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The centralizer of Morse shifts induced
by arbitrary blocks

by

JAN KWIATKOWSKI and TADEUSZ ROJEK (Toruf)

Abstract. The centralizer C(T,) of the Morse shift given by a continuous Morse sequence x
=b%xb' x... over Z; is described. Let |b'| = 4, ¢ > 0, and let G be the set of Z-adic integers, 1
=(2)§. C(Ty) can be identified with a set of pairs {go, ), where goeGo, =G and ¢ is
a measurable function from G to Z,. The set G, satisfies the following properties:

(a) m(Gg) =0, where m is the normalized Haar measure on G.

(b) Either Gy =Z or G is uncountable, T, is rigid iff G4 is uncountable.

(¢) There exists & Morse sequence x such that T, is rigid and C(T) s {T'}.

Introduction. There are some reasons to investigate the centralizers of Morse
shifts. The Morse shift (Q,, 7, u,) is metrically isomorphic to a Z,-extension of
the group of J-adic integers with the Haar measure m and the translation by I.
Newton’s results [5] imply that each automorphism S commuting with T can be
identified with (go, ¢), where gy G and ¢ is a measurable function from Gto Z,.
The transformation S is an extension of the translation of G by g, to an
automorphism of C(T).

Lemariczyk [47] has proved that the centralizer of the Morse shift (Q,, T, u.)
is countable but not trivial assuming that x is a regular Morse sequence and the
sequence {[b'|} is bounded. In this case G, coincides with the set of all Z-adic
rational integers. On the other hand, Lemarnczyk described some class of Morse
shifts having the property to be rigid. The centralizer of such systems is
uncountable. The question arose what are G and ¢ for an arbitrary Morse shift.
The next reason for investigating the commutant of Morse shifts is connected
with Walter’s question in [7]. He asked whether there is a rigid automorphism T
with simple spectrum such that the commutant of T' is not the closure of the
powers of T' in the weak topology. A supposition arose that an example could be
found in the class of Morse shifts, In this paper we confirm that supposition.’

§ 1. Centralizer of Morse shifts, We first give the necessary preliminaries. For
a more complete treatment, the reader is referred to [1], [2], [4], [6]

Let x =b%xbh' x ... be a 0-1 Morse sequence. There exists an almost
periodic two-sided sequence w such that o [k] = x[k], k > 0. Putting 0,
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={Tw: ieZ }' we obtain a strictly ergodic system (2,, T) where T is the shift.
The unique T-invariant ergodic measure is denoted by u, and the system
0(x) = (R2,, T, u,) is said to be a Morse dynamical system or Morse s~hift. Denote
by o the mirror map on Q,, ie. 6y = ¥, ye&,, where §[i] = y[i] = 1+y[i]
in Z2, ieZ.
In this paper we shall assume that x is a continuous Morse sequence [1].
We use the following notation:

=[b"| (the length), n,=2,...4,

Given a block 4, the successive places of 4 will be numbered from Oto n~1 (n

=|d|),ie. 4=A[0]A[1]... A[n~1].1f I=0o0r 1 then A+ means Aif [ =0
and A otherwise. For 0 <i<k < n—1, A[i, k] denotes the black A4 [IAL
+1]... A[k]. If B=B[0] ... B[m—1] is another block then 4B is the block
A[0]... A[n—1]B[0] ... B[m—1]. We shall write AB[i, k] instead of
(AB)[i, k]. If m < n then fr(B, A) denotes the number

¢ =b%xb! x... xb.

1
;-card{j: 0<j<n—m, A[j, j+m—1]=B}.

Kwiatkowski [3] has shown that (Q,, T, u,) is a Z,-extension of the
system (G, m, T;), where G = li(_r_n Z/mZ, m is the normalized Haar measure

on G and T; is the translation by 1. Here 1 = (1, 1, ...). Every element g €G
may be represented inthe formg = (j)§, 0 <j, < — 1 i = J,H (modn,), t > 0.
We will also use the representation of g in the form g = 2,= odiM-1,0<g, <
A=1,n_y =1 We will call it a Z-adic integer, 1 =(L)F. In particular,
if I is an integer then the symbol T will denote the J-adic rational integer
corresponding to I.

In the sequel we will use the symbol “+” in dlfferent meanings, for addition
in Z,, modn, in G and in the usual sense.

