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Added in proof (September 1987). The author has recently found a new proof of Watson’s
product formula (4.3) for Luguerre polynomials (Canad. Math, Bull, to appear). The proof is
based upon the observation that (4.3) holds for « = 1, 2, ... This is established by considering
the commutative Banach algebras of radial functions on the Heisenberg groups H,, n > 2. Then
a thcorem of Carlson is used to get the validity of (4.3) for all values of « with Rea > —1/2,
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Measures on groups with given projections
by
R. M, SHORTT (Middletown, Conn.)

Abstract. A theorem of Lindenstrauss asserts that every extreme doubly stochastic measure
is singular. This result is extended to the case of locally compact groups.

§ 0. Introduction, Let A be the Lebesgue measure on I = [0, 1]. A Borel
measure u on IxI is said to be doubly stochastic if u(A xI) = u(I x A)
= A(4) for each Borel set A =I. The collection of all doubly stochastic
measures forms a convex, weakly compact set whose. extreme points have
been the subject of much study: [1]-[3], [6]-[8]. It was shown by Linden-
strauss [6] that every extreme doubly stochastic measure is singular with
respect to the planar measure A®A. In [8], this result was generalized.

Let Ly, ..., L, be nontrivial linear subspaces of R". Suppose that v is a
probability measure on R" and let E be the convex set of probabilities on R"
whose projections onto Ly, ..., L, agree with those of v. In [8], it is proved
that the extreme points of E are singular with respect to the n-dimensional
Lebesgue measure on R" The fact that homotheties of R" by a scalar r
change the Lebesgue measure by a factor of r" was an important feature of
the proof.

We further generalize this result to the context of a locally compact
group. An appropriate convex set is the collection of all measures on the
group whose projections onto various quotient groups are prescribed. Under
suitable hypotheses, the extreme points of this set will be singular with
respect to the Haar measure. For the proof, one must compensate for the
fact that homotheties are not available in the context of groups. As in almost
all work in such problems, the following result of Douglas and Lindenstrauss
is crucial. ‘

Let (X, v) be a finite measure space and let F be a linear space of v-
integrable functions containing all constant functions. Let E(v) be the
(convex) set of all finite measures ¢ on X such that

[fdv=[fde
for each feF.
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. 0.1. LeMMaA. A measure v is an extremeé point of E(v) if and only if F is
dense in L'(X,v).

Indication: See [3] or [6].

Some remarks on notation are as follows. If A4 is a set, then |A4| is its

cardinality. Also, 1, is the indicator (characteristic) function of 4. If G is a
group, then the symbol e denotes its identity element.

§ 1. Basic results. Let G be a locally compact group and let H be a
closed subgroup of G. Let n: G — G/H be the canonical projection onto the
(left) coset space G/H. Let M™* (G) be the collection of all finite regular Borel
measures on G. If ve M™* (G), then =n(v) denotes the Borel measure on G/H
defined by 7 (v)(B) = v(n~*(B)). Since = is a quotient map, % (v) is a regular
Borel measure.

1.1. Lemma. Let H be a closed subgroup of a locally compact group G.
Let m: G — G/H be the usual projection and suppose that v and g are elements
of M*(G). The following are equivalent:

(1) () = n(0)-

(2) [fdv={[fde for all bounded Baire-measurable functions on G that
are constant on the cosets of H.

Proof of the lemma above is omitted; it is standard.
Let Hy, ..., H, be closed subgroups of a locally compact group G and
let v be a finite regular Borel measure on G. Define

E(Hy, ..., Hy; v) = {ee M (G): m(0) = m(v), 1 <i<n).
Define F, to be the linear space of all real functions on G of the form
X = fi()+ ... +£(),
where each f is a bounded Baire fuﬁction, constant on the cosets of H,.

12. LemMMA. Let Hy, ..., H,, G and v be as above. Then v is an extreme
point of the convex set E(Hy, ..., H,;v) if and only if F, is dense in L} (v).

The lemma follows from the theorem of Douglas and Lindenstrauss 0.1)
and Lemma 1.1.

1.3. LeMMa. Let u be the (left) Haar measure on a locally compact group
G. Suppose that E < G is a Borel set with uE < 0. If U is a neighborhood of
eeG with pU < o0, define

Ju(®) = p(E N Ux)/u(Ux).
Given ¢ > O, there is a neighborhood V of e such that if U <V, then

&“fv(x)" Le (o)l du(x) <e.

icm®
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Indication: [4; pp. 268-97.
§ 2. The main theorem.

