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of any vector in I[(F,). This establishes Claim 4. Claims 3 and 4 provide the
desired contradiction. So v,'=0. m»

The hypothesis that the subgroups in Theorem 2.1 be nondiscrete
cannot be eliminated, as the following example demonstrates.

2.2. ExampLe. Define G, to be the two-element group and G, to be the
circle group. Let g, and u, be the Haar measures on G; and G,, respectively
Set G =G,®G,, H =G, x{1}, Hy = {0} xG,. Then u=u, @u, is the
Haar measure on G.

Let v be an extreme point of E(H,, H,; u). The following statements are
not hard to prove. There is a Borel set 4 = G, with g, A = 1/2 such that if
F: G— R is defined by

F _{2 if ue({0} xA4) u({1} x(G2\4),
=00 if ue (0] x(G;\ A) U ({1 xA),

then dv = Fdpu. Thus every element of E(H,, H,; ) is absolutely continuous
with respect to u.

A more intriguing question is whether the subgroups in Theorem 2.1
must be normal. The proof requires this assumption, but in the examples
worked out by the author, normality does not seem to be required.

2.3. Conyecture. The hypothesis that the H; be normal subgroups may
be dropped from the statement of Theorem 2.1.
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Quadratic operators and invariant subspaces
by

E. A. NORDGREN (Durham, N, H), M. RADJABALIPOUR (Kerman),
H. RADJAVI (Halifax, N. S)) and P, ROSENTHAL (Toronto, Ont.)

Abstract. Tt is shown that every operator has an invariant subspace if and only if every
pair of operators satisfying a given pair of quadratic equations has a common invariant
subspace. On the other hand, it is also shown that there exists a pair of operators satisfying a
cubic and a quadratic equation which generate the algebra of all operators as a strongly closed
algebra,

In [2] it is shown that every operator on Hilbert space has a nontrivial
invariant subspace if and only if every pair of idempotents has a common
nontrivial invariant subspace.

Does the corresponding result hold for pairs of nilpotents of index two?
For a nilpotent of index two and an idempotent? More generally, is the
existence of common invariant subspaces for pairs of operators satisfying
given polynomial equations of degree 2 equivalent to the invariant subspace
problem? The purpose of this note is to answer these and certain related
questions about generators of the algebra of all bounded linear operators.

We consider bounded linear operators on separable infinite-dimensional
complex Hilbert spaces; some remarks on other spaces are given at the end.

The following theorem generalizes [2].

THEOREM 1. Let p and q be polynomials of degree 2. Then every operator
has a nontrivial invariant subspace if and only if every pair {A, B} of operators
satisfying p(A) = q(B) =0 has a common nontrivial invariant subspace.

Proof. By dividing by the leading coefficients and completing the
square, we can assume that the polynomials have the forms p(x) = (x—a)*
—~22% and ¢(x) = (x—b)*—pu? for complex numbers a, 4, b and p. Since A —al
and B—bI have a common invariant subspace if and only if A and B do, we
can assume that p(x) = x?—A% and q(x) = x*— > '

Suppose first that every operator has a nontrivial invariant subspace
and 4% = A*I, B®* = y*1. We must show that 4 and B have a common
invariant subspace.

Let # denote the closure of the range of 4+Al. Since
(AB+BA)(A+Al) = ABA+B(1*)+ A(AB+BA)
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and
(A+ADB(A+AI) = ABA+ABA+1AB+12B

are equal, & is invariant under AB+ BA, and the restriction of AB+BA to
A is equal to the restriction of (4+ AI)B. If the dimension of & is greater
than 1, let .# be any nontrivial invariant subspace of the restriction of 4B
+BA to #;if the dimension of # is 1, let 4 = #. If the dimension of & is 0
the result is trivially true.

Let A" = M v (B.#). We claim that .4 is a nontrivial common invariant
subspace of A and B. Since B? = u?I, A" is obviously invariant under B.
Also, (A—Al) # = {0}, so AM# = M. Now the invariance of .# under AB
+BA gives ABM « M v BM = 4, so A is a common invariant subspace.

Since .# # {0}, # % {0}. It only remains to be shown that 4"  #. In
the case where # = &, 4" has dimension at most 2 and thus is not 4. In
the case where . is a proper subspace of %, we show that .4 is proper by

shzwing that (4+AI).4" is not dense in %. To see this recall that A .# = &
an

(A+AD)BM = (AB+BA) M = M,
SO
(A+AD N < (A+ M) M (A+A)BM < M.

Hence 4" is proper.

To prove the converse, fix p(x) = x*—1 and g(x) = x*—u and suppose
t_hat every pair {4, B} satisfying p(d) = q(B) =0 has a common nontrivial
invariant subspace. Let T be any operator. The definitions of the corres-
ponding operators A and B depend upon whether 4 or u=0.