(@, T, p;) is metrically isomorphic to the system (G xZ,, m x4, T),
where

)
@

T(g, ) = (g+1, i+9.(9),
0:(g) = ¢ [1+jd+c ]

ge@G, ieZ,,
g =0)¢,
Ji Zji+1 (modny), ¢

The above formula determines the function ¢,: G — Z, except for g=
(n,—1)§, because

in Z,,

cu [1 +.}u] + cu DMJ = [1 +J!] +Ct Dl]
for all u > t, whenever j, <n,—1.

The map on GxZ, defined by (g,i)— (g, i+1) corresponds to the
mirror o on Q,. We will also denote it by o.

icm®
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In order to describe the centralizer C(T,) of the dynamical system
(G xZ,, mx4%, T,) we use the isomorphism theorem (see § 4 below). In the
sequel we assume that the lengths 4, of b' satisfy the condition

[+
Y 1A <.
t=0
Let (€2,, T, uy) be another continuous Morse shift,
y=p0xp  x.i., |B]=bY= t>0.
Newton’s results [5] allow to find the form of isomorphisms between the

dynamical systems (2, T, u,) and (Q,, T, u,) regarded as Z,-extensions of G.
Let ¢,: G~ Z, be the function defined by

3) =d,[1+j]+4d,[j], = (j)d» 0 < <

where d, = B° x ' x...x ', t 2 0, and g # (n,—1)§. The system (Q,, T, p,) is
metrically isomorphic to (G x Z,, m x4, T,). Then each isomorphism W from
(GxZy, mx4, T) to (GxZ,, mx4, T,) is of the form

Wy, i) =(g9+g0, i+0(9),

o, (g) n—1,

where g, is a Z-adic integer and ¢: G — Z, is a function such that
@ Px(g+90)+0(9) = ¢lg+D)+0,(9)

for ae. geG. . .
Applying the isomorphism theorem (sce § 4, Th. 5) we will describe g,
and the function ¢. Put

] t
go = thn:-u I = Z‘h"k—~1
(=0 k=0

and for fixed ¢ define

@ g) = (e +r) e+ ) [h+jd+d [j],  g9=0)F.

Next let
H, =

{geG: o 1(@) = o9}

We estimate m(H,). Let g =Y. g n-1. We have

RAOREY Y PR Y Y B 1A
22 and g4y

Prar (@) = @, (g)+ (B )@

whenever ¢,+4, < A—2 and g1+ Gorg # A~ 1 I ¢+
Fqr1 # dvr—1 and gy +Gi s # Ay then

Q41(9) = ‘/’t(g)'*(br"'.l+rl+1)(bi+l+51+l) 1 +q:+1+‘7t+1]+ﬁ'+1 [@+1+s.

5 ~ Studin Mathematica B8/2
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The above equalities imply

m(H) > 1

where D,, D, are defined in § 4.
Putting E, = (\,5, H, we obtain

1-— 42““2[( ) u+1+§ Du+1J-
uzt uzt

Finally we define E = (J2,E, and
©) ‘ plg) =

We have E, < E,,,t >0, and from Theorem 5 we get m(E) = 1. It is not
hard to see that the function (5) satisfies (4) with g, defined above. It follows
from the proofs of [3, Th. 1] and [6, Th. 1] that every isomorphism W from
@y, T, 1) to (2,, T, ) is of the form described above.

Now we are m a position to describe the centralizer C(T}) of the Morse

m(E) =

¢.(9) for geE,.

shift (G xZ,, mx4, T,). Taking f* =, t >0, and applying Theorem 5 we

get the following
TueoreM 1. Each Se C(T,) has the form
89, 1) =(g+9go. i+¢(9)

and go=() =32 g m-, satisfies the following condition: there exist
P, S€Zy, t 20, such that

it ] L~
6 xgo [(I*i)Dt-Pl_'_;f;Dt-f-l:’ <®©

where
=d((b'+F) (B +8) [Gp» G+ 24— 17, b +F, 1)
=d((b’+F,)(b‘+§,)[1+Ej,,47,+A,],b‘+s7,_1)

(here for blocks A,B of length n, d(A,B)‘ denotes the number

n~'card {0 <i<n—~1: A[i] # B[]}
The function @ is the limit ae. of the sequence of Sunctions ¢,,

(7 @ (9) = (e, +F) (e, +5) [h+id+e Lid, = (j¢-

Moreover, ¢ satisfies the condition

®) ?x(g+90)+0(9) = ¢(g+1)+ ¢, (g).

icm®
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Since Z:i o 1/% < oo the condition (6) is equivalent to

4]

2 A +r) (0 +85) L4, @+ 4 ~1], b) < o0

t=0

3 min <1——~'~~ = ) [ (r, 5, b Y+ fr (Fs,, BT 1] < 0.
=0 A‘t Ar
Remark 1. The numbers ¢, in (6') and r,, s,e Z,,

t >0, may be so
chosen that qq =, and .

