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Vector-valued Calderén-Zygmund theory and Carleson measures
on spaces of homogeneous nature

by
FRANCISCO J. RUIZ (Zaragoza) and JOSE L. TORREA (Madrid)

Abstract. We develop a method for the study of boundedness properties of operators
defined by means of a kernel and mapping functions defined on X into functions defined on X
x [0, o0), where X is a space of homogeneous nature. This study allows us to obtain in this
context the Fefferman-Stein theorem concerning the vector-valued inequalities for the Hardy—
Littlewood maximal operator. Carleson measures and tent spaces fall under the scope of this
method, Also, almost everywhere convergence results for parabolic differential operators are
obtained.

0. Introduction. The main objective of this paper is to study Carleson
measures and related topics in the context of spaces of homogeneous nature.
Some work in this direction was done in. [1]. Also, we want to study the
boundedness properties of some related maximal operators.

In order to study these properties we introduce a vector-valued singular
integral technique. This technique allows us to obtain vector-valued inequali-
ties of the following type:

@ I 1T ™ ot w0, cp0 < C N LD ey

) a({(x, neX x[0, w): ¥ |Tf(x, )4 > 1)) < -f— [ 109 dp (),
J X j

where X is a space of homogeneous nature with a doubling (in general not
translation invariant) measure u and « is a Carleson measure on X x [0, o0)
(ie. «(B(x, 1) x[0, r]) < Cu(B(x, r) for any ball B(x, 1)).

T will be an operator with some a priori boundedness properties and
such that T can be represented by a kernel in a certain way (see Section 3,
Theorems 2-4).

Different substitutes of the classical dyadic Calder6n—-Zygmund decom-
position can be tried in this context. It appears that Whitney type decompo-
sitions (see [6]) are not enough for the weighted theory (see Sections 2 and 3)
and we use some ideas developed in the case of topological groups with a
translation invariant measure (see Koranyi and Vagi [13]).

In the particular case of da(x, t) = du(x)®9d, () we apply the theory to
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parabolic singular integrals and obtain some results about their almost
everywhere convergence.

The organization of the paper is as follows.

In Section 1 we introduce the notation and preliminaries.

Section .2 is devoted to stating and proving the lemmas which will be
the main tool in the Calderén-Zygmund decomposition of functions. Also,
we find weighted norm inequalities for maximal operators related with the
Hardy-Littlewood maximal function.

Section 3 contains the main theorems concerning the boundedness
properties of operators (defined by means of a kernel) mapping E-valued
functions on X into F-valued ones on X x[0, oo) (where E, F are Banach
spaces). :

Some applications to maximal functions are considered in Section 4,
where we obtain the Fefferman-Stein theorem (see [10]) for spaces of
homogeneous type with a translation invariant pseudometric. In this section,
some vector-valued inequalities are proved for the functional 4., which
appears in the theory of tent spaces (see [5]).

Finally, in Section 5 the theory is applied in the context of parabolic
singular integrals.

1. Preliminaries and basic facts. Let X be a set. A pseudometric on X is
a map ¢: X xX — [0, oo) such that:

(D) o(x, ») >0 if and only if x # y.

(i) o(x, y)=o(y, x) for all x, yeX.

(iii) There exists a constant k > 1 such that

o(x, 2) < k(e(x, Y)+ely, 2).

By a “ball with center x and radius r” we mean the set B(x,r)
= ve X: o(x, y) <r}. Sometimes, we shall write AB(x, r) for the set B(x, Ar)
with 4 > 0.

- In the case k = 1, the pseudometric (in fact metric) will be denoted by
d(x, y).

Derinimion 1 (see [6]). A space of homogeneous nature (or, simply, a
homogeneous space) is a topological space X endowed with a pseudometric ¢
such that:

(a) The fami]y {B(x,7): xeX, r>0} is a basis of the topology of X.

(b) There exists a natural number N such that for any xe X and r >0
the ball B(x, r) contains at most N points x; with g(x, x) >r/2. = '%.

The constants k (in (iii)) and N (in (b)) are called the space constants.

All along this paper we shall consider a topological space X with a

pseudometric satisfying (a), (b) and with a doubling Borel measure p, i.e. there
exists C > 0 such that

M #(B(x, 20)) < Cu(B (x, 1),

X, y,ze X.

xeX,r>0.

icm
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It is known (see [6]) that then X is a homogeneous space.
Observe that the condition (1) implies the following stronger one:

(2) If n>1 then there exists a constant C(y) such that
#(B(x, n) < C) u(B(x, 1),

CoverING LEmMA (see [6]). Let E be a bounded subset of X (ie.
contained in a ball) and {B(x, r(x))}..x a covering of E. Then there exists a
sequence of disjoint balls {B(x;, r(x))}iz, such that {KB(x;, r(x))}i= is a
covering of E, where K is a constant depending only on the space constants.

xeX, r>0.

As usual, given a Banach space A, we shall denote by L (X, ),
1 < p< 0, the Bochner-Lebesgue space of A-valued strongly measurable
functions f such that {y || f (%4 du(x) < +oc0. If A = C we shall write simply
IP(X, p).

The following definitions include in our context the analogues to
several well-known operators in Euclidean harmonic analysis.

