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Abstract. It is shown that if T =(T;, ..., T,) is a commuting m-tuple of continuous linear
operators in a complex Banach space such that each operator T;, 1 <j<m, has real spectrum,
then the Taylor spectrum, the Harte spectrum, the commutant spectrum and the bicommutant
spectrum of T all coincide. This result remains valid for commuting m-tuples T for which each
operator T;. | <j < m, has a decomposition U;+iV; where U; and ¥ have real spectrum, the
2m-tuple (Uy, ..., Upy Vi, ..., Vi) is commuting and the commutants {T; 1<j<sm) and
WV 1<) m}' are equal. It is shown that there are classes of operators, such as
multiplication operators, spectral operators and regular generalized scalar operators, with the
property that any commuting m-tuple T of operators from such a class has a decomposition of
the type above. A crucial role is played by a concept of spectral set y(T) introduced in [12, 13].

Introduction. In recent years there have been many definitions of joint
spectrum of a commuting family of operators on a Banach space. In this
note we compare some of the more important definitions of joint spectrum
and show that they coincide for large classes of operators.

If X is a complex Banach space, then L(X) denotes the Banach algebra
of all continuous linear operators of X into itself, equipped with the uniform
operator topology. The identity operator on X is denoted by I. Throughout
this paper m denotes a positive integer and T = (T, ..., T,) a commuting m-
tuple of elements Tje L(X), 1 <j < m, often abbreviated simply as T = (T)).
The real number field and the complex number field are denoted by R and
C, respectively.

. Let T be an m-tuple in the centre of a closed unital Banach subalgebra

&/ of L(X). Then o(T, /) is the set of all le C* for which the equation
Z;":L A;(Tj=A)) = I has no solution A =(A4,) in /™. In the case when &/ is
commutative this is equivalent to

(1) o(T, ) = {(Y(T), ... ¥ (L)) ye A},

where .#(s7) is the maximal ideal space of /. The commutant spectrum,
o(T, {T}}"), and the bicommutant spectrum, a(T, {T;}"), are denoted simply by
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o'(T) and ¢"(T), respectively, where {T;}'
bicommutant of {T}} in L(X), respectlvely

The Harte spectrum, oy (T), is the set of all Ae C™ for which at least one
of the equations " (T;—2)4;=1 and Y| 4;(T;—A) =1 has no solu-
tion A =(4; in L(X)"; see [10].

The Taylor spectrum, Sp(T), is defined in terms of the Koszul complex of
T Its properties are systematically exposed in the penetrating studies of J. L.
Taylor [16], [17].

Finally, the polynomial spectrum, o,(T), is the set of all A C™ such that
4 (1) belongs to the usual spectrum, ¢ (¢ (7)), of the (single) operator g(7), for
each polynomial g: C™— C; see [2], for example.

We remark that these notions of joint spectrum coincide in the case of a
single operator, that is, when m = 1.

The following notion, introduced in [12] and [13], will play a crucial
role in the sequel. Namely, for a commuting m-tuple T = (T) in L(X)™ define

and {T;}" are the commutant and

(2 P(T) = {ueR™; Y (Tj—w)* is not invertible in L(X)).

j=1

If m=1, then it is easily shown that y(T}) = ¢(T;) "R, and hence it can
happen that y(T) = @.

The main purpose of this note is to establish the following two results
and to deduce some consequences from them (cf. Sections 3 and 4).

Trueorem 1. Let T =(T) be a commuting m-tuple in L(X)". Then the
Sollowing statements are equivalent:

(i) o(T) =R for each j=1,.

(ii) Any one of the five joint spectra Sp(T), a'(T), 6"(T), a4 (T), op(T) is
contained in R™.

(iii) Sp(T) = 04(T) = ¢'(T) = 6" (T) = 0p(T) = y(T).

Remark 1. For m-tuples satisfying the hypotheses of Theorem 1 it is
clear that y(7T) s Q.

An m-tuple T =(T)) of elements from L(X) is called strongly commuting
[13] if, for each 1 <j < m, there exist operators U; and V), each with real
spectrum, such that T; = U, j+iV; and II(T) =(U,, ..., U,, ¥, .. , V) is a
commuting 2m-tuple in L(X)z’” Such a commuting 2m—tuple n (T), denoted
briefly by IT (T (U, V), is called a partition of T. If there exists a partition
o(n =, V) of T such that {T;}' = lU,, ViY, then T is said to be extra
strongly commutmg We remark that {T;}" = {U,, V;}" is an equivalent condi-
tion.

