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2 dt

(FHQ [ dt
142 =%

(F9)(0)

[

E
where E = {t| F¢(t)+ 0}.

CoroLLARY 22. With A and g as in Theorem 21, suppose there exists H
in C*(A) such that for some ¢ <1,

|FH(@)| <t Fg() ae.
Then g is not a vector of uniqueness for A.

‘ CoroLLARY 23. If g has a zero of infinite order, then g is not a vector of
uniqueness for id/dx on I2(R).

CoroLLARY 24. If h is not a vector of uni 3 i
queness for id/dx on I*(R) and
[ Fg @) = |.Zh(t), for almost all t, then g is not a vector of uniqueness.

CoroLLary 25. If h is a vector of uniqueness for id/dx on L?(R)
and
|Fg (@) < |Fh(t)l, for almost all t, then g is a vector of uniqueness.

THEOREM 26. Let E = {t[?g (t) £ O}, where g and A are as in Theorem
21: Then D(q,.A) # {fin Z(R)|ZSf () =0 when t¢E} if and only if there
exists a nontrivial F in C*(A), with a zero of infinite order, such that FF ®
=0 when Fg() =0, and

FF(@n) P

dt < o0.
Fq(r)

[
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An improvement of Kaplansky's lemma on locally algebraic operators
by
BERNARD AUPETIT* (Québec)

Abstract. Let X and Y be two complex vector spaces and let T, ..., 7, be linear operators
from X into Y. Suppose that for every £e X the vectors Ti ¢, ..., T,¢ are linearly dependent.
Then, using an analytic argument, we prove that there exists a nontrivial linear combination of
these operators having rank <n-—1.

Let T be a linear operator on a complex vector space X. Then T is
locally algebraic if for every £ X there exists a nontrivial polynomial p such
that p(T) ¢ = 0. A standard result of I. Kaplansky ([3], Lemma 14) states that
boundedly locally algebraic (the degree of p is bounded independently of £)
implies algebraic (for another proof see [5]). This important result has many
consequences (see for instance [2]-[4], [6]). In this short paper we present
an analytic proof of that result. This argument is very interesting because it
implies a surprising extension of Kaplansky’s lemma.

TueoreM 1. Let X be a complex vector space and let T be a linear
operator from X into X. Suppose that there exists an integer n > 1 such that
& TE, ..., T"¢ are linearly dependent for all £ X. Then T is algebraic of
degree < n.

Proof. Suppose that n is the smallest integer having this property.
Hence there exists &oeX such that &, Té&, ..., T""'&, are linearly
independent but &, T&,, ..., T"&, are not. Then there exists a monic
polynomial p, of degree n such that po(T)&o =0 and if p is another monic
polynomial of degree n such that p(T)& = 0 then p = p,. Let ne X be an
arbitrary fixed vector. We now prove that po(T)n = 0. Let F be the linear
subspace generated by &o, Téqg, ..., T"&, n, T, ..., T"y. Then dim F < 2n.
For AeC we set

fo) =&+ineF, fi)=ThHMeF, .., fi-i@=T""fo(deF,
g = T"fo(d)eF.

Because fy(0), ..., fy~1(0) are linearly independent in F there exist n linear

* This work has been supported by Natural Sciences and Engineering Research Council of
Canada Grant A 7668.
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functionals on F, denoted by ¢, ..., ¢,—1, such that
1) [} (f;(o)) =&y
We define

for 0<i,j<n—1.

Pn-1(fo(2) Pu-1(fi-1(4)

which is a polynomial of degree < n, satisfying 4(0) = 1. Let E be the finite
set of its zeros. From the hypothesis we conclude that for A¢E there exist
oo (4, - .., oy—y (A) e C such that

@ g =ao) foA)+ ... +o-1(4) fy-1 (D)

so we have

Polg (A) = a0 (M) 0o (fo W)+ o+ oy (D) 0o (fr-1 (D),

Op-1(9 (4) = 26 (A) @y (fo (A))'*‘ oty g (A @y y (frm 1 (D).

By Qramer’s formulas the o; coincide on C\E with rational functions,
Relation (2) can be written as

(T fo(A) =0 for A¢E, with
Pa(T) =T —a, (YT —...—ao (Y L.
Denote by B,(4), ..., B,(4) the roots of the polynomial p,. We have
%) (T=B1(N1Y).. (T—B.(D1) fo(}) =0 for A¢E

and obviously (T— 8, (D) 1)...(T—B,(A)1) fo(4) # 0 for A¢E, by the definition
?f E. So (5) implies that B, (4) is in the spectrum of T. A similar argument
implies that B,(4), ..., B,(4) are also in the spectrum of T. Consequently
BAI < ||T|| fori=1,...,n and 1¢E, where || || is a norm on the invariant
subspace F. So the symmetric functions «(4), ..., a,-; (4) are also bounded
on C\E. Because the a; coincide with rational functions on C\E we
conclude from Liouville's Theorem that there are constant numbers
Y0s ---» Yn-1€ C such that o (4) =y for A¢E. Let p(z) = z"—~y,_ (2" 1 —..,
—Yo- Then p(T) fo(4) =0 on C\E, but also on C, by continuity in 4. In
particular, p(T)&, =0, so p = py. Consequently p,(T)n =0 for all neX.
‘ Hence po(T) =0, so T is algebraic of degree <n. w

@

A slight modification of the argument now gives

THEOREM .2. Let X and Y be two complex vector spaces and let
T, ..., T, be linear operators from X into Y. Suppose that for every ¢e X the
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vectors T &, ..., T,& are linearly dependent. Then there exist .oy, ..., 0, C,
not all zero, such that Q =uo, T,+ ... +a,T, has finite rank < n-—1. Moreo-
ver, if X =Y and the T, commute, then Q* = 0.