DeriNiTION 2. Let f: X — C be a locally integrable function (i.e. inte-
grable over balls). For 0 <y <1, we define:

() M, f)=sup u(Bx, )" | IfWlde): r>0}, xeX.
B(x,r)

@ M f(x,0=sup{uBx )" [ IfOIdu): r=1}, xeX,1>0.
B(x,r)

Remark 1. The balls taken in these definitions are centered at x. It is
possible to define similar operators buth with the supremum taken over all
balls containing x; let us call them My, ﬂjt, An easy consequence of the
inequality (2) is the existence of a constant C, depending on the space
constants and y such that:

s M,f(x)<M,f(x) <C,M,f(x), xeX,

® imyf(x,t)sﬁlyf(x,t)scy‘myf(x,t), xeX, t>0.
Note also that

(6) M, f(x,0=M,f(x), =xeX.

Remark 2. If y = 1 the operator M, f = Mf is the Hardy-Littlewood
maximal operator. For a homogeneous space (X, g, 4) with u doubling it is
well known (see [6]) that M is bounded from IP(X,p) into LF(X, p),
1 < p< o, and from L} (X, p) into weak-L' (X, y). Moreover, if the bounded-
ly supported continuous functions are dense in L7(X, p) then the classical
Lebesgue differentation theorem holds.

Note. In all the rest of this paper we shall suppose that the continuous
functions with bounded support are dense in IF(X, y), 1 <p < oo.
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Hereafter, the space X x[0, o0) = {(x, ): xe X, t > 0} will be denoted
by X*.

The following question arises: Let (X, ¢, 1) be a homogeneous space
and let a, § be Borel measures on X and X respectively; what is the exact
condition on the pair (x, f) for 9, to be a bounded operator from IF(X, «)
into weak-L#(X™*, B)? :

In other words, the problem is to find conditions on («, f) in order that

) Bie, DX : M, £ (x, 1) > 1) S CA™*|f |ty e 2> 0.

It is clear that the singular part of « with respect to u has no
contribution in the inequality (7). Thus « can be taken as da(x) = w (x) du(x),

where w is a weight (positive measurable function). So the above question -

can be reduced to characterizing the pairs (w, f) such that M, maps
I’(X, wdy) into weak-I#(X*, f).

The question will be solved in the next section. Moreover, owing to (6)
we shall be able to answer similar questions for M,. On the other hand, the
study of these operators will give us a key to a “good” Calderén-Zygmund
decomposition.

2. Boundedness of 9, and technical lemmas. In order to simplify the
notation in the rest of this paper, the measure u of a set E will be denoted by
|E], and the integral with respect to u by {& f. Also, B will always mean a ball
in X, and B the cylinder

{(x, )e X*: xeB, 0<t<radius of B}.
DeriniTION 3. Suppose @ is a weight on X and § a positive Borel
measure on X*. We say that (o, BeC,.,y 0<y<, if

BB
|Bl”

8 (j"w"""”)”plgc, l<p<oo, 1<qg<o0,
B

where the supremum is taken over all balls B in X.
In case p=1, Cy,, will denote the set of pairs (w, B) such that

ﬂ( By
© 1B

<Co(x) ae, 1<g<oo.

- The infimum of the constants appearing -in. (8) and (9) will be called
Cpyn(@, f) and C, (o, B) respectively. If g=pand y=1 we shall write

simply C,,,; =C,.

Lemma 1. Let 1<p, g<o0, 0 <y<1 and (o, B)eC, .. Suppose f is a
positive function with bpunded support and such that fel”(X, wdy). Then
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for

gocryin W lieronn (A>0if B(XT)=+o0)

there exists a sequence of disjoint. balls {B;}2, in X such that:

{i) ASIBITT[f<CA i=1,2,...

BI . ..
(i) There exists a constant K such that {KB;}2 is a covering of
E} = {xeX: M,[(x)>4}.
(iiiy {(KB;) }21 is a covering of the set
Ay ={(x, 0eX": M, f(x, 1) > C, 4}

where, K is the constant which appears in the covering lemma of Section 1 and
C, is the constant in (5).

Proof. Only the case 1 < p < co will be considered since the modifica-
tions needed to deal with the case p =1 are fairly straightforward.

Given xeE}, consider the family of radii r such that
(11) Bx,n~? | f>4

B(x,r)

This family has a finite supremum, say r, (x), since if B is a ball satisfying (11)
then

(lBl_yjf)q < Afg:l)m (gj»pw)ﬂp(b!'w'p'/p)q/pr

= _B(B)
BB <=
c , p)*
<Coarl® Wy, o <X
where (10) and Hélder’s inequality (applied to (fw'/") w™ /%) have been used.

On the other hand, E} is bounded. This can be proved as follo?vs.
Suppose that X # B(x, r) for any xe X and r > 0 (otherwise there is nothing
to prove) and that supp f < B(xo, 7). We shall show that for n large enough
E} < B(xq, nrg). . )

We choose n such that n/2+k <n (ie. k <n/2), where k is the space
constant. It is easy to see that if y ¢ B(xq, nro) then B(y, (n/2k)ro) N B(xo, ro)
= ( and therefore

M,f(3)= sup [B(y,sI™? | f

s> (n/2krq B(y,s)

- i1
< sup B9 [ fr0) (| o)
s> (n/2k)rg Bly,s) B(y,s)

< CP,H.Y (CD, B) “f”Ll’(X,Mu) s>(sr:‘/12€)ro ﬁ(B (y’ S))

—1/q
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Now, the condition imposed on A allows us to choose n large enough to
make the last expression smaller than 4. So we have the bounded set E}
covered by the family {B(x, r;(x)): xeE}}. Then by the covering lemma in
Section 1 we get a sequence {B(x;, r(x)) k= of disjoint balls satisfying (ii).
The definition of r,(x) and the properties of doubling measures imply (i).