THEOREM 2. Let T be a strongly commuting m-tuple in L(X)". Then

©) Sp(T) = o (T) = o' (T).
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If T is extra strongly commuting, then o"(T) is also equal to each of the
spectra in (3).

In practice, the spectra Sp(T), oy (T), o'(T), ¢”"(T) and o, (T) are often
difficult to compute. However, one of the appealing aspects of the spectral set
y(T) is that it readily lends itself ‘to explicit computation. This observation,
together with Theorem 1, Theorem 2 and Lemma 2 in Section 1, provides an
effective means for computing other joint spectra of m-tuples T = (T;) which
are strongly or extra strongly commuting. In addition, the notion y(-) often
leads to more direct and natural proofs of statements otherwise proved by
less transparent methods: see Example 1(A) and Proposition 7, for example.

The organization of this paper is as follows. In Section 1 we introduce
some notation and establish various preliminary results needed in the sequel.
Section 2 is devoted to proving the two theorems stated above and Section 3
is devoted to some applications and examples. In the final section it is shown
that the spectra o (T), Sp(T), ¢'(T), ¢”'(T) and op(T) all coincide with the
joint point spectrum when the Banach space X is finite-dimensional.

1. Preliminaries. Throughout this section X is a (complex) Banach space
and T =(T)) is a commuting m-tuple in L(X)™. Then we have the inclusions

4 Sp(T) Uo(T) =0'(T) £0"(T) So(T) < [] o(T).
=1

The fact that Sp(T) < ¢'(T) < ¢”(T) is discussed in [16]. Since ¢”(T) is
given by the right-hand side of (1) with &/ = {T;}", it follows from Proposi-
tion 1.1.1 of [2] that ¢"(T) = op(T). The inclusion op(T) [T 1o, 0(T) is
clear; see [2; p. 275]. Finally, if 1¢0'(T), then Z, 1A(T,—4) —I for some

-tuple 4 =(A4)) of elements from {T;}' < L(X) and hence }L¢GH(T) This
shows that oy (T) =o' (7).

If X is a Hilbert space, then it follows from Proposition 2.10 of [18]
that ¢,,(T) = Sp(T). We remark that this inclusion can be strict; see the
example discussed in Remark 2 of [6]. Similarly, it is known that the
inclusions Sp(T) € o’'(T) < ¢"(T), valid in any Banach space, can also be
strict [18; § 4].

Lemma 1. Let T =(T)) be a commuting m-tuple of elements from L(X).
Then ¢"(T)NR" is a subser of y(T)

Proof. If Ae R™\y(T), then W = Z” (T,~,1])2 is invertible in L(X). It
is easily verified that W~ 1 belongs to {T;}", and hence so does each of the
operators 4; = W~ (T A, 1 <j< m. Since Z;",lA‘(T}—-l;) =1 it follows
that AeR’"\a" 7. =

Remark 2. It follows from (4) and Lemma 1 that Sp(7)nR",
auy(T) " R™ and ¢'(T) " R™ are also subsets of y(T).

If ¢*(T) denotes either the Taylor, Harte or polynomial spectrum of T
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then ¢*(T) is a nonempty compact subset of H";la(T,) with the property
that g(o*(T)) =o(q(T)) for all polynomials ¢: C™ — C; see [17], [10] and
[2; Proposition 1.1.2], respectively. The Taylor spectrum actually satisfies
this property for functions g analytic in a neighbourhood of Sp(7T). The
following result is essentially Proposition 10.1 of [13].

ProrosiTioN 1. Let T be a commuting m-tuple in L(X)" and let ¢*(T) be
a subset of C™ with the property that q(a*(T)) = a(q(T)) for all polynomials
g: C"— C. Then o*(T) " R™ = y(T) with equality if ¢*(T) = R™.

Proof. For 1e R" define a polynomial ¢,: €"— C by the formula

m

q,(2) = Z (Zj"/lj)z'

J=1
If veo*(T) " R", then Oeq,(c*(T)) = o(q,(T)) and hence veyp(T); see (2).
Conversely, if ve y(T), then Oe g, (o*(T)) so that g, (z) = O for some zea*(T).
However, if ¢*(T) < R™, then this is possible only if z=v and hence
ved*(T). m

The following result follows immediately from Lemma 1, Remark 2, the
discussion prior to Proposition 1 and Proposition 1 itself.