4 = Gt il Gy S Aoy =Gy — 1,
"7 g, +1 (modl) otherwise,
r,+s,=77,+§, in Zz.

The T-adic integer go is defined by go =Y Fm—;.

Thus each SeC(T;) is an extension of the translation T,, T, (9) = go
--g, of G. Note that T, is an element of the centralizer of T;. We will prove
that exiension of T,, to an element of C(T;) is possible only if g, runs
through a subset of G of Haar measure zero. In the sequel let G, be the set
of all goeG satisfying (6).

§ 2. Properties of C(T,). For Se C(T,) we will write S =
and ¢ is a function satisfying (8).

(90> ) if goe Gy

L. For every goe Gy there exist exactly two functions ¢, satisfying (8).

In fact, if ¢ and ¥ are such functions then @y is a Ti-invariant
function so either ¢ = or ¢ =y +1. On the other hand, if ¢ satisfies (8)
then so does ¢+ 1. Note that il ¢ is determined by go and the sequences
{r:» s} which satisfy (6) then ¢+1 is determined by g, and {r/, 5,}, 7. = r,+1,
s=8+1, t=0.

IL. The set Gy is a Ti-invariant subgroup of G.

First we show that G, is measurable. To this end we use the condition
(6) in the following form:

fo[(1 -«%-)&-»ﬁ%ﬂn] <o,

Ay = {goz Z Gy there exist 7, 5,6Z,, n

t=0
nk a 7
de 4t = 1
t 1Dy +<D ]<_},
such tha t=§"[< 1) 1 ) 4+ 1 P

Put
n+k,

<t <
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where n, k, p are positive integers. Then it is clear that

a o0 [+
GO = m U ﬂ Ankp'
p=1n=0 k=1
Since A,, is a finite union of cylinder sets, G, is measurable.
Gy is a subgroup of G, because if S =(g,, ¢), S =(7o.®) then

So8=(go+Go,¥1), ¥1(9) = F(g)+¢(Go+9),

S08 =(go+7o, ¥2), ¥209) = @(9)+B(ge+9).

Therefore go+§oeGo. Since T, = (I, ¢,) we have go+1eG, whenever
"go€Go. In particular,

m-1

Tr=(h, Y ¢.g+)), m==+1, +2,...,
i=0

I=T;co=(0: 16)’ 0':(0’ 16+1)! SOU:(QO: ¢+1)
Properties I and II are valid for every ergodic Z,-extension of G.

III. The set Z of J-adic rational integers is contained in Gq. Either
Go=Z or G, is an uncountable subset of G.

The first statement is evident. Suppose that g, e Go\Z. Then there exist
numbers g, and r,, 5,6 Z, that satisfy (6') and determine g, as in Remark 1.
The set Z; of all ¢ such that g, > 0 is infinite. Take any infinite subset I of
Z,. We construct a 1-adic integer g; and 7, s, t > 0, satisfying (6'). Namely,
we put

q=q, r,=r, s,=s for tel,
=0, rn=s5=0 for teZ,\I.

It is easy to see that g; and 7, 5;, ¢ > 0, satisfy (6') so they determine a I-adic
integer g,¢Z. Taklng different subsets I of Z, we obtain different J-adic
integers g,;. Thus G, is uncountable.

Observe that Go=Z iff C(T) ={T'e’}, i=0, +1,..., jeZ, The
above considerations allow us to generalize Lcmanczyks result [4, Th. 1].
If x=b%xb' x... is a regular Morse sequence then the conditions (6) can
be written as

S d(B+r) (6 +5) (4, gt A= 1, ) <

t=0

(6"

inMe

mm(l./n,, 1—-l/n) < oo,

where (I)§eG and the l, are defined in Remark 1.

o
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In this case the assumption Zt 1/, < oo is not necessary [3]. In
addition, if the sequence 1, is bounded then (6) implies G, = Z.