Finally, we do some more work to prove (iii). Given (x, tye Al , it is
clear that xeEt; = E} and so there exists a ball B(x;, Kr(x;)) in thevabove

covering such that xe B(x;, Kr(x;)). Suppose t > Kr(x;); then x; B(x, s) for
any s >t and therefore )

CY;" < SJﬁ]'vf('x’ [) < éﬁtyf(xi: t) < Cy ‘lmyf(x,, t).

Ip ;.)articu.lar, M, f(x;, 1) > 4 and r(x;) < Kr(x;) <t which gives us a contra-
d1ct;on~w1th the definition of r(x,). In other words, t < Kr(x) and then
(x, t)e B(x;, Kr(x;)). This concludes the proof of the lemma.

' Ll?MMA 2. Let 1< p <o and (o, B)eC,. Suppose f is a positive Sune-
tion with bounded support and such that feIF(X, wdy). Then for

P Cplw, p) » .
AP > —.ﬁi(ﬁx—‘;)_“f“Lp(X.wdﬂ) (A >0 lf ﬂ(X—f*) = + w)

there exists a sequence {Q;}%, of disjoint subsets of X such that:
() f()<A for ae x¢()i2,0;.
(i) cA<IQI™ o, f <CA, i=1,2,...
(i) There exists a sequence {x;, r(x)}2, in X* such that

B(x, r(x)) = Q; = B(x;, Kr(xy)).
Here C and c are constants depending on the space.
Proof. Let {B(x;, r(x))}z; be the family obtained in Lemma 1. We
define Q; by recurrence as follows:

0, = B(x;, Kr(x,))\ _L_}1 B(x;, r(x))),
Ji>

Q, = B(x,, Kr(x,.))\lgn 0\ L>) B(x;, r(x)), n>1.

Now, conditions (i), (i) and (iii) are easily ch ing t i
, y checked by using the properties of
B(x;, r(x;)) and Remark 2 in Section 1. ¢ pro

Remark 3. In the literature, various lemmas related with Lemma 2 can
be fOUI}d. 'One way of trying to obtain part (i) and the right-hand side
mcquah!;y in (i) is using a lemma of Whitney’s type for the set EY (see [4]
[6]). With this method the radius of the ball with center x is zssentiall):
¢(x, (E}F). The balls obtained in this way do not in general satisfy the left-
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hand side inequality of (ii) as can be easily seen in the case X = {2": ne N|
with g(2", 2™) = |2"—2™ and p(2") = 2"t

Some of the ideas developed in Lemmas 1 and 2 can be found in [13]

- for the particular case in which X is a locally compact Hausdorff topological

group with a left-invariant Haar measure p and a translation invariant
pseudometric g.

TueoreM 1. Let 1 <p, g <oco and 0 < y < 1. Then the inequality
(12)
C
Blfx, DX W1 (x, 0> M) < 51 Mgy S LK, M), 4> 0,

holds if and only if (w, f)eCpyy-

Remark 4. In the particular case of df(x, t) = v(x)du(x) ®d, () with v
a weight on X and &, the Dirac delta at t = 0, we get the exact condition on
the pair (v, w) for M, to be a bounded operator from LF(X, o dy) into weak-
(X, vdy). f wo=v, p=1 and p=g, it was already obtained by A. P.
Calderon (see [3]). The proof there consists in proving the theorem for
maximal functions of the type

MRf(x) = {|BI"! [If]: xeB, radius of B< R},
B

and then the fact that MRf(x) » Mf(x) gives the result.

This technique was also used in the case X = R" with Euclidean norm
(see [18]). In the present case, an easy modification of the covering lemma
suffices to apply the method. However, since Lemma 1 is at our disposal we
give here a short proof based on it.

Proof of Theorem 1. For any ball B it is clear that
Be{x, next: M, f(x, 0= B[S}
B

Then, by taking f =y P/ in the case p > 1, the inequality (12) gives

(w, P)e Cpgy- . .
In the case p =1 take f = yp @~ ' where B’ is any ball contained in B.

The hypothesis says that
BB < CIBI(fo) (o tw)=CIBY (fo™) " IB].
B B B

Now on letting B’ tend to x, Remark 2 in Section 1 gives (w, f)eCy 4,y-
Conversely, we assume (o, fle C,,,, p > 1 (the case p = 1 is completely
similar) and we have to prove (12). It is sufficient to consider feI*(X, wdy)
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with bounded support. If

Cpay (@, B
1 s-TZ’Z—A%-—_‘_—)TE“l|f|IU’(){.:.L)(MJ)

then inequality (12) is obviously satisfied.
Otherwise we apply Lemma 1 to the function |f| and we have

0 -~ o0 KB, - "
par < )< 3 EER Jgp s iy
E - ﬂ((KB;)] p, NP - p'Ip\ilP’
S iZ‘ |KBy|" (i;[,.lf] & (J,.w )
C 3
<cCuat@ By

and this concludes the proof of Theorem 1.

Note. In the first part of the proof we have assumed that ™ */? and
™! are integrable over balls. This can be obtained from (12) as follows:

If [po™??={30'"% = [~ "o =00 then there exists feIf(B, wdy)
c IP(X, wdy) such that 3 fo™'w = oo and then M, f = co.

If [po™" =oco then M(rz0™") = co with gy e (X, wdy).

Both cases contradict (12).

