

$$\int_{E} \left| \frac{(\mathscr{F}H)(t)}{(\mathscr{F}g)(t)} \right|^{2} \frac{dt}{1+t^{2}} < \infty,$$

where $E \equiv \{t | \mathscr{F}g(t) \neq 0\}.$

Corollary 22. With A and g as in Theorem 21, suppose there exists H in $C^{\infty}(A)$ such that for some $\varepsilon < 1$,

$$|\mathscr{F}H(t)| \leq t^{\varepsilon} \mathscr{F}g(t)|$$
 a.e.

Then g is not a vector of uniqueness for A.

Corollary 23. If g has a zero of infinite order, then g is not a vector of uniqueness for id/dx on $L^2(\mathbf{R})$.

COROLLARY 24. If h is not a vector of uniqueness for id/dx on $L^2(\mathbb{R})$ and $|\mathscr{F}g(t)| \ge |\mathscr{F}h(t)|$, for almost all t, then g is not a vector of uniqueness.

COROLLARY 25. If h is a vector of uniqueness for id/dx on $L^2(\mathbf{R})$ and $|\mathcal{F}g(t)| \leq |\mathcal{F}h(t)|$, for almost all t, then g is a vector of uniqueness.

THEOREM 26. Let $E \equiv \{t | \mathcal{F}g(t) \neq 0\}$, where g and A are as in Theorem 21. Then $D(g, A) \neq \{f \text{ in } L^2(\mathbf{R}) | \mathcal{F}f(t) = 0 \text{ when } t \notin E\}$ if and only if there exists a nontrivial F in $C^{\infty}(A)$, with a zero of infinite order, such that $\mathcal{F}F(t) = 0$ when $\mathcal{F}g(t) = 0$, and

$$\int_{E} \left| \frac{\mathscr{F}F(t)}{\mathscr{F}g(t)} \right|^{2} dt < \infty.$$

References

- [1] P. R. Chernoff, Quasi-analytic vectors and quasi-analytic functions, Bull. Amer. Math. Soc. 81 (4) (1975), 637-646.
- [2] R. de Laubenfels, Accretive operators and scalar operators, Ph.D. thesis, Univ. of California, Berkeley 1982.
- [3] D. Masson and W. McClary, Classes of C[∞] vectors and essential self-adjointness, J. Funct. Anal. 10 (1972), 19-32.
- [4] A. E. Nussbaum, Quasi-analytic vectors, Ark. Mat. 6 (1965), 179-191.
- [5] -, A note on quasi-analytic vectors, Studia Math. 33 (1969), 305-309.
- [6] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vols. 1 and 2, Academic Press, 1972, 1975.
- [7] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
- [8] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Math. Surveys 1, Amer. Math. Soc., 1943.

DEPARTMENT OF MATHEMATICS OHIO UNIVERSITY Athens, Ohio 45701, U.S.A.

Received November 11, 1986

(2242)

An improvement of Kaplansky's lemma on locally algebraic operators

by

BERNARD AUPETIT* (Québec)

Abstract. Let X and Y be two complex vector spaces and let $T_1, ..., T_n$ be linear operators from X into Y. Suppose that for every $\xi \in X$ the vectors $T_1 \xi, ..., T_n \xi$ are linearly dependent. Then, using an analytic argument, we prove that there exists a nontrivial linear combination of these operators having rank $\leq n-1$.

Let T be a linear operator on a complex vector space X. Then T is locally algebraic if for every $\xi \in X$ there exists a nontrivial polynomial p such that $p(T)\xi=0$. A standard result of I. Kaplansky ([3], Lemma 14) states that boundedly locally algebraic (the degree of p is bounded independently of ξ) implies algebraic (for another proof see [5]). This important result has many consequences (see for instance [2]-[4], [6]). In this short paper we present an analytic proof of that result. This argument is very interesting because it implies a surprising extension of Kaplansky's lemma.

THEOREM 1. Let X be a complex vector space and let T be a linear operator from X into X. Suppose that there exists an integer $n \ge 1$ such that $\xi, T\xi, \ldots, T^n\xi$ are linearly dependent for all $\xi \in X$. Then T is algebraic of degree $\le n$.