For convenience we use the following notation:
fr(00 v 11; 4) = fr (00, A)+fr (11, A4),
fr(01 v 10; A4) = fr (01, A)+fr (10, A).
ExampLe 1. Let x==b°xb'x... be a continuous nonregular Morse

sequence. Then G, is uncountable. In fact, if x is not regular then we can
represent it in such a way that

2. min(fr(00 v 11; 59, fr (01 v 10; b)) < oo

(=0
(see [3]). Put ¢, =1 and
re=1,5=0 if fr(00 v 11;¥) <fr(01 v 10; b"),
rp=85=0 otherwise,

Then go =Y v, m-16Go and go¢Z. Thus G, is uncountable.

THEOREM 2. The set G has Haar measure zero.
Proof. Property II implies m(Gg) =0 or 1. To prove that m(G,) = 0 it
suffices to show that G\G, # Q. If

)] Z min (fr (01 v 10; b9, fr(OO v 11; b)) = + o0,

t=0

then the element g = Z:oq, n.-1, where g, = [4,/2], t = 0, does not satisfy
the second condition of (6), s0 g G\G,. Therefore we may assume that the
condition (9) is not satisfied. In this case we use the inequalities

fr(00 v 11; A xB) < fr (00 v 11; A)+1/|4|,
fr(01 v 10; 4 xB) < fr(01 v 10; 4)+1/|4],
o
5 14 < o0,

1eQ

and we group the blocks {b'}& to find a new representation (also denoted by
x=bxb' x,..) such that ) fr(01 v 10; b') <0 or ) fr(00 v 11; ) < c0.
Moreover, we may assume that

$<fr(0, b) <4,

because fr (0, ¢,) =4 as t — o0,
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(A) Suppose first ). fr(01 v 10;.b") < co. Let
d(g)=db'b' g, q+4—11,8), ¢=0,1,..., 4.
It follows from the definition of -d(g) that

-1

Y d(g)=2f(0, BYfr(1,b) > 244 =4
q=0

Hence

a0ty d@>3E-9 =4

A/9 <q< 829
Since d(0) =0 and
ld(g+1)~d(g) <fr(01 v 10; BY)+1/4, ¢q=0,..., 42,

we deduce that there exist g, §4, < g, <4, such that ¥ <d(q) <% (for
sufficiently large t). Note that the sequence {g,} does not satisfy (6). Indeed,
the inequality §4, < g, <$§4, and (A) imply that the second condition of (§)
is possible only if r, = s, for sufficiently large . Then the first condition of (¢)
is impossible, because 4 < d(g) < # and

a(®)~ ®)" [ g+ A4—1]1, b) = 1—d(q,).
Thus go =Y. 4 m-; does not belong to G,, where g, is defined as in
Remark 1.
(B) Suppose now Y fr(00 v 11; b") < co. Let
d(g) =d(*(®)" [, g+ 4—11,b), q=0,1,..., 4~1.

If infinitely many of the integers 4, are even, then by grouping the
blocks {b° b', ...} we may assume that the 4, are even for ¢ > t,. It is easy
to verify that

d(q) = 1-d(4~q, gq=1,...,4—1

In particular, d(4/2) = 1—d(1/2) with implies d(4,/2) =4. Put g, =0 for ¢
<to and g, = 4,2 for t > to. Just as above, we check that the sequence {g,}
does not satisfy (6').

Finally, suppose that the 4, are odd for t > t,. We reduce this case to
(A). Since x = b%xb' x... is a continuous Morse sequence, we have

2, min(d (¥, 010 ... 010), d(¥', 101 ... 101)) = 4 0.
1210
Now we use the following equality:
1-2d(A; x...xA,, By x...xB,+).

u—1

. H [1-2d(4;, B;+1)](1—2d(A,, B,+1),

i=1
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where I, Iy, ..., L,.1€Z, and I=I+1+...+1,_y, |A] =B, which can be
easily proved by induction. Take A, =b'*!, ... 4, =b'*% B, =010 ... 010
(with 010 repeated 4, times), ..., B, = 010 ... 010 (4, ,-fold repetition), and
[=0if d(b'™! x...xb'** 010 ... 010) <4 and | =1 otherwise. In the same
way we choose I;, i =1, ..., u—1. For t > t, we obtain

1—2min(d(d"** x...xb"" 010 ... 010), d(h'*! x... x b'*¥ 101 ... 101))

= H (1—2a,4)),
i=1

where g4; = min(d(b', 010 ... 010), d(b', 101 ... 101)).
Since Y-, @ = o, we have ﬂzl(l—Za,H) =0 for every t > ty. Thus
min(d (B! x... xb*%, 010 ... 010), d(b** x... x b 101 ... 101))  }.