Some results concerning the boundedness of the operator M; = I in

the case X = R" can be found in [16] and [17].

3. Main results. Given E, F Banach spaces, .#(E, F) will be the set of
bounded linear operators from E into F.

THEOREM 2. Let E, F be Banach spaces, Suppose that:

(@) T is a bounded linear operator from L§(X, wdy) into LE (X, B) with
(w, BeCy. .

(b) There exists an % (E, F)-valued function K on
x[0, )\ {(x, x, 1): xe X, t 20} such that:

(b1) For any (x,t)e X™ and any ball B such that (x, t)¢2B we have
{ellK(x, y, )l di(y) < + 0. Moreover, for f in LF(X, w) with support con-
tained in a ball B the following representation formula holds:

X xX

If(x, 1) = iK(x, ¥, 0.fdu)  for (x,1)¢2B.

oy, y)
(e(x, y)+1)[B(¥, elx, y)+1)

Jor o(x, y)+1t > 20y, ¥).

®2) K, y, )= K(x, ¥, Yl gwr < C

icm
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Then:
(i) T maps LE(X, wdy) into (X", f) for 1 <p < 0.
(i) T maps L}E(X_, wdp) into weak-Ly (X ™, B).

In the case w(x) =1 or, in other words, when the condition C,; means
that we have a Carleson measure on X+ (ie. B(B) < C|B] for every ball B in
X) the following result holds:

TueoREM 3. Suppose that T satisfies hypothesis (b) of Theorem 2 and
also

(a) There exists a po, 1 <py< 0, such that T is a bounded linear
operator from LiP(X, p) into L2(X™*. B) where B is a Carleson measure.

Then:

(i) T maps Lp(X, p) into Ly(X™, B) for 1 <p< p,.

(i) T maps LL(X, p) into weak-L:(X™, p).

THEOREM 4. Suppose that T satisfies hypotheses (a) and (b) of Theorem 2
for any pair (w, f)eC,.

Then the following vector-valued inequalities hold for any Carleson
measure o on X*:

(i) For 1 <p,gq<o0

CE NT Yo < C I 1D o

j=1

(il For 1 <g < o0

o C (=]
a({ex, 0e X 0 T AT Ol > 2) < 5 [( 3 1) du).
i=1 X j=1
The above theorems have already been shown in the case X = R" with
Euclidean norm (see [18]). As will be seen below a crucial step in the proof
of Theorem 2 is to obtain a Calderén—~Zygmund decomposition where the
considered disjoint sets Q; satisfy

A <117 [l e
Qi
This will be possible thanks to Lemma 2. Once it is done the proofs of
Theorems 2 to 4 follow, except for more or less complicated technicalities,
along the same lines as_ in [18].
Nevertheless, for clarity we give here the complete proofs.

Proof of Theorem 2. It is enough to prove (ii) and then apply
Marcinkiewicz’s interpolation theorem.
For a fixed 1 > 0, we want to prove
C
(13) B(ie, DeX ™2 ITf (x, llp > A}) < I_“lf(x)”E w(x)dpu(x).
X

3 — Studia Mathematica 88/3
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Take a function f in LE (X, odp) N LL(X, ody) with bounded support and
apply Lemma 2 to the function f — [|f ()|l and 4 (observe that if 1 does not
satisfy the hypothesis of Lemma 2 then (13) is obvious).

Now, we decompose f into the functions g and b given by

g9 =109 for x¢UQ
gx)=1Q)~ [ f for xeQ;, i=12,...,

Qi

b9 = £(9=0(9 = (/=101 ] /)10, = T2

In the rest of this proof B; = B(y;, r(y,)) is the ball associated with Q, by the
relation B; = Q; = KB, (see Lemma 2). We shall also consider the set

D, =Y%Z,KB)".
Using the properties of Q; it is easy to see that g(x) < CA for a.e. x and

||g||L1(X’wd#) < ||f||Lé(X’wdm. By hypothesis (a) we have
E

IITQIIL;Q(,mm < CIIy!ILEu‘x‘m,,,‘) <Ci
and therefore
B{(x, De X2 ITf (x, t)lr > 2C}) < B({(x, e X™*: | Tb(x, D)y > Ci}),
and so it is enough to show that
(14) B({(x, e X2 [ITh(x, s > A}) < %
We have
B({(x, e X2 ITb(x, Ollr > 2}) < BD)+B(i(x, DEDy: I Th(x, D]lp > A}).
Let us estimate these two measures:

B(D;) = Z E(—M—@—)

i“f(x)”b'w(x) du(x).

0: i ij(x)IIEdu( x)

»FQ

=Z [Ilf g 0 (x)du(x) < -*)f{llf(x)llaw(X)dﬂ(x)

where the constant appearing in the second inequality depends on the C,
constant and on the space constants.
On the other hand, we have

B({tx, D¢ D3 ITh(x, lls > 2}) <A™ [ I Th(x, OledB(x, 1)
L
<A [ IThiCx, DlledBlx, 1),
P o
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By hypothesis (bl) ‘this is smaller than

Y QIHK(x, ¥, )—K(x, yi, b (1)lle du () dB (x, 1).
i Da‘ i
In this case either ¢ > 2Kr(y) > 20(y, ;) or a(x, y;) > 2Kr(y) > 20(y, y)-
Then hypothesis (b2) applies and we deduce that the last expression is less
than

C 2

IZ(J, l1b: D)l du () M; < ~/—1C-Z (g_llf(y)lln du(y)) M
where

M, = esssup | ey, »)

veoi s (€05 W) +1)[B(v, 0Cx, y) 1) dB(x, 1).