Proof. If for all £eX, the vectors T, &, ..., T,- ¢ are linearly depend-
ent, it is enough to prove the result with Ti, ..., 7,-. So suppose that
there exists e X such that Ty &, ..., T,y &o are linearly independent and
T, &, ..., T, &, are not. Then there exist aq, ..., ay-1€C such that
(6) (Tyt oy Ty oy T) o = 0.

Let ne X be an arbitrary fixed vector and let F be the linear subspace of Y
generated by T; &. ..., T,&0, Ty, ..., Tyn. Then dim F <2(n—1). For le C
we set

Jo(d) = Lo+ An,

=T foeF, ... fi-1) =T-1fo(heF,

(N
g =T, fo(eF.

Because £, (0), ..., f,—1(0) are linearly independent in F there exist n—1
linear functionals on F, denoted by o, ..., ¢,~1, such that

8) @:(f;0)=8; for 1<i,j<n—1
We define
@ (f1 () o1 (fu-1(B)
AQ)= 1. o i )
Py~ (fl (A)) [ (fn—-l (/l))

which is a polynomial of degree < n~—1, satisfying 4(0) =1, and

@1 (f1(A) 01 (9(4) @1 (fu-1(3) l

(pn-- 1 (/1 (A)) (Pn— 1 (g (A‘))
ith column

which is also a polynomial of degree < n-1, satisfying —A4;(0) =0y, by (6)
and (8). If E denotes the set of zeros of 4 then, arguing as in the proof of
Theorem 1, we conclude that

(D,,_ 1 (fn— 1 (A'))

) (A Ty Ay y D) Ty == A (D Ty) fo(d) = O
on C\E, and so, by continuity, on all C. Let a, = 1 and let B, ..., B, be the
coeflicients of A respectively in -4, (4), ..., —~dp-1(4), 4. Setting Q

=gy Ty +...+o, T, (which does not depend on n!), R=p; Ti+...+B,T,
(which depends on n!) and looking at the coef ficients of degree 0 and 1 in 4,
from (9) we obtain

Qf, =0, Qn+RE=0.

6 ~ Studin Muthematica 88/3
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Consequently Qn is in the linear subspace generated by T, &, ..., T,.; &,. So
Q has a finite rank < n—1. If moreover the T, commute, then Q and R
commute, so Q%5 = —QRE = —RQE, =0. Hence 0* =0, m

Remark. Let P and Q be two different projections having the same
range of dimension 1, defined on a complex vector space X. For every e X
the vectors P¢ and QF are dependent and obviously there are linear
combinations of P and @ having rank one. But aP+fQ s 0 for any «, fie C.
So in general it is impossible to have Q = 0 in Theorem 2.
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Extension of C* functions from sets
with polynomial cusps

by
WIESEAW PAWLUCKI and WIESLAW PLESNIAK (Krakéw)

Abstract. We give a simple construction of a continuous linear operator extending C%
functions from compact subsets of R" with polynomial cusps including fat subanalytic sets.

1. Introduction. Whitney's extension theorem [15] yields a continuous
linear operator extending C* functions (k finite) defined on closed subsets X
of R". For '™ functions such an operator does not in general exist (see e.g.
[12, p. 79]). However, Mityagin [4] and Seeley [7] proved the existence of
an extension operator if X is a hal-space of R". Stein [9] showed that such
an operator exists if X is the closure of a Lipschitz domain in R" of class
Lip1. Stein’s result was then extended by Bierstone [1] to the case of a
domain with boundary which is Lipschitz of any order. By the main result of
Bierstone [1] involving Hironaka’s desingularization theorem, an extension
X is Nash subanalytic (not necessarily fat) the existence problem was solved
by Bierstone and Schwarz [3]. Recently Wachta [14] has constructed an
extension operator for fat closed subanalytic sets in R” without making use of
the Hironaka desingularization theorem. For closed subsets of R" admitting
some polynomial cusps, the existence of an extension operator was shown by
Tidten [10]. :

In this paper we construct an extension operator for the family of
compact uniformly polynomially cuspidal (briefly, UPC) subsets of R" (see
Theorem 4.1), The UPC sets were introduced in [6] as follows.

Drrnrion 110 A subset X of R™ is said to be UPC if there exist
positive constants M and m, and & positive integer d such that for each point
x in X, one may choose a polynomial map h,: R -+ R" of degree at most d
satisfying the following conditions:

(i) he((0, 17) = X and h(0) = x;

(i) dist (h,(t), R"—X) 2 Mt™ for all x in X and te(0, 1].

Every bounded convex domain in R" and every bounded - Lipschitz
domain are UPC. More generally, every subset of R" with a parallelepiped
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