By grouping the blocks {b'} we can find a representation of x, x = b® x b?
x..., such that

1 <d(®,010...0100 <% for t>1.

Putting E, = b'+010 ... 010 (4,-fold repetition) we have % <fr(0, E) <%, ¢
> 1. Since fr(01 v 10; E,) = fr(00 v 11; 8", it follows that y = b° xE, xE,
x... is a continuous Morse sequence satisfying (A). Repeating the considera-
tions in (A) we obtain a sequence {g}, 4 < g <%A and % <d'(¢) <3,
where d'(q,) is defined by y. By easy computations we establish that

min (d(q), 1-d(g)) = min(d'(g), 1-d'(9)), 0<g<i—1.

The last conditions imply % < d(g,) < §. As above, we show that the sequence
{q,} does not satisfy (6'). This finishes the proof of the theorem.

§3. Topology of C(T,). We start with the following remark: if
8, 8,&C(T), 8y =(gn @), S =90, ¥), g goeGo then S,— S in the weak
topology iff g,—g¢ in G and ¢,— ¢ in Haar measure m.

Tueorem 3. C(Ty) is the closure of {T'e¢!},i =0, +1,...,jeZ,, in the
weak topology. T, is a rigid transformation iff G, is uncountable.

Proof. First we show C(T,) m{T‘EJ} R
Assume that G, is uncountable and let § = (go, ¢), go = ()&, go¢Z.
Take 7, §,6 Z, satisfying (6). Define
RS-l 1, T A if L <nm—h~1,
"“=5  otherwise, 7 )~(m—1l) otherwise.
Now we show that 7;,T‘oai‘~S in the weak topology. We have T
= (i, ¢ (g)) and ‘

(10) Pu(9) = ¢ Lj+ml+c[i]
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for sufficiently large t (see § 2, II). Put ¢, (g) = c,[j;+m]+c, [j]. Notice
that the equality
(11) Pm(9) = Om,i(9)

holds on a set of Haar measure greater than 1—m/n,. At the same time, ¢ (f)
is the limit of the sequence of the functions ¢,, defined by (7). From the
preceding considerations, if geE, then
¢ Lj+1]+c [j]+7 if j+l <nm—1,
rp(g)=<p,(g)={' pdTalidth I
alicth—nl+c[jl+s if ji+h > n.
= j,+In,, where 0 <1< A,4y—1. It follows from (11) that

(12)

Suppose that j,.

(13) o ,(9) = Pra+1(g) =
{Cr []r + lv] +¢ []r] if ]l + l sm— 1
GLieth—n]+c [j1+b T[] +b 1 [I14+1]  otherwise
except on a set of Haar measure I/n,,, < 1/4,,,.
Assume that , < n—1I]—1. Then
(14) ©9) = P41 (9)+F,

whenever j,+1I >n, and b‘+1 (1+d* [I+1] = 7+5, except on a set of
Haar measure (I/n)fr (7.5, v F,5,; b** 1,

By using (6') with /, instead of q,, the equality r,+s, = F,+7, (see Remark
1) gives

(15) ©:(9) = Qra+1(9)+F,

except on a set of measure (I/n)fr(r,5, v 7,5,; b' ).
In view of (12), (13), (15) we obtain
?(9) = ¢, (g)+7,

on a set of measure > 1—¢, where g — 0.

If | > m~1—1 then by similar arguments we establish that
?29) = @ (n-1,(9)+5

on a set of measure = 1—¢g, where g — 0.

Since T;'oo* =(1, or,+i), I —go and ¢1,+i, — @ in measure, we conc-
lude that

TT'Oa'it - S.

In this way the equality C(T) = {T oV}, ieZ, jeZ,, is proved.
To show T, is rigid it suffices to remark that there exists a subse-

©
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quence of {I} (denote it by (I}
or T,

P again) satlsfymg [}l — co. Then 7;2“ __,Sz
%, 82 hence T2"Th-0 1 or T, 2%=1"% L 1 and so T, is rigid.