Let A; be any square root of A and p, any square root of .

Case (i): If A = p =0 (i, we are assuming that all pairs of nilpotents of
index 2 have common invariant subspaces), define

_|o1I 00
A——[OO:I and B—[TOJ.

Case (ii): If A=0 and p#0, let

01 2T—1 2T
A= and B=
[0 0] f [ZI—ZT I—ZTJ'

Case (iii): If 1 5 0 and p 5 0, define

I 0 271 2T
A=1 and B=
‘[0 —IJ T [ZI—ZT I—2T]'

It is clear in all three cases that p(4) = q(B) =

icm
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Now assume that .4 is a nontrivial common invariant subspace of
{A, B}. In each case, T®T is a linear combination of AB+B4 and I®I
(compute AB+BA), so A is invariant under T®T. Let 4"y = {x: xP0e A"}
and 4, = {y: 0@ye#}. Then the 4 are closed subspaces and are inva-
riant under T.

If T has compression spectrum, then T has a nontrivial invariant
subspace, so we can assume that the range of T—yl is dense for ail y. Under
this assumption we will show that at least one .4 is nontrivial.

 Since ./V’.de‘l@./v'zg at least one .47 is not #. If A", = then
A, = o, this is clear in case (i) (since /", then contains the range of T)
and follows in the other cases from the fact that

27-1 2T [x] [ 2Tx—x
2aA-2T 1-2T |0} [@I-2T)x
implies that .4, contains the range of 2Y—2T. Hence 4", # . Similarly, if

N, = o, then &, = #; this is obvious in cases (i) and (ii) (apply 4) and
follows in case (iii) from

27-1 2T L [ 2Ty
2I-2T I-2T y—2Ty |’
Therefore neither 4", nor A5 is #.

If 4, and 4", were both {0}, then /" would contain a vector x@y with
x#0 and y 5 0. Applying A in cases (i} and (ii) and A+, in case (iii)
shows that 4", 5 {0}, which is a contradiction.

We have shown, then, that at least one of A"y and A", is a nontnvnal
invariant subspace of T.

Chandler Davis [1] has shown that there exist three Hermitian idempo-
tents that generate B(#) as a strongly closed algebra; Davis [1] also
pointed out that a pair of such operators cannot generate. Can a pair of
quadratic operators generate B()?

Tueorem 2. If A and B are quadratic operators, then the weakly closed
algebra generated by {I, A, B} is not B(H#).

Proof. If the operator C satisfies C*+aC+b =0, a is any solution of
a*—au+b =0 and B =a—2x, then

(C+al)* = —B(C+al).

Thus translating the operators and dividing by appropriate square roots
will reduce this result to the following three cases.

Case (i): A*=A, B*=B.
Case (ii): A2 =0, B2=0,
Case (iii): A2=0, B*=B.
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' In cases (i) and (i) a simple computation shows that (4— B)* commutes
with both A and B, so the algebra generated by A and B has a nontrivial
commutant unless (4—B)? is a multiple of the identity. If (4—B)* is a
multiple of the identity, then the algebra generated by {4, B, I} is at most 5-
dimensional.

In case (iii) the operator AB+ BA— A commutes with both A4 and B. If
AB+BA— A is a multiple of I, then the algebra generated by {4, B, I} is at
most 5-dimensional. l

Do similar results hold for cubic operators? The following provides a
strong counterexample.

THEOREM 3. There exist Hermitian operators A and B such that A* = A,
B(B—~I)(B+I) =0 and {4, B} generates B(#) as a strongly closed algebra.

Proof. Let 4, be a separable infinite-dimensional space and- let i
Ho= HyDH D H DK

Let B denote the operator with matrix

I 000
0~I100
0 00O
6 000

with respect to @ H DA D Hy.

.Now let K be any oper.ator on #,@H, that is compact, injective,
Posm've, less than {, of uniform multiplicity 1, and has no nontrivial
invariant subspaces in common with [{ -?]. (The existence of such a K
follows from the proof of Corollary 1 of [37). Let 4 denote the operator with

matrix
K JE(I=K)
JK(1-K) 1-K

with respect to (@ # o) D(H (D H,). Clearly A2 = A.
. I}e}call that a set % generates B(s#) as a strongly closed algebra if
S uil} generat}es B(A#) as a strongly closed algebra (for if A is the algebra
.genera.ted by ;9’ then ,AV {I} is the algebra generated by & U !I}, A is an
ideal in Av J},. so if Av{l} =B(#) then A contains all finite rank
operators). Thus it suffices to show that {4, B, I} generates B(.).
5 Let B dc?noFe the strongly closed algebra generated by {4, B, I}. Since
5 is thelprgJeFtlon of A" onto H#'o®H#,, [§ §]e B. The algebra generated by

and [§ - 7] is an irreducible von Neumann algebra, hence is B(#,®#)
so B contains every operator of the form [§ §] for Ce B(#,@® ). Thus I;
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contains all operators of the form
[O C./K(l——K)]
0 0 )

For P any injective operator on a space %', ICP: CeB(X)} is strongly
dense in B(A) (in fact, strictly dense: if (X1, ++-s Xy 18 linearly independent,
then so is {Px, ..., Px,}, so for each {)is+--s Ya) there exists a C such that
CPx; =y, for all i). Therefore B contains every operator of the form 8 ’3].
Since B is selfadjoint, B also contains all operators of the form [3 g]. Also

oo[oc Jo o
polloo]| [oDC]|
So B = B(¥).