Proof. Suppose that n is the smallest integer having this property. Hence there exists $\xi_0 \in X$ such that $\xi_0, T\xi_0, \ldots, T^{n-1}\xi_0$ are linearly independent but $\xi_0, T\xi_0, \ldots, T^n\xi_0$ are not. Then there exists a monic polynomial p_0 of degree n such that $p_0(T)\xi_0 = 0$ and if p is another monic polynomial of degree n such that $p(T)\xi_0 = 0$ then $p = p_0$. Let $\eta \in X$ be an arbitrary fixed vector. We now prove that $p_0(T)\eta = 0$. Let F be the linear subspace generated by $\xi_0, T\xi_0, \ldots, T^n\xi_0, \eta, T\eta, \ldots, T^n\eta$. Then dim $F \leq 2n$. For $\lambda \in C$ we set

$$f_0(\lambda) = \xi_0 + \lambda \eta \in F, \quad f_1(\lambda) = Tf_0(\lambda) \in F, \quad \dots, \quad f_{n-1}(\lambda) = T^{n-1}f_0(\lambda) \in F,$$
$$g(\lambda) = T^n f_0(\lambda) \in F.$$

Because $f_0(0), \ldots, f_{n-1}(0)$ are linearly independent in F there exist n linear

^{*} This work has been supported by Natural Sciences and Engineering Research Council of Canada Grant A 7668.

functionals on F, denoted by $\varphi_0, ..., \varphi_{n-1}$, such that

(1)
$$\varphi_i(f_j(0)) = \delta_{ij} \quad \text{for } 0 \le i, j \le n-1.$$

We define

$$\Delta(\lambda) = \begin{vmatrix} \varphi_0(f_0(\lambda)) & \dots & \varphi_0(f_{n-1}(\lambda)) \\ \dots & \dots & \dots & \dots \\ \varphi_{n-1}(f_0(\lambda)) & \dots & \varphi_{n-1}(f_{n-1}(\lambda)) \end{vmatrix}$$

which is a polynomial of degree $\leq n$, satisfying $\Delta(0) = 1$. Let E be the finite set of its zeros. From the hypothesis we conclude that for $\lambda \notin E$ there exist $\alpha_0(\lambda), \ldots, \alpha_{n-1}(\lambda) \in C$ such that

(2)
$$g(\lambda) = \alpha_0(\lambda) f_0(\lambda) + \dots + \alpha_{n-1}(\lambda) f_{n-1}(\lambda)$$

so we have

$$\varphi_0(g(\lambda)) = \alpha_0(\lambda) \varphi_0(f_0(\lambda)) + \ldots + \alpha_{n-1}(\lambda) \varphi_0(f_{n-1}(\lambda)),$$

(3)
$$\varphi_{n-1}(q(\lambda)) = \alpha_0(\lambda) \varphi_{n-1}(f_0(\lambda)) + \dots + \alpha_{n-1}(\lambda) \varphi_{n-1}(f_{n-1}(\lambda))$$

By Cramer's formulas the α_i coincide on $C \setminus E$ with rational functions. Relation (2) can be written as

(4)
$$p_{\lambda}(T) f_{0}(\lambda) = 0 \quad \text{for } \lambda \notin E, \text{ with}$$

$$p_{\lambda}(T) = T^{n} - \alpha_{n-1}(\lambda) T^{n-1} - \dots - \alpha_{0}(\lambda) 1.$$

Denote by $\beta_1(\lambda), \ldots, \beta_n(\lambda)$ the roots of the polynomial p_{λ} . We have

(5)
$$(T - \beta_1(\lambda) 1) \dots (T - \beta_n(\lambda) 1) f_0(\lambda) = 0 \quad \text{for } \lambda \notin E$$

and obviously $(T-\beta_2(\lambda)1)\dots(T-\beta_n(\lambda)1)f_0(\lambda)\neq 0$ for $\lambda\notin E$, by the definition of E. So (5) implies that $\beta_1(\lambda)$ is in the spectrum of T. A similar argument implies that $\beta_2(\lambda),\dots,\beta_n(\lambda)$ are also in the spectrum of T. Consequently $|\beta_i(\lambda)|\leqslant ||T||$ for $i=1,\dots,n$ and $\lambda\notin E$, where $||\cdot||$ is a norm on the invariant subspace F. So the symmetric functions $\alpha_0(\lambda),\dots,\alpha_{n-1}(\lambda)$ are also bounded on $C\setminus E$. Because the α_i coincide with rational functions on $C\setminus E$ we conclude from Liouville's Theorem that there are constant numbers $\gamma_0,\dots,\gamma_{n-1}\in C$ such that $\alpha_i(\lambda)=\gamma_i$ for $\lambda\notin E$. Let $p(z)=z^n-\gamma_{n-1}z^{n-1}-\dots-\gamma_0$. Then $p(T)f_0(\lambda)=0$ on $C\setminus E$, but also on C, by continuity in λ . In particular, $p(T)\xi_0=0$, so $p=p_0$. Consequently $p_0(T)\eta=0$ for all $\eta\in X$. Hence $p_0(T)=0$, so T is algebraic of degree $\leqslant n$.