THEOREM 4. Let x = b% xb! x
that

. be a continuous Morse sequence such

min d(b'[0, 4 ~g~1], b)) [g, 4
0Sq%4y2
for each t 2 0. Then a¢{T}}, icZ.
Proof. Suppose that T;* —¢. Then #, — 0 in G and ¢, — 1 in measure
m, where @, is defined by (10). We may assume m, =0 (modn,), t =0, ie.

—1])=2e>0

m, = m,n, m, = 1. Write
& =migeG: o, (g) =0}, t=0.
Then & — 0. Next let
Ay =1g=0)8 0<j, <n—m~1}, u>t.

We have m(4,)=1-m/n, and @, @) =c,[j,+ml+c,[j] for geAy.

Further,
(16) mi{geAy: @mlg) =0} < & +m(45) < g+my/n,.
We choose u = u() such that u >t and m/n, <g. Then (16) implies
mige Ay: @ml9) =0} <28 for u=u().
Write
A=Ay o dyy =Dt xbY u>t.
We have

W= 1 G [I+m] = 91T},

1
mige Au: On(9) =0} =—reard {0 <1<
t
It follows that

=10 ¢f [ = e (e +i) [+ ]} < 3e,

<<<<< 5 card {0 < I €
n

because #,/n™ = m/n, <eg. Here i, is an arbitrary element of ZQA
In this way we obtain the following property:

= u(t)

1 ™ (e +i)[I+m] = ™[} <3

(A)  For every t there exists u=u(t) >t such that for every u

1
—eard {0 < /<~
n

and i, < nf/2,
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Now we show that (A) implies

(B) For every t there exists v =uv(t) >t such that

min  d(b°[0, A,—g—1], (1)~ [q, 4 —1]) < 2./35,.

0<q<ay2

To do this we represent the number m, as

~

=g n V4r, 0<qg <=, 0y <nfrY

~|

and ¢ = ¢ Y x b,

Suppose that ¢’ >1 and r < n*” /2. We analyse the distances of the
successive fragments of ¢ and ¢ (c +i,) having the lengths n*~ ", Using
(A) we get the following possibilities:

(a) d(bu [O’ Au_q’—]']’ (bu)~ [qla ;l'u—l:l) <2 381’
() d(c~ b, ()~ (e +iy-q) [r, r+1*V]) < 3g,,

for some i,_;eZ,. Case (a) implies (B). If (b) holds then we can repeat the
above reasoning taking u:=u—1 and m, =r. If r > nf*~"/2 then we obtain
(a) or (b) again with ¢'+1 instead of ¢’ and r:=n{*"Y—r If ¢ =0 and
r < n*” /2 then (b) holds. If ¢’ = 0 and r > n*~ /2 then we obtain (a) with
g' = 1. Proceeding in this way either we choose u > t+ 1 satisfying (a) or (b)
is satisfied for u =t+1. The last means (a) for u = t. We have shown (B) and
consequently Theorem 4.

ExampLE 2. Take b' = 011011 ... 011, where 011 is repeated 2! times,
t > 0. The sequence x = b® xb* x ... is regular. It satisfies the assumption of
Theorem 3 with ¢ = §. At the same time, G, is uncountable. Indeed, we have
dp'b'[3, 4,+2],b) =0, t > 0. Taking q, =3, t > 0, we obtain

t
L=33 ny-q <6n_y,
u=0

which implies I/n, < 1/2'. Thus min(l/n, 1-1l/n) < 1/2' and (6") is satisfied
with r, = s, = 0.

Hence C(T,) is rigid. Theorem 3 implies C(T;) 2 {T%}. In this way we
obtain a negative answer to Walter's question [7], because T, has simple
spectrum.