2.1. TueoreM. Let Hy, ..., H, be closed nondiscrete normal subgroups of
a locally compact group G. Let my, ..., m, be the canonical projections from G
to the quotient groups G/Hq, ..., G/H,. Let v be a finite regular Borel
measure on G and let y be the left Haar measure on G.

If v is an extreme point of E(Hy, ..., H,;v), then v 1 u.

Proof. Write v = vo--v;, where vo Ly and v, <pu [5; 14.22, p. 180].
There is a Borel function Fe I (G, y) such that dv, = Fdu [5; 14.19, p. 1797].
We show that vy = 0. Suppose not. Then there is some & > 0 such that
pix: F(x)2 6} >0. Let E = {x: F(x)> &} be a Borel set with 0 < uE < co.

We now apply Lemma 1.3. For each m > 1, let V,, be a neighborhood of
e with compact closure such that whenever U < V,,, then

b[lfv(x)" Ly () dp(x) < 1/m.

Given a collection hy, ..., h, of not necessarily distinct elements of G
and 1 <k < n, define '

Crlhys ooy by = {hy by 1< <. <<}
and put
Co(hy, ..oy hy) = {e},
C=Chy, ..o, ) =Co(hy, .., B)U...0Cylhy, ..., hy.

Now,ifl<k<nand 1<i; <...<i <€n, the subset S{iyy..sip) of Hy ...
x H, defined by

SCity oos 1) = (s ooor ) By by =)
is a nowhere dense subset of H x...x H,: this follows, since none of the H;

is discrete, For each m 2 1, choose a point (hy, ..., h)e H; x...x H, so that:

1) hyste fori=1,.., n
2) (hy, ooy B)ES(y, o0y B)  for each (i, ..., i)
3) Clhy, ooy by & Ve

Then choose a neighborhood W of ¢ such that:

a) if ceC(hy,... h), then cW £ V,;

b) if ¢ and ¢’ are distinct elements of C(hy, ..., h,), then cWnc' W = .

Put U, = {cW: ceC(hy, ..., h,)}, noting that the choices of hy, ..., h,
and W depended on m. Define f, = fy, . Since f, — lg in L'(G, p), there is a
subsequence of the f, converging to 1 ae. for pu. Select x,€ E and m such


GUEST


260 R. M. Shortt

that .

2" —
Jn(x0) > 5
Define
L= (Wxonc 'E),

where the intersection is taken over all ce C(hy, ..., h,).
Cramm 1. We have uL > 0.
Proof of claim. Observe that
> (W hc"l E) =Z,u(cho NE) = p(U,,xe NE)
> 2" #(Um Xo) = Zc:,u(cho)

o (C=Clhy, ..., b))

Z (IC1—1) p(Wxo),

since |C] < 2"
For each ceC, define a linear mapping /: I*(G, v)— R by

= { fdu.
cL

CramM 2. Each I, is a bounded linear functional on L} (G, v).

Proof of claim. Because cL = E, we have
|Jdul <7 [IfIFdu< ™ [If1dv.

Define I: I'(G, v) —» R by | = (I),.
CraM 3. The range of 1 is all of R\

Proof of claim. Suppose that a is an element of RI°! whose compo-
nents are given by a(c) for ¢e C. Define f: G— R by

_Jalg/uL i xecL,
S0y = {0 : otherwise.
Then I (f) = a. (Note that ¢ s ¢’ implies cLnc¢'L = Q)

Since v is extreme in E(Hjy, ..., H,; v), the class F, (Lemma 1.2) is

dense in L!'(v). So I(Fy) = RIC!,
CLaM 4. The dimension of 1(F,) does not exceed |C|~—1.

Proof of claim. Given a nonempty set 4 < {1, ..

’

X n].’s

icm

. A
write A
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= iy, eees B} wherc] iy <..<iy<n Put c(4)=h...b and c(@) =e.

Then suppose 1<i<n and that g; is a bounded Baire function on G,
constant on the cosets of H;. We show that

() Ln(A) l(g) =0,
where the summation is taken over all subsets 4 of {1,..., n} and where
+1 if |4] is even
A) = ’
n(4) {»-1 if 4] is odd.

To see this, write the left member of () as
2 n(A) iy (@) + Y2 n(A) Ly (90,

where Y (resp. Y'2) indicates summation over A such that ie 4 (resp. i ¢ A).
If ig A, write A = A\ {i}. The pairing 4 — 4 gives a one-one correspondence
between terms in Y., and those in Y,.

Fact. Suppose ie A and put ¢ = ¢(A) and ¢’ = c(A). Then I,(g) = . (g)).