A slight modification of the argument now gives

THEOREM 2. Let X and Y be two complex vector spaces and let T_1, \ldots, T_n be linear operators from X into Y. Suppose that for every $\xi \in X$ the

vectors $T_1 \, \xi, \ldots, T_n \, \xi$ are linearly dependent. Then there exist $\alpha_1, \ldots, \alpha_n \in C$, not all zero, such that $Q = \alpha_1 \, T_1 + \ldots + \alpha_n \, T_n$ has finite rank $\leq n-1$. Moreover, if X = Y and the T_i commute, then $Q^2 = 0$.

Proof. If for all $\xi \in X$, the vectors $T_1 \xi_1, \ldots, T_{n-1} \xi_n$ are linearly dependent, it is enough to prove the result with T_1, \ldots, T_{n-1} . So suppose that there exists $\xi_0 \in X$ such that $T_1 \xi_0, \ldots, T_{n-1} \xi_0$ are linearly independent and $T_1 \xi_0, \ldots, T_n \xi_0$ are not. Then there exist $\alpha_1, \ldots, \alpha_{n-1} \in C$ such that

(6)
$$(T_n + \alpha_{n-1} T_{n-1} + \ldots + \alpha_1 T_1) \xi_0 = 0.$$

Let $\eta \in X$ be an arbitrary fixed vector and let F be the linear subspace of Y generated by $T_1 \xi_0, \ldots, T_n \xi_0, T_1 \eta, \ldots, T_n \eta$. Then dim $F \leq 2(n-1)$. For $\lambda \in C$ we set

(7)
$$f_0(\lambda) = \xi_0 + \lambda \eta, \quad f_1(\lambda) = T_1 f_0(\lambda) \in F, \quad \dots, \quad f_{n-1}(\lambda) = T_{n-1} f_0(\lambda) \in F,$$
$$g(\lambda) = T_n f_0(\lambda) \in F.$$

Because $f_1(0), \ldots, f_{n-1}(0)$ are linearly independent in F there exist n-1 linear functionals on F, denoted by $\varphi_1, \ldots, \varphi_{n-1}$, such that

(8)
$$\varphi_i(f_i(0)) = \delta_{ij} \quad \text{for } 1 \le i, j \le n-1.$$

We define

$$\Delta(\lambda) = \begin{vmatrix} \varphi_1(f_1(\lambda)) & \dots & \varphi_1(f_{n-1}(\lambda)) \\ \dots & \dots & \dots \\ \varphi_{n-1}(f_1(\lambda)) & \dots & \varphi_{n-1}(f_{n-1}(\lambda)) \end{vmatrix}$$

which is a polynomial of degree $\leq n-1$, satisfying $\Delta(0) = 1$, and

$$\Delta_{l}(\lambda) = \begin{vmatrix} \varphi_{1}(f_{1}(\lambda)) & \dots & \varphi_{1}(g(\lambda)) & \dots & \varphi_{1}(f_{n-1}(\lambda)) \\ \dots & \dots & \dots & \dots & \dots \\ \varphi_{n-1}(f_{1}(\lambda)) & \dots & \varphi_{n-1}(g(\lambda)) & \dots & \varphi_{n-1}(f_{n-1}(\lambda)) \end{vmatrix}$$

which is also a polynomial of degree $\leq n-1$, satisfying $-\Delta_i(0) = \alpha_i$, by (6) and (8). If E denotes the set of zeros of Δ then, arguing as in the proof of Theorem 1, we conclude that