But if we put
A ={(x,0eX*: 2" Kr(y) > o(x, y)+t > 2°Kr(y)}, n=1,2,...
then

’

| e(y, y)
o (@06 )+ 1) By, 0(x, y)+1)
& df(x, 1)
<Krv) ;A{ (2 Cx, y)+1)[B(vi, a(x, y)+1)|
1 BB 2" Kr(w)
KO L Rty B0 ZKrO0)
since if @(x, y)+t=2""'Kr(y) then (x, )eB(y;, 2"** Kr(y)). Now, since
(w, PeC, we get M; < Cw(y) for ae. yeQ,. In particular,

(Qj. f Wiledu()) M; < é. I Ol @ (v) dp(y)

l dp(x, 1)

and therefore the disjointness of Q; gives the result.

Proof of Theorem 3. The same scheme as in the above proof works
except for the following computation:

B({(x, De X [Ty (x, Dllr > 2})

<A’ I 1Ty (x, DIl dB(x, ) < fl!g(X)Il B du()

,1 I llg (e dp () < I S dux)

X

and the fact that for f a Carleson measure, M; < C.
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Proof of Theorem 4. Given an operator as in Theorem 2, we can
define a new operator T mapping F(E)-valued functions to (F)-valued ones
(where s is fixed, 1 <s < o0} by

T(f1sfor oo S o) = (Tfis Thas ooy This )
By Theorem 3, T maps L (X, p) into If(X™, @) (1 <g < o0), and so it is
clear that T is l)ounded from L4 )(X, 1) into L",qm(X'*, o).

(E. ~
Moreover, T is an operator like T but with associated kernel K (x, y, t)

such that

K(x, y, D{e),) =(K(x, y, t)ozj)f;l, () = E.
Then

IR (%, Y5 Ol yagey oy = 1K (%5 95 Oll gy

Now, by Theorem 3 taking ¥(E) and F(F) as the Banach spaces and p, = ¢
we obtain part (ii) of Theorem 4 and also part (i) in the range 1 <p<gq
< co.
To prove part (i) in the case 1 < ¢ < p < co we shall need the following:
Lemma. Let u be a function in L’(X*, o), 1 <r<oo, where a is a
Carleson .measure. Consider the maximal function
u*(x) = sup|B| ™" [lu(x, 1)) do(x, 1)

B

where the supremum is taken over the balls in X which contain x. Then
’ *
el gy S CllUll g -

Before proving the lemma we shall finish the proof of Theorem 4.
Let r = p/q and

(15) | CITAHE e = (| SNTHlIgude)
x+ J X+j
where 4> 0, ue ' (X", ) and lull g+ 4 < 1. It is obvious that the pair

(uda, u*dp)e C, and thus by Theorem 2 the right-hand side of (15) is smaller
than -

C(j[ Z A% % dp) < C [l € i (2 I1l18) dy)
< C QA" dy

J
Therefore Theorem 4 is proved.

Proof of the lemma. It is clear that

[ | TN O L sy

icm®
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Therefore it is enough to prove

C
(16) [{xeX: u*(x) > A} S'I [ lu(x, ) da(x, 1), 4>0,
xt+
and apply Marcinkiewicz’s interpolation theorem.
But (16) can be shown by an argument parallel to the proof of Lemma 1
and Theorem 1. We omit the details.

Remark 5. If 0 <a <o and
B*={(x, e X*: xeB, 0< 1" < radius of B}
then all the theorems in this sectiori remain valid if we make the following
changes:
1. B is replaced by B? (even in the definition of Carleson measures and

conditions C,,.).
2. Condition (b2) of Theorem 2 is substituted by

oy, y)
o(x, Y)+1Y|B(, e(x, y)+19)
for g(x, y)+1t* > 20(y; ).

Remark 6. In Theorems 2-4, condition (b2) on K can be replaced by
the following:

(b2y

IK(x, y, )—K(x, ¥, ol < C(

1K (x, y, ) =K (x, ¥, DlldB(x, 1) < Cw(y) for ae. y, y',
e(x,y") +t>2e(y,y)
and the proofs go along the same lines.

Remark 7. With obvious changes in Theorems 2-4, we can get similar
results for operators mapping E-valued functions on X into F-valued ones
on X. For example, we have:

PrOPOSITION. Suppose that: :

(a) S is a bounded linear operator from Lg (X, u) into LF (X, y).

(b) There exists an % (E, F)-valued function K on X x X\ {(x, x): xe X}
such that:

(b)) ()= [K(x,»)f»)duly), x¢B, suppf < B.
X

Co(y, y)
olx, Y)|B(y's e(x, )|
Jor o(x, y) > 2e(y, ¥)-
Then S satisfies vector-valued inequalities analogous to- these for T in
Theorem 4 (with (X, «) replaced by (X, u).

(b2 |IK(x, )—K &, Y)lewn <
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4. Applications. The first application is the following:

THEOREM 5. Suppose that (X, ¢, 1) is a homogeneous space which satisfies
one of the following conditions:

(@) o is a metric. -

(b) X is an abelian (additive) group and ¢ is translation invariant.

Then, if a is a Carleson measure on X™ and M, = M is the operator
defined in Section 1, the following vector-valued inequalities hold:

(i) For 1 <p,q <

”(j§1 (mfj)q)llq“ﬂ(x*‘.u) <¢ ”(}§1 Iﬁ'q)llq”w(x.u)'

(i) For 1 <g<o0

w0

}{( 3 6™ du).

