has cardinality 2°.

Given an almost disjoint family &/ in o, let Ly be the compact space
defined in the following way: the underlying set is @ U {pa: Ae L} u{p} (all
indicated points are distinct), the points in o are isolated, the basic neigh-
bourhoods of the points p, are of the form {pa} W(A\F), F being finite, and
p is the “point at infinity” of the locally compact space w U {pa: Ae o} (cf.
[6, Exercise 3.6.1]; this is a standard construction going back to Aleksandrov
and Urysohn [2, Ch. V, § 1.3].
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Let us point out that the class of spaces L, coincides with the class of
compact spaces K having the following structure:

(i) K is separable,

(ii) the second derived set of K consists of one point.

Let us make a few simple observations about the function spaces C(L )
we shall need in the sequel.

The spaces L, are scattered —the second derived set of L, is {p}—and
therefore any Radon measure u on Ly is of the form u =3 {a,6,: xeLy},
where §, is the probability measure concentrated at the point x and
> {lal: xeL,} < oo (see [12, Cor. 19.7.7]).

Let M (L) denote the space of all Radon measures on L (i.e. M(L,)
= C(L4)*). Since w is dense in L, the restriction f — f|w is injective on
C(L,) and hence for every § = M(L,) containing all §,, the map is: C(L,)
— R! defined by is(f)(4) = u(f) is an injection.

Given a subfamily &/ < 7, the space C(L,) endowed with the norm or
weak or pointwise topology can be identified with the subspace

E(o) = {feC(Ls): f(pa) = f(p) for all de T\ &},

pf the space C(Lg) equipped with the corresponding topology. Indeed, E ()
is the subspace of C(Ls) consisting of functions constant on the closed
subset F = {p} U {ps: 4e 7 \#} of L, and L,, can be obtained from L, by
matching the set F to the point p (cf. [12, Prop. 5.2.7]). ‘
. For any function fe C(Ly) there is a countable subfamily .« < .7 such
tﬁhgt feE(H), since for every & >0, the set {AeT: |f(p)—f (p) > ¢} is
nite.
Let us remark finally that by identifying each feC(L,) with f|w and
applying the Stone-Weierstrass theorem it follows that the spaces C(L.)
can be regarded as closed subalgebras of I, spanned by the characteristic.

functions of the sets Ae/, the functions with finite supports and the
unit of /.

3. The example. The objective of this paper is to construct the following
example:

) ExampLE. There exists a compact infinite separable space K with the 3rd
derxvgd set empty such that the space C(K) of continuous real-valued
functions on K endowed with the weak or pointwise topology is not
homeomorphic to its own square, ie.

Cu(K) £C,(K)xC,(K) and C,(K)#

top

C,(K) x C,(K).

Rem ark.. The question of existence of a Banach space E which is not
homeomorphic in the weak topology to its own square was asked by H. H.
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Corson [5, p. 12]; A. V. Arkhangel'skii [3, Problem 22] asked a similar
question about the spaces C,(X).

After this paper had been completed, S. P. Gul'ko kindly informed us in
a letter about his recent result to the effect that Cp((o1+1)m;a§3 C, (w0, +1)
xCp(w1+1), where w;+1 is the set of ordinal numbers not greater than
o, with the usual ordinal topology. ’

It seems that Gul’ko’s result and our construction provide first examples
(with rather different features) answering the problems of Corson and Ar-
khangel'skii.

Arkhangel'skii also asked the following question: does there necessarily
exist a continuous map from C,(X) onto C,(X)xC,(X) whenever X is a
compact space [4, Problem 4, p. 6]? One can show that for compact spaces
with the 3rd derived set empty (hence for the spaces L) such a map always
exists.

Our construction is based on a diagonal argument, whose applications
to some problems concerning continuous maps go back to Kuratowski [8];
some essential ideas in this construction have also been used by the author
in [10]. Briefly, we shall construct the compactum K in the following way.
The space K will be of the form Ly where & is an almost disjoint family of
subsets of w (see Sec. 2). Starting with an arbitrary almost disjoint family 7~
of cardinality 2° of subsets of w, we shall choose & <. by transfinite
induction, destroying on the way all possible homeomorphisms from C, (Ly)
onto C,(Lg) % C,(Lg) (the construction for the pointwise topology is paral-
lel). To perform this construction we shall first restrict the cardinality of the
family of maps we have to deal with during this process; this is achieved by
(somewhat technical) results on factorization of continuous maps on C,(Ly)
which we prove in Sec. 4. Section 5 is devoted to the construction of the
family 4.