(9)
$$(\Lambda(\lambda) T_n - \Lambda_{n-1}(\lambda) T_{n-1} - \ldots - \Lambda_1(\lambda) T_1) f_0(\lambda) = 0$$

on $C \setminus E$, and so, by continuity, on all C. Let $\alpha_n = 1$ and let β_1, \ldots, β_n be the coefficients of λ respectively in $-\Delta_1(\lambda), \ldots, -\Delta_{n-1}(\lambda), \Delta(\lambda)$. Setting $Q = \alpha_1 T_1 + \ldots + \alpha_n T_n$ (which does not depend on $\eta!$), $R = \beta_1 T_1 + \ldots + \beta_n T_n$ (which depends on $\eta!$) and looking at the coefficients of degree 0 and 1 in λ , from (9) we obtain

$$Q\xi_0 = 0, \quad Q\eta + R\xi_0 = 0.$$

Consequently $Q\eta$ is in the linear subspace generated by $T_1\xi_0,\ldots,T_{n-1}\xi_0$. So Q has a finite rank $\leqslant n-1$. If moreover the T_i commute, then Q and R commute, so $Q^2\eta=-QR\xi_0=-RQ\xi_0=0$. Hence $Q^2=0$.

Remark. Let P and Q be two different projections having the same range of dimension 1, defined on a complex vector space X. For every $\xi \in X$ the vectors $P\xi$ and $Q\xi$ are dependent and obviously there are linear combinations of P and Q having rank one. But $\alpha P + \beta Q \neq 0$ for any α , $\beta \in C$. So in general it is impossible to have Q = 0 in Theorem 2.

References

- B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin 1979.
- [2] B. Aupetit and J. Zemánek, On the spectral radius in real Banach algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 969-973.
- [3] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor 1971.
- [4] T. J. Laffey and T. T. West, Fredholm commutators, Proc. Royal Irish Acad. 82A (1982), 129-140.
- [5] H. Radjavi and P. Rosenthal, Invariant Subspaces, Ergeb. Math. Grenzgeb. 77, Springer, Berlin 1973.
- [6] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, Cambridge 1976.

UNIVERSITÉ LAVAL MATHÉMATIQUES Québec, P.Q., G1K 7P4 Canada

Received December 5, 1986

(2253)

Extension of C^{∞} functions from sets with polynomial cusps

by

WIESŁAW PAWŁUCKI and WIESŁAW PLEŚNIAK (Kraków)

Abstract. We give a simple construction of a continuous linear operator extending C^{∞} functions from compact subsets of R^n with polynomial cusps including fat subanalytic sets.

1. Introduction. Whitney's extension theorem [15] yields a continuous linear operator extending C^k functions (k finite) defined on closed subsets X of R^n . For C^{∞} functions such an operator does not in general exist (see e.g. [12, p. 79]). However, Mityagin [4] and Seeley [7] proved the existence of an extension operator if X is a half-space of R^n . Stein [9] showed that such an operator exists if X is the closure of a Lipschitz domain in \mathbb{R}^n of class Lip 1. Stein's result was then extended by Bierstone [1] to the case of a domain with boundary which is Lipschitz of any order. By the main result of Bierstone [1] involving Hironaka's desingularization theorem, an extension operator exists if X is a fat (i.e. int $X \supset X$) closed subanalytic subset of \mathbb{R}^n . If X is Nash subanalytic (not necessarily fat) the existence problem was solved by Bierstone and Schwarz [3]. Recently Wachta [14] has constructed an extension operator for fat closed subanalytic sets in \mathbb{R}^n without making use of the Hironaka desingularization theorem. For closed subsets of R^n admitting some polynomial cusps, the existence of an extension operator was shown by Tidten [10].

In this paper we construct an extension operator for the family of compact uniformly polynomially cuspidal (briefly, UPC) subsets of R^n (see Theorem 4.1). The UPC sets were introduced in [6] as follows.

DEFINITION 1.1. A subset X of \mathbb{R}^n is said to be UPC if there exist positive constants M and m, and a positive integer d such that for each point x in \overline{X} , one may choose a polynomial map h_x : $R \to \mathbb{R}^n$ of degree at most d satisfying the following conditions:

- (i) $h_x((0, 1]) \subset X$ and $h_x(0) = x$;
- (ii) dist $(h_x(t), \mathbb{R}^n X) \ge Mt^m$ for all x in X and $t \in (0, 1]$.

Every bounded convex domain in R^n and every bounded Lipschitz domain are UPC. More generally, every subset of R^n with a parallelepiped