Jj=1

a({x ex: Z (D% Cx, ) > 2}) <

ji=1

FIQ

The proof will be given after the following construction. Sﬁppose that
the homogeneous structure is given by a metric d. Consider a function ¢: R?
— R such that:

A) 110,11 x10,1] S @ € X[~1,2) x(~ 1,215
c 2
(B) Vo, vl < S+ (u, v)e R*\ {0}.

Condition (A) says that the operator
f (x, 1) = sup|B(x, Nt )j(fp(d(x, Wt f3)dp(),  (x, He X",

is well defined for feL™(X, y).
We now state the following:
THEOREM 6. @ satisfies all the conclusions of Theorems 2 and 4

Proof of Theorem 6. We put
Tf (x, t) = {|B(x, r) jtp( W tr) f () dr() }>o-

Since ||Tf (x, ), = ®f (x, 1) the boundedness properties of T from I into
I, are equivalent to those of ¢ from L? into I*. Thus in order to finish the
~proof les us check that T satisfies the hypotheses of Theorems 2 and 4.

Condition (A) on the function ¢ implies easily that T is bounded from
L*(X, wdp) into L*(X™*, B) for any (w, f) in C,.
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On the other hand, the mean value property and condition (B) imply
a(y, y)

that
(52,5 (10 )t
where ¢ =d(x, »)+0(d(x,y)~d(x,y) with 0<6<1 Now, if
2d(y, y) €d(x, y)+t we have
& =(1=0)d(x, y)+0d(x, y) = (1-6)(d(x, y)—d (¥, y))+0d(x, y)
> d(x, y)~ (1= 0)d(x, y)~4(1-0)1 > 3d(x, y)—t
and thus the right-hand side of (17) is smaller than or equal to

d(y, y)
d(x, y)+t~

7

Suppose that we prove the following:
(18) If 2d(y,y) < d(x, y)+t and

d(x,y) t d(x,y) t
(*)=(P<"‘—r a;)—‘l’(“——r ,;‘)¢0

then B(y, d(x, y)+t) < B(x, 147).

Then since p is doubling we get

G222 )

<cC dy, y)
(d(x, y)+1)|B(Y, d(x, ¥)+1)

100

for 2d(y, y) < d(x, y)+t¢,

and Theorem 6 follows.
Proof of (18). If ze B(y, d(x, y)+t) then
d(z, x) <d(z, y)+d (', x) < 2d(x, y)+t.

Now, t < 2r because otherwise () in zero. Analogously, d(x, y) < 6r because
otherwise

d(x, y) = d(x, y)=d(y, y) = d(x, y)~}d(x, y)—5t > 2r
and then () is zero again.
In particular, d(z, x) must be less than 14r.

Proof of Theorem 5. ¢ is a metric it is - clear that
M (x, 1) < Bf (x, ) and then Theorem 6 gives the result.
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If ¢ is a translation invariant pseudometric it is well known (see [2])
that there exists a metric d, an exponent 0 < a <1 and a positive constant
M such that

d(x, y) < o(x, y)' < Md(x, y),

T we write B,(x,7) = {y: o(x, y) <r} and B,(x,r) = {y: d(x, y) <r}
then we have

x,yeX.

(19) By(x, r*/M) < B,(x,r) < By(x, 1), (x,r)eX".
This says that
(20) Wef(x, 1) < CVSf (x, 1), "(x,eX*

(where 9%, ¢ are the maximal functions IR associated with ¢ and d
respectively).
It is clear that if

¥f (x,1) = Sulnga(X= NI~ feld(x, y/r, /) f (1) du(y)
r> X

then
(21) MS (x, 1) € Pf(x, 1),

and the argument in the proof of Theorem 6 can be used to prove that ¥ is
in the situation described in Remark 5 of Section 3; then it can be concluded
that ¥ satisfies inequalities (i) and (ii) of Theorem 5 for any a such that

a(B,(x, r*) x [0, r]) < C|B,(x, rY).
But, by (19), this is equivalent to
o(By(x, ) x [0, r]) < C|B,(x, )|
(ie. o is a Carleson measure). Now, (20) and (21) give the result.

Remark 8. In'the case X = R" and da(x, t) = dx®5, (), Theorem 5 is
due to Fefferman and Stein [10]. Their proof is based strongly on the
existence of dyadic cubes in R". The proof by the Calderén~Zygmund theory
is given in [15], where we give a systematic discussion of vector-valued
singular integrals in R".

For X = R" with Euclidean norm and Lebesgue measure, Theorem 5
can be found in [18]. The translation invariance of the measure avoids some
technicalities.

The second application we shall give needs some notation connected
with tent spaces.

Now, we shall suppose that X is an abelian additive group with a
translation invariant pseudometric ¢ and a doubling measure u.

icm®
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Given xe X we shall denote by I'(x) the set
0, DeX™: olx, y) <t}.

Following [5] we define the functional mapping functions on X* into
functions on X given by

Ap(F)(x) = sup [F(y, Olg-

X {(»ellx)
THEOREM 7. Suppose that:
(@) T is an operator mapping E-valued functions on X into F-valued ones
on X* such that

M (Tl oy < g
(b) There exists an ~ F(E, F)-valued kernel K on XxX
x [0, o)\ {(x, x, £): xeX, t =0} satisfying (bl) and (b2) of Theorem 2.