To see this, suppose ¢ = k, ik, and ¢’ = k k,. Because H; is normal, we
have ho = kl hlki-l EI‘.‘I‘. Then

Lg)= [ adux)= [ gi()du(x)
kyhkoL hokykpL
| gi(hox)du(x) j gi(x)du(x)— MCAR
k,_kzl«

as desired.

Consider now the correspondence between terms n(d) I, (g;) in Y4 and
terms n(A4) Lz (g1) in Y., We have seen that I (g:) = Lz (9)- Upon noting
that n(4) = —n(A), we see that (x) obtains.

Let g =g;+ ... +g,, where each g, is a bounded Baire function on G,
constant on the cosets of H;. Write
{x%) 0= n(4) by @) = T (L n(4)L (),

A caC
where the inner sum is taken over all A < {1, ..., n} such that ¢(4) = c. We
assert that not all of the coefficients ), n(4) are zero. In fact, we show that

If ¢4

so that the coefficient of I,(g) is unity. To see this, suppose A = {iy, ..., i}
with 1<, <...<i, <n Since (hy,..., )¢S0y, ..., &), it follows that
c(A) # e.

So (%) establishes a nontrivial linear relation between the components

)= ¢ =e, then A =@,

5 ~ Studin Mathomatica 88/3
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of any vector in I[(F,). This establishes Claim 4. Claims 3 and 4 provide the
desired contradiction. So v,'=0. m»

The hypothesis that the subgroups in Theorem 2.1 be nondiscrete
cannot be eliminated, as the following example demonstrates.

2.2. ExampLe. Define G, to be the two-element group and G, to be the
circle group. Let g, and u, be the Haar measures on G; and G,, respectively
Set G =G,®G,, H =G, x{1}, Hy = {0} xG,. Then u=u, @u, is the
Haar measure on G.

Let v be an extreme point of E(H,, H,; u). The following statements are
not hard to prove. There is a Borel set 4 = G, with g, A = 1/2 such that if
F: G— R is defined by

F _{2 if ue({0} xA4) u({1} x(G2\4),
=00 if ue (0] x(G;\ A) U ({1 xA),

then dv = Fdpu. Thus every element of E(H,, H,; ) is absolutely continuous
with respect to u.

A more intriguing question is whether the subgroups in Theorem 2.1
must be normal. The proof requires this assumption, but in the examples
worked out by the author, normality does not seem to be required.

2.3. Conyecture. The hypothesis that the H; be normal subgroups may
be dropped from the statement of Theorem 2.1.
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Quadratic operators and invariant subspaces
by

E. A. NORDGREN (Durham, N, H), M. RADJABALIPOUR (Kerman),
H. RADJAVI (Halifax, N. S)) and P, ROSENTHAL (Toronto, Ont.)

Abstract. Tt is shown that every operator has an invariant subspace if and only if every
pair of operators satisfying a given pair of quadratic equations has a common invariant
subspace. On the other hand, it is also shown that there exists a pair of operators satisfying a
cubic and a quadratic equation which generate the algebra of all operators as a strongly closed
algebra,

In [2] it is shown that every operator on Hilbert space has a nontrivial
invariant subspace if and only if every pair of idempotents has a common
nontrivial invariant subspace.

Does the corresponding result hold for pairs of nilpotents of index two?
For a nilpotent of index two and an idempotent? More generally, is the
existence of common invariant subspaces for pairs of operators satisfying
given polynomial equations of degree 2 equivalent to the invariant subspace
problem? The purpose of this note is to answer these and certain related
questions about generators of the algebra of all bounded linear operators.

We consider bounded linear operators on separable infinite-dimensional
complex Hilbert spaces; some remarks on other spaces are given at the end.

The following theorem generalizes [2].

THEOREM 1. Let p and q be polynomials of degree 2. Then every operator
has a nontrivial invariant subspace if and only if every pair {A, B} of operators
satisfying p(A) = q(B) =0 has a common nontrivial invariant subspace.

Proof. By dividing by the leading coefficients and completing the
square, we can assume that the polynomials have the forms p(x) = (x—a)*
—~22% and ¢(x) = (x—b)*—pu? for complex numbers a, 4, b and p. Since A —al
and B—bI have a common invariant subspace if and only if A and B do, we
can assume that p(x) = x?—A% and q(x) = x*— > '

Suppose first that every operator has a nontrivial invariant subspace
and 4% = A*I, B®* = y*1. We must show that 4 and B have a common
invariant subspace.

Let # denote the closure of the range of 4+Al. Since
(AB+BA)(A+Al) = ABA+B(1*)+ A(AB+BA)
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