Some modifications in our argument yield a compact space K with
C,(K)" lﬁ C, (K)", for all natural numbers n # m (the same is true for the
pointwise topology). This refinement is discussed in Sec. 6.

Finally, let us point out that the structure of C(K) described at the end
of Sec. 2 yields, by a result of Aharoni and Lindenstrauss [1], that the
Banach space C(K) is Lipschitz homeomorphic to C(K) x C (K).

4. Some auxiliary factorization results. Throughout Sections 4-6, I~ is a
fixed almost disjoint family of cardinality 2° of infinite subsets of w and we
adopt the notation introduced in Sec. 2. We shall write L instead of Lg.

The following fact, which we shall need in the sequel, is close to some
topics discussed by Isbell in [7, Proof of Theorem 1]; for the sake of
completeness we include a short justification, which is a variation of Isbell’s
arguments.
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4.1. LEMMA. Let X be a set and let E be a linear subspace of the product
RX. If f: E—R® is a continuous map then f depends on countably many
coordinates, ie. there is a countable set Y < X and a continuous ‘map
g: Ty (E) — R® such that f = gomy|E.

Proof. Given an § < X, let ps be the restriction of the projection ng to
E. Let Z = X be such that p, maps homeomorphically E onto a dense subset
p2(E) of R? (if {p,: xeZ} is a maximal linearly independent subset of
{ps: xe X}, considered in the dual space E*, then Z has the required
properties, cf. [11, Ch. II, § 3]). Now, by [7, Corollary, p. 222], the map
fopz': ps(E)— R® can be factorized through R™ for some countable
Y = Z, ie. there is a continuous map g: py(E) — R® with gopy = fop;!?
and then also gopy = f, since pyop, = py.

4.2. LemMA. Let &/ be a subfamily of 7 and let ¢: E(/) — E (of) x E(H)
be a homeomorphism, where E () is considered as a subspace of either C, (L)
or C,(L). Then there exists a countable set § = M (L) containing all functionals
6y, new, and such that the function (ig xis) o oig* maps homeomorphically
is (E () onto is(E(o)) xis(E ().

Proof. Consider first E(#) with the weak topology, so the map

ivuy: E(#) - RM® js a homeomorphic embedding. Put F = iy, (E(.#7))
and let : F— F xF be the homeomorphism defined by

W = (iny X inqey) 0 9 Olngly-

’ Using Lemma 4.1 we shall now define by a back-and-forth induction
a sequence of countable subsets So =S, =8, < ... @ M(L) such that
So = {6,: new}, for even i, the map

-1 .
(ms; xmg) oy omg, 7ts, , o (F) = 7, (F) x 75, (F)
is continuous and, for odd i, the map
-1 -1 - .
7ts,-O‘// 0(755”.1 X”s,-il)~ s, . (F) ><7‘s,~+1(F)“"7‘si(F)
is continuous (notice that since {§,: new} = §; the projections Ttg, 'are one-
to-one on F).

Suppose that we have chosen the sets Sq, Sy, ..., S;. If i is even then the
continuous function

(ms; xms)oy: F — ng,(F) X m, (F)

maps the linear subspace F of R to the space R x R, Hence Lemma
4.1 guarantees the existence of a countable set S; = M (L) and a continuous
map Y;: 7 (F) — ms, (F) x 75, (F) such that (ms, x7s;) o =n//,07zs;. We put
Siv1 =S;US].
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In the case of odd i the argument is the same, but the spaces involved
interchange now their roles.

Finally, we put S =)2,5; and, the basic neighbourhoods in R™®!
being determined by finitely .many coordinates, a simple verification shows
that S has the required properties.

If one replaces in the above reasoning the map iy, by the map iy _xerp
one obtains the desired result for the pointwise topology.

43. LemMA. There is a family of functions F = {@,: o <2°} such that:

(a) dom(p,) = C(L), ran(p,) = C(L)yxC(L) and ¢, is one-to-one, for
o <2

(b) For every subfamily of of I and every homeomorphism \y from E (/)
onto E(f) x E(), where E (&) is considered as a subspace of either C, (L) or
C,(L), there exists an a <2 such that y = ¢,| E().