§ 4. Isomorphism theorem. To describe the centralizer of Morse shifts we
have used a certain form of isomorphisms between such systems. Here we
give a modification of isomorphism theorems from [3] and [6], omitting the
details,- which can be found in the above-mentioned papers.
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THEOREM 5. If x =b° xb' x..., y = B° x B x... are continuous Morse
sequences such that A, = |bf| = |B|, t = 0, and 2:‘;0 1/, < o0, then the Morse
dynamical systems 0(x) and 0(y) are metrically isomorphic if and only if
there are sequences of integers {7}, {5}, 7, 5€Z,, t =0, and an element
go=(§ =Yy such that

] L~
) Z[(l——i—)D,+1+iD,+1]<oo, where

t
D, =d((b +7) (V' +5) 4, G+ 4—1], B +F-y),
D, = d((b' +F) (o' +5) [1+ G, G+ 4], B +5,-1).
Proof. It suffices to show the necessity of the theorem. Indeed, the
condition (17) enables us to define a function ¢: G — Z, by (5) (see § 1).
Then ¢ satisfies the condition (4).

Necessity. Let us group the blocks b° b*, b ... and f° B, §2 ... to
obtain new representations x = b® xb* x..., y = % x B! x... such that

E‘o = bo’ B“r —_ bzr-l xbz:’ t> 1’
‘ Et o ﬂZl XB2‘+1, t > 0
It follows from [6, Lemma 5] that there exist sequences of blocks {a,}, {E,},

t20, |al = Ay, & =Az+y, t >0, and sequences of integers {w2}, {p},
0 W, € 121_1 ).2,"‘1, tz 1, 0< | S A‘ZIAZX+1_17 t=0, such that

Zd(l;' B [Wo Wt Ag—g Ape—11, By x @) < 00,
1]

: Zd(Fﬁ‘ [P P22 A2ee 111, a4, X 3) < 00.
t
The proof of Lemma 5 shows that p,, w, may be chosen in such a way that if
w, 5= 0 then w, 2 Ayy Agy—4z-1+1, and if p % 0 then p, 2 Ao Azev1 — A
Now we are in a position to define numbers 7, 5,6 Z,. Write
N = max(‘l(E‘ B [we, Wyt Aomg Ao — 1], Gy X ),
d(B B [P Pt AnAusr—1], a xa)), t21.

Put kl = iz,mllz,*wl, t21, m =j‘2( 12,4.1—-—[),, t>0. Then 1< I‘C‘ < ;LZ!—I
—1 (if w, ¢ 0) and 1 < m, < Ay, (if p, # 0). Suppose that w, 5 0. It is easy to
verify that

(18) d(b_', Zitwl Xa;[kn kt+221—-1)'21"1])

k, 1

S dB B [w, witdpmy Ay —11, Gy ><a:)+-m < 77:“'7;:
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where a; = a,a,[0]. Notice that
(19)  d(¥', G-y xa;[ke, ky+Az-1 A2 —1])
=(1—l"' )d(bzr-ito,zz,_l-—k,-lijﬂ, G-y [y A1 — 11 x4)
2(-—1 )
B D~k By 1] 5B 81 [0, = 1] X, T 2.
21—1

Let a1, 53-16Z, be integers such that
d((bm-l+F21—1)(b2!~1+§zr——1) [121—1_1‘19 2)*21—1"'kt"1]7 aq«—l)

is smallest possible. If k, = O then we define Fy,—y, 53~ in such a way that

Farm1 = S34-1.
To define 7, 5, for t even we use the following inequalities:

d{(Ay, By+) <d(A; xA,, By xB;), d(A4;, Ba+]) <3d(A, xA4,, By xB)).

Here A,, A,, By, B, are blocks, |4,| = |B,|, |[4,] = |B,| and le Z, is such that
d(A,, B, +]) < 4. The above inequalities are simple properties of the distance
d. Applying them to (19) and using (18) we obtain

1
d((bzx_ L o ) 0T 8 ) [Agem 1 — Ky 249021 — k1], 5:—1) <

+ =,
e P

(20)  s——d(b*+Fy-y, 4all, A2])

2t—1
k, 2~ 1
(L= |d(d* +5y-1, @) <3 [n++).
Agpey Ao
Notice that the last inequalities are also valid for w, =0 if we put k, = 0.
Suppose that p, £ 0. Let 7y, §3,€ Z, be integers such that
d((B* +52) (B* +730) [Age— myy 20 —my— 1], @)

1s smallest possible. If m, = 0 then we can define 7,,, §,, in such a way that
=7§,,. As above, we establish the inequalities

1
d((ﬁm"'sh)(ﬂzt’*"m) [Az—my, 225,—m,—1], a:) < Vh"‘/l ,
2t 1

1) (1—%)d(ﬂ2'“+n,, a)