Then:
@) For 1 <p,q<

”(Z A (Tfi)q)llq”w(x.u) <C "(Z |U}”qE)”q”LP(X,u)'
i J
() For 1 <g< o
[fxe X: TIAa (TR > 2 < (I du o)

In other words, T satisfies vector-valued inequalities from I7(X, ) into
the tent spaces TE(X*, w) (see [5]).

Proof By the translation invariance of ¢ we have (y,f)el (x)<>
(x—y, )el'(0) and therefore

22) A (TS (%) = JSup TS (x—u, Dl

u,)e I(0)

= sup [|Tf (x~u, )xpo.n Wl
mnext

This gives us an opportunity of considering the following op‘erator: let v be
the measure on X+ given by dv(x, t) = du(x)®dt (where dt is the Lebesgue
measure on [0, o)) and let G = Lg(X*,v). We define

Sf (x)[(u, 1)1 = Tf (x—u, 1) xs(o. (4)-
i impli i ing E-valued
Hypothesis (b1) for T implies that S is an operator mapping
fuigtions on X into G-valued ones on X given by the Z(E, G)-valued kernel
(in the sense of Remark 7)

K~(x= y)(e)[(uz t)] = K(x——u, ¥, t)(e)XB(o,n(“): eEE’ (u: t)EX+'
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In order to apply Remark 7 observe the following two facts:
1. Hypothesis (a) and (22) say that § maps L7 (X, ) into LF(X, p).

2. K (x, =K Yllesa

< sup |]K(x-u, Y, t)‘—‘K(X'"‘M, y/a t)”Z(E,F)a
(u,nel0)

and so from hypothesis (b2) it is not hard to prove that
oy, ¥)
e(x, ) [B(y, a(x, ¥))
for g(x, y) > 22(y, y).

Now, Remark 7 gives the vector-valued inequalities for S and the result
follows by observing that A, (Tf)(x) = ||Sf (*)lle-

HIZ (x, y)~IZ(x, Ylzee < c

Note. Some examples of operators as in Theorem 7 are provided by
the Poisson kernel in different settings. For instance, the Poisson integral
Pf(x,t) (where X =R", du=dx, ¢(x,y)=|x—y| and K(x, y, 1) =c,t(x
—y|?>+1t%)~®TD12) or the heat equation solution Wf (x, f) (where X = R, du
=dx, o(x—y)=|x—y* and K(x, y, t) = (4nt) "2 exp(~|x—y|*/41)).

In particular, Theorem 7 implies (by the standard arguments) the well
known results about “nontangential” (i.e. along the corresponding domains
I'(x)) convergence for these operators.

5. Applications to parabolic singular integrals. B. F. Jones Jr. introduced
in [11] a class of convolution singular integrals of the form

(23) ]ingz {K(x~y,t—5)f(y,9)dyds, 0<t< o0,
e0 0 pn

where f (v, 5) belongs to IF(R" x(0, c0), dxdt), 1 < p < oo, and K (x, t) satis-
fies:
(i) K(x,)=0, t<0.
(i) K(Ax, A™t) = A"""™K(x, t), where 4 is any positive number and m
is a fixed number greater than 1.
(i) If 2(x) = K(x, 1) then:

fa+I2Mxdx<C,  [Q(x)dx =0,
R" R
f12(x=y)~Qx)dx < Cly,
R"
f12((1+9) %)~ Q(x)|dx < €8
R

yer,
for 61,

| 12(x)dx < Ca™n,

|x|>a

a>0,

icm®
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Jones shows the existence of the above limit in the IP sense. In
conclusion he raises two questions:

(a) Under what conditions does the limit in (23) exist pointwise almost
everywhere in R" x(0, c0)?

(b) If

Fox 0 =sup| | [ K(x—y, t=5)f(, )dyds
e>0 0 R

’

under what conditions ||f*||, < C,lIfll,, 1 <p < o0?
Later Fabes and Sadosky [9] showed that (i), (ii) above, [, Q(x)dx =0
and

(o

_C =,
e

n

0
@iv) |K (x, 1)+ )EZK(x, 1)‘ < .
(with C an absolute constant) are the desired conditions for both (a) and (b).
Using the techniques developed in Section 3 we can prove the following.

TuEOREM 8. With the above notation, if K satisfies (i), (i), [ 2(x)dx =0

and (iv) then: :
C o0
@ & 0: frx > <o fJ1f(x, Oldxde, A>0.
0 gn

(b) For feL'(R"x(0, o0), dxdt) the limit in (23) exists pointwise for -
almost every (x, t)e R" x(0, ).

One of the main ingredients in the proof of this theorem will be the
following:

TueoreM 9. Given two Banach spaces E, F and a homogeneous space
(X, d, y) with d a metric, suppose that:

(a) T is a linear operator from A-valued simple functions into B-valued
measurable ones.

(b) There exists an & (E, F)-valued function K in X x X \{(x, x}: xeX}
such that:

(1)  Tf(9)=[K(x, »fO)du(y), suppf =B, x¢B.
X

(b2) ) IK (x, »)—K (x, Yldu(x) =C,  y,y'eX.

d(x,y") > 2d(y.y")

(b3) [ IKGe lldp+

a<d(x,y) <2a a<d(x,y) <2a

[IK (x, ¥l du®y) < C,

x,yeX, a>0.