(We do not require ¢, to be continuous functions.)

Proof. Let & be the family of all functions ¢ which satisfy the
following condition: there is a countable set § « M (L), a Gs-set X in Rl and
a homeomorphic embedding k of X into R x RISl such that:

(i) {0,: new} < S.
(i) dom(¢) = ig ' (X N b~ (is(C(D) xis(C(L))-
(iii) @(f) = (@5 xis Yohois(f), for fedom(yp).

To begin with, observe that the cardinality of the family & is 2°.
Indeed, the space M (L) is isomorphic to I, (L) (see Sec. 2), hence it has
cardinality 2°. Given a countable set S = M (L), there are at most 2¢ sets of
type G, in RIS!, and each has at most 2° homeomorphic embeddings into R
% RIS!. Since each ¢ in our family # corresponds to such an embedding, it
follows that |&#] < 2“.

Let us verify condition (b). Let < be a subfamily of J~ and let y: E(&)
— E(f) x E(s#) be a homeomorphism (in the weak or pointwise topology).
From Lemma 4.2 there is a countable set § < M(L) with {5,: new} =S
such that g = (is xig)oy oig* is a homeomorphism from is(E(&)) onto
is(E (&) xis (E (o). Applying Lavrent'ev’s theorem [6, Th. 4321] one can
find a Gyset X in RS containing is(E () and a homeomorphic embedding
h of X into R'S! x RS which extends g. Now, the map ¢ defined by (i) and
(iii) belongs to & and the restriction of ¢ to E() coincides with .

5. The construction. Before we start the construction of a subset % of the
family 7 with the required properties (recall that our notation was set up in
Sec. 2), let us make one more observation about the space C(L).

5.1. LemMa. Let of be a subfamily of  and let ¢: E(of) — E (<) x E (<)
be a homeomorphism with respect to the weak or pointwise topology. Then for
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each Ae o/ one of the following two conditions holds, where m;: E(sf)
x E() — E(sf) is the projection onto the i-th coordinate (i-= 1, 2):

1° There is an fe E(&) such that f(p,) = f(p) and
100 (f)(pa) # oo (f)(p)  for some ie{l, 2}.
2° There is an feE(H) such that f(p,) # f(p) and
moe(N)p) =moe(f)(p) for i=12.
Proof. Let

U= {feE(): f(p)# (D)},
V=1{(f 9)cE() xE(): f(py) # f(P) or g(pa) # g (p)}.
If neither of conditions 1° and 2° were satisfied, then we would have
@(U) =V, but this is impossible since
U= {feE(H): f(p) <f(D)} wifeE(): f(ps) > (D)}

splits into two disjoint nonempty open sets, while

V=(UxE())u(E()xU)

is connected.

Let & be the family of functions from Lemma 4.3. We shall choose by
transfinite induction subfamilies £, < 9~ and sets 4, 7 for @ < 2° in such a
way that the following conditions will be satisfied for each a < 2¢:

(@) 1|7 < o .

® ZnZ, =0 for f<o.

(c) Ag¢Z, for B,y<u

(d) If there exists a subfamily s/ .of I such that || = 2%, Ag¢/ for

B <a and ¢, (restricted to E(%/)) maps E(&/) homeomorphically onto
E(s/) xE(%), with respect to either the weak or the poirtwise topology,
then one of the following conditions is satisfied:

1° There is an feE(Jp<, %) such that

700, () (Pa) # MmO @ (f)(p) for some ie{l, 2].
2 There are f, geE(Up<, %) such that
@ (S, 9)(pay) # 05 ' (1, 9)(P)

(recall that @, is one-to-one).

Sl.xppose that we have chosen %, and A4, for g <a < 2%
First, assume that there exists a subfamily o/ of  such as in condition

().
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We take an arbitrary A,eo\(Js<, % (notice that |Jp<, 43| < laf- @
< 2%). Now, Lemma 5.1 applied to the family &/ and the element A, of &/
yields the existence of an feE(«) for which either

1° f (pa,) = f(p) and there is an ie {1, 2} such that
T O(Pa (f)(pAa) # o O%(f)(P)

or

2 f(pa) # f(p) and m 00, (f)pa) =m0, (N)(p) for i=1,2.