1
27'1 d(ﬂ2‘+1+52n a4 all, Ay <3 (’h 1 )
2t+ 1

These inequalities are also true for p, =0 if we put m, = 0.
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Now we can define numbers g, t > 0. Namely we set g, =0, and
fort =1
i - {}vz:—l“kr (mod Aj.q) if my_y #0, or m_y =0 and g5 =0,
-t Azi—1—ki—1 if m_y =0 and §yz = Ap_2—1,

__ fm—1(modAy) if k #0, or k=0 and Fy—y =gy —1,
9=y if k, =0 and -, = 0.

To check that the numbers g, and 7, 5,€Z, satisfy (17) we use the
following, easily verified, equalities:

d((B* +52) (B* +Fr) [Agy = my, 200 —m,—1], @)
= d (B, (a,+Fa) (@ +55) [my, my+ Ay — 1]+ Fyy ih
d((b* +7) bH+5) [y — 1, m+ Ay —2],
(a4 Fa) (@ +530) [My, my+ Aoy — 1]+ F4)
=d(b*+Fy-1, 0,6,[1, 22/]),
d((b* + Fo) (0¥ +52) [y, my+ Ay —1],
(@ +F2) (@ +52) ey 1+ Agy = 1]+ 52, 1)

. =d(b¥+55-1, @).
The above, (20) and (21) imply

m, m 1 1 1
1= )Dyyy +=D <2< R ) +3(
( '12:) et Azr 2L G '12: Az:n }»z:+1

if m#0orm=0and g, =0,

1 1 1 . -
D21+1\2<’1:+ ) ...___+3<!+m> if m=0 and g = 45—1,
}'21 A‘Zl"‘l A’Zl+l

and
k, ( k, > _ ( 1 ) ( 1 >
D 1 - 1Dy € 2 +3
1'21 1 21 ’lzn— 1 = '%21 +1 }~21+1

i if k|¢0, or k‘=0 and {—1‘2‘_1 =A.2,...1"‘1,

1 1 L ~
Dy < 2(n,+w~~ vvvvvv )+3 (n,-i- ~~~~~~ ) if k, =0 and gy -y =0.
4 AZH-I

21
To obtain (17) we observe that if m, # 0 and k, s 0 then
m_qu g__l__, | ky (1 Jau- 1) < 1 :
A‘Zl Az: Azr |}~zn 1 1.2, 1 ;l'Zlvl

and the series Y. 1/4, Y. " are convergent.
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This finishes the proof of the theorem.

Remark 2. One can show that the assumption 2: o /A4 < oo may be
omitted. This can be proved by using Theorem 5 and not difficult, but
laborious computations.

We finish this paper with another version of Theorem 5 we have
used in § 1.

TeEOREM 5. Let x = b®xb' x..., y = B° xB* x... be continuous Morse
sequences, || =|f'|=4, t=0 and ZZO 1/A < o00. Then' 0(x) and 0(y) are
metrically isomorphic iff there exist numbers ¢,,0< g, <X —1, and r, 3, Z,
such that

Ms

d((b’+r,)(b‘+s,) [gr g +4—1], ﬂ') <00,

t

0

Z min(l—q://ln q,//'L,)fr(r,E, v 75 le) < 0.

t=0

The proof of this theorem follows immediately from Theorem 5. Name-
ly, let
_ Fre1+7 if tf,él,*—q,—-l,
Feey+35  otherwise,
_ §!+1+Ft if @:Slr—f?r*la
§5+1+5  otherwise,
A if Gy < Apmy —Fo-r— 1,

9o = qo» 4 = {—'4.1 (mod /)  otherwise.

Then it is easy to verify that

(1—%)D,+1+%D_,+1 < d((b‘+r,)(b‘+s,)[q,, a+4—1], ﬁ‘)

(4 4 =
+ H =)Dy~ D
mm(q i,)l b1 it 1

q 4 5 1)1
(1-—Z'>Dz+1+z'D.+1 > E{Ed((b'+h)(b‘+s,) L4es g+4—11, B)

. 4 a4\, -
+m11'1( —1:‘7 'ji)'(DH-l'f'DMl)}-

icm®
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It remains to observe that
Dy +Dy =05 v Fs,; LARES V/ R

Dess=Drasl SEr(n5 v Fiss b +1/h 4y, 1320
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