This theorem includes the result of Davis [1].

CorROLLARY ([1]). There exist three Hermitian projections such that the
strongly closed algebra they generate is B(o#). In fact, two of them can be
taken to be mutually orthogonal.

Proof. In the notation of the proof of Theorem 3 above, let P, = A, let
P, denote the projection of #* onto Ho®{01®{0}@{0} and let P; denote
the projection of s onto (0} @#,®{0}@{0}. Clearly the algebra generated
by {P,, Py} contains B, so the algebra generated by {Py, Py, P3} is B(#).

There are several remarks to be made about the situation on other
spaces. First of all, on nonseparable Hilbert spaces every countable collection
of operators has a common nontrivial invariant subspace, and thus cannot
generate B().

Theorem 1 can be varied to apply to operators on Banach spaces, but
the quadratic operators and the given operator may operate on different
spaces. Read [4] has shown that there is an operator on I' with no
nontrivial invariant subspaces. Since @ is isomorphic to [, this shows
(using one of the variants of ttie idempotent case of Theorem 1 given in [2])
that there exists a pair [' = #@NV = A DL of direct-sum decompositions
of I* with no nontrivial equal subdecompositions. The corresponding ques-
tion for /2 is equivalent to the invariant subspace problem (see [2]).

With a little care, Theorem 3 can be proved on finite-dimensional spaces
too.
THEOREM 4. ‘On every finite-dimensional complex space there exist Her-

mitian operators A and B satisfying A2 = A and B(B+1)(B—1) =0 such that
every linear transformation is a (noncommutative) polynomial in A and B.

Proof. The proof of Theorem 3 applies without change if the dimen-
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sion of the space is a multiple of 4. Slight variants yield the other cases.
In particular, B can be defined as

1 .

i 1

for any number of 1’s. Then A can be defined as above on even-dimensional
spaces, and as the direct sum of such an operator and a one-dimensional 0 in
the case of odd-dimensional spaces. We omit the details.
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Vectors of uniqueness for id/dx
by
RALPH pe LAUBENFELS (Athens, O)

Abstract. A vector x in a Hilbert space is a vector of uniqueness for a symmetric operator 4
if A, with domain restricted to span{4”x|n =0, 1,...}, is essentially selfadjoint on the closure
of this domain. We characterize vectors of uniqueness for the operator id/dx on I?[0, 1]. Let
gl = _[;g(z)e‘" ik gt g™ == the nth derivative of g, E = {k|§(k) # 0}. We shbw that g fails to
be a vector of uniqueness if and only if there exists a nontrivial f such that f®(0) =0 = f® (1),
for all n, and
21

1+k*

G}
0]
We show that g is a vector of uniqueness if and only if the closure of span {g"n=1,2,...}
equals {f&I?[0, 17 f(k) = 0 when k¢E}.

We show that g fails to be a vector of uniqueness for id/dx on L*(R) if and only if there
exists a nontrivial f such that f™(0) =0, for all n, and

FOP dt
Fg)| 141

keE

} »
E

where & is the Fourier transform, and E is the support of #g.

Introduction. Vectors of uniqueness were introduced by Nussbaum [4]
(see Definition 2). He showed that a symmetric operator on a Hilbert space
is selfadjoint if and only if it has a total set of vectors of uniqueness. In the
same paper, and in subsequent papers, the selfadjointness of certain opera-
tors is shown by proving that certain classes of vectors are always vectors of
uriiqueness (see [31-[5]).

Nussbaum defined vectors of uniqueness in terms of the classical mo-
ment problem. He defines x to be a vector of uniqueness for A if the moment
sequence {{A"x, x>} o is determined. We use the equivalent definition given
in [61, vol. 2, p. 201 (Definition 2).

It is often advantageous, when considering questions of essential selfad-
jointness, to focus on vectors of uniqueness. It is precisely in this setting,
when the domain of 4 equals span{A"x[n=0,1, ..}, for a fixed x (see
Definition 2), that the spectral theorem says that selfadjointness is equivalent
to A being unitarily equivalent to multiplication by f(f) =¢ on 'I*(R, w), for
some measure j.
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