In the first case there is a countable subfamily # of .« such that
feE(#) (cf. Sec. 2). Since f(py)=f(p) we can assume that A, ¢%. If
Y\Upea Xy # D we take &, =%\Up<,&p. Otherwise we choose an
arbitrary Be o \(Up<. &3 U {A,}) and put 7, = {B}.

In case 2° we choose a countable # < .« such that m; 0 ¢,(f)€ E(#) for
i=1,2 and A,¢#. The family %, is defined as in the preceding case.

If no subfamily o/ of & satisfying (d) exists, one chooses arbitrary Z,
and A, satisfying conditions (a), (b) and (c). This completes the inductive step
of our construction.

Put & = y<20%,. We shall verify that K =L, has the required
properties. )

As was pointed out in Sec. 2 one can identify C(K) with E(%) and
hence we have to show that there is no homeomorphism y: E(%Z) — E(%)
x E(%), where E(%) is equipped with either the weak® or the pointwise
topology. But, if  were such a homeomorphism, then by Lemma 4.3 we
would have = @, |E(%) for some a <2 and then by (d) (where o = %)
one of the conditions 1° and 2° would be satisfied.

However, both possibilities yield a contradiction: in the first case we
would have an feE(Up<a %) < E(Z) such that oy (f)¢E(X), since
A, ¢%; and in case 2° we would have f, geE(Z) such that
¥~ Y((f, 9))¢ E(%). This completes the construction of the compact space K
described in the example.

6. Some refinements of the construction. By a modification of our
construction one can obtain an example of an infinite compact space K such
that C,(K)" # C,(K)" and C,(K)"# C,(K)" for all natural numbers n m.

Let us indicate two most essential changes in our reasoning needed for
such a construction. ' '

First, instead of the family of functions # from Lemma 4.3, we should
consider a family &' = {p,: a < 2} which satisfies the following conditions:

(a) For each o <2° there are distinct n, mew such that
dom(¢) = C(L)" and ran(gy) = C(L)™

(b) ¢, is one-to-one for o <2°.

(c) For every subfamily & of .7, any m, new, m#n, and every homeo-
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morphism ¥ from E (/)" onto E (&)™, with respect to the weak or pointwise
topology, there exists an a <2° such that Y = ¢, | E()"

The existence of the family &' can be derived in the same way as for the:
family #.

Secondly, Lemma 5.1 in the inductive step should be replaced in our
construction by the following:

6.1. LEMMA. Let s/ be a subfamily of 7 and let ¢: E(A)" — E(A)" be a
weak or pointwise homeomorphism, for some m, new, m s n. Then for each
Ae o one of the following two conditions holds:

1° There are f1, ..., fye E(H) such that fi(py) = fi(p) fori=1,...,n and
0@ ((fis - S PA) # 700 ((f1s -~ L)) D)
2° There are fi,....f,eE() such that f(p,) # fi(p) for some
ie{l,..., n} and
7!;0<P((f1; L)) =moe((fi, B forj=1,..,m.

Proof. Define, as in the proof of Lemma 51, U = {f e E(st):
f(p4) # f(p)}. For each natural number n put

U,={f1, ... f)e E()": f,eU for some ie{l, ..., n}}.

It can be easily verified that the subspace U, of E(&)" equipped with
the weak or pointwise topology has the homotopy type of the sphere $" 1.

Indeed, for given (f, ..., f,)e U, and te[0, 1] define the functions f;' e E (),
for i=1, ..., n by the formula

Sor some je{l, ..., m}.

n

A= £+t(fe)~£E)( X () —f(p)?) 12

j=1
(-2 fi(x) for xeL\({p;}uA)-

P for xe {p,} U4,

Now, thc. homotopy H: U, x[0, 1]— U, defined by H((f1, - f) t)
=(f{,....f2) is a deformation of U, onto its subset H(U,x{1}) homeo-
morphic to S"" . :

Therefore we. have ¢(U,) # U,, ie. one of the conditions 1° or 2°
holds true.

I would like to thank the referee whose valuable suggestions contributed
“to. an improvement. of the exposition ‘of the paper.
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