GUEST


240 F. J. Ruiz and J. L. Torrea

(c) The sublinear operator

T*f(x)=sup| [ K »)S@duO)r

£>0 d(x,y)>e

is bounded from Lg(X, p) into IF(X, ) for some p, 1 <p < c0.
Then:
(@) T* maps L& (X, p) into [X(X, 1) for 1 <q<p.
(i) T* maps Ly (X, p) into weak-L! (X, p).

Proof of Theorem 9. Let ¢: R— R be any derivable function such
that Yz o) < ¢ < ¥, and |@'(1)] < C/t.
Consider the operator

SF(x) = 1S, S ()}es0 = {[ K (x, Y) @ (d(x, y)/e) f () du (D }ss -
X

It is to be thought of as an operator with kernel J: X xX
— Z(E, I(F)) given by
J(X, y) \‘I ()C y)}e)O = {K(X, y)(/)(d(x7 y)/a)}z>0'
Observe that
Ve (x, p)=Jelx, Y)I

“K(X y) K x yl)”+“K x y’)lll (d(x J/)> (P(d(x’ yl))‘

&

In particular, by applying the mean value property and the fact that
|o’ ()] < C/t we have
f W (x, )=J (>, y)lldp(x)

2d(y,y") <d(x,y")

= j‘ SUp“JE(X, .y)'—']x(xs yl)“dﬂ(x)

2d(y,y") <d(x,p') £>0

A

[ K =K (e )l dp()
2d(y,y’) <d(x,y")
e K e y)du( %).

2d(y,y) <d(x,y") d(x,

Now, we decompose the set {2d(y, y') <d(x, y)} into the pieces {2/d(y, y)
<d(x, y) <2 d(y, )} ((=1,2,..) and we apply hypotheses (b2) and
(b3) . We thus get

(29 P Ve »=J, Yildux) < C

2d(y,y") <d(x,y")

icm®
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On the other hand, the operator

Troo={ | K& ) fMde()hso

d(x,y) >

is bounded from LE (X, p)into TET. (X, 1) by hypothesis (c). The difference
operator S—T has kerﬁeb

(25) :K(X~ y)(p(d(x, Y)/S)X{e<d(x,y)<2z:l}x>0-

Hypothesis (b3) says that the kernel (25) is in L;w 1oy (X 1) (considered as

a function of the variable y). This means that the boundedness properties of
T are the same as those of S.

Now, (24), Remark 6 and Theorem 3 (taken in the spirit of Remark 7)
lw(F)(X’ p) for 1 <g<p and

from Ly (X, p) into weak-Ll, (X, ), and this gives the result for T.

199(F)

Note. This class of results was considered by Riviére [14] using
different methods.

Proof of Theorem 8. Take X = R"x(0, cv) and du(x, t) = dx®dt.
We shall denote by X, § the elements (x, 1), (¥, s) in X. (X, ) becomes a
homogeneous space with the metric d defined by [|X]| = |x|-+t¥/™ (i.e. d(%, 7)
= ||%~ ¥)).

In this context, f* can be considered as an operator with £ (C, I)
= [“-valued kernel given by

K(x, §) =

Fabes and Riviére showed in [8] that the L'-norm of the function

{K(f—f) xl]l|>n}(t_s)}e>0'

K () (e »e1 () = X1 >e (XD}

is bounded independently of & From this fact it is easily deducible that the
boundedness properties of f* are equivalent to those of the operator T* as
in Theorem 9 given by the kernel

J(%, 5) =KX= 2yz1>0(X~Dleso-

So that we shall verify conditions (b2), (b3) and (c) in Theorem 9 for the
operator T*,
Condition (b2) is essentially proved in [8]. In order to prove (b3), by the
translation invariance of u it is enough to verify that
[ V(X O)lldxdt < [ IK(x, ) dxdt < C.

a<||¥|| <2a a<||E|| <24
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But
|K (x, t)]dxdt = j 7m0 (x/tM™ dx dit
a<||%| <2a a<||¥|| <2a
< [1ewi( Lo dt/t)du
R a(1+|u)) = L <tk <2a(1 + |u]) = 1

and then it suffices to apply hypothesis (iv).

Finally, the result of Fabes and Sadosky mentioned above gives hypoth-
esis (c) of Theorem 9. i

Therefore, we have proved part (a). The almost everywhere convergence
is a standard consequence of the boundedness properties of f* together with
the existence of a nice dense set where this pointwise convergence holds.

Remark 9. The parabolic singular integral operators appeared in con-
nexion with the heat equation and more generally in connexion with
inhomogeneous parabolic differential equations with constant coefficients (see
(71, (11

Spatial derivatives of solutions of these equations are typical examples
of parabolic singular integrals.

In dimension 1, the standard example is the operator T in R x(0, o)
given as convolution with

2
K(x, 1) = _]_.n«uz (%_%)ew%m).

372

It is a straightforward calculation to see that if ||(x, f)]| = |x|-+t¥% and
2[|(y, M <IiGx, Bl then

liy, )i
[K(x—y, t—s)—K (x, )]  C—022 2 ___
S =y, =9
On the other hand, the operator T is bounded on I2 (R % (0, o0), dxdt) (see
[7D). |

The general theory: of singular integrals can be applied in this homoge-

neous space and in particular (see [12]) Cotlar’s inequality in this context
says that

J*(x, 1) < Cy M(Tf)(x, 1)+ C, Mf (x, 1)

where M is the Hardy-Littlewood maximal operator in R x (0, o).

Then the result of Fabes and Sadosky about the boundedness of J* on
I? follows from Cotlar’s inequality. In other words, hypothesis (c) in Theo-
rem 9 can be omitted in this case.
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