CoroLLARY 1.1. Let T be a commuting m-tuple in L(X)". If o*(T) denotes
either Sp(T), oy (T), o'(T), ¢"(T) or op(T), then
(5) a*(TY N R™ = y(T).
Equality holds in (5) whenever *(T) < R™

Let T be a commuting m-tuple in L(X)" and let n be a positive integer.
If g,: C"— C are polynomials, 1 <k<n, and ¢ =(q,, ..., g,) denotes the
obvious map from C™ into C" then it is known that the Taylor spectrum
and the Harte spectrum satisfy ¢(Sp(T))=Sp(q(T)) and g(oy(T))
= ay(q(T)); see [17; Theorem 4.8] and [10, 15], respectively. This “multi-

polynomial” version of the spectral mapping theorem is not satisfied by the
commutant and bicommutant spectra [15].

Lemma 2. Let T be a strongly commuting m-tuple in L(X)™ with a
partition II(T) and let p: C*™— C™ be the polynomial given by
(6) [](Z)=P(Zl,...,22m)=(21+l'2m+1,...,Zm+i22m), Zec,’lm.
Then

SP(T) = 0 (T) = p(y(11(1)).

Proof. Let o*(-) denote either Sp(-) or oy (). Then it follows from

Corollary 1.1 that ¢*(II(T)) = y (I (T)). By the discussion following Corolla-
ry 1.1 we have

o*(T) = o*(p(I1(T))) = p(o* (11(T))) = p(y(IT(T))). w
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Two m-tuples T and S in L(X)™ are said to be murually commuting if T
and § are commuting m-tuples such that T; §; = §; T, for each j and k. In this
case the m-tuple T-S = (T,—S§)) is also commuting.

ProrosiTION 2. Let T and S be murually commuting m-tuples in L(X)™. If
each operator Q; = T;—S§;, 1 <j< m, is quasinilpotent, then y(T) = y(S) and
0% (T) = *(S) where a*(-) denotes either the Taylor, Harte or polynomial
spectrum.

Proof. Since T and S are mutually commuting it follows that they are
quasinilpotent equivalent in the sense of Definition 4.1 of [9]; see also [9;
Remark 4.3]. Accordingly, the identities Sp(T) = Sp(S) and o (T) = oy (S)
follow from Theorem 4.1 and Corollary 4.1 of [9], respectively.

Let g: C"— C be a polynomial. Then it is clear that ¢(T) = g(S)+Q
where Q (being a finite linear combination of products of operators from the
commuting family {S;, Q;; 1 <j < m} with each product containing at least
one element Q;, for some j) commutes with g (S) and is quasinilpotent [5; Ch.
4, Lemma 3.8]. It follows that o(q(T)) = a(g(S)) [8; XV, Lemma 44] and
hence, for ze C", we see that ¢(z)eo(q(T)) if and only if q(z)e o (q(S)). The
definition of polynomial spectrum then implies that o,(T) = a5(S).

Finally, if Ae R™, then it is easily seen that

m m
Qi+ Y (S=4)% = Y (=4,
i=1 j=1
where Q; is a quasinilpotent operator commuting with the operator Z;'; L (S;
—4;)* and hence

o(2 (T=4)") = o (X (§;—4)%).
i=1 i=1
Since Aey(T) if and only if Oeo(Z;,';l('I]—/lj)z) it follows that y(T)
=7(S) =
2. Proofs of the main theorems. We begin with the proof of Theorem 1.
The implication (i) = (ii) is clear from (4).
Assume that (iii) holds. Then Sp(T) = y(T) = R™. If n;: C"— C is the
Jjth coordinate projection defined by 7;(z) = z;, ze C", for each 1 <j<m,
then it follows from Taylor's spectral mapping theorem that
7(T) = o (m,(T) = Sp(m,(T)) = n;(Sp(T) = R,

for each j=1, ..., m, which is (i).
It remains to establish (ii) = (iii). Suppose that Sp(T) = R™. Then we
have just seen that ¢(T) =R, 1 <j<m, and hence (4) implies that

0u(T)USP(T) S oa(T) < [ o(T) < R™.
j=1
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It follows from Corollary 1.1 that

Q] Sp(T) = oy (T) = o' (T) = 6"(T) = 0, (T) = y(T),
which is (iii).

If o(T) = R™, then the spectral mapping theorem for the Harte spec-
trum applied to the polynomials 7, 1 <j < m, defined above shows that
o(T) SR, j=1,...,m Then the same argument as above establishes (7)
again,

Finally, suppose that one of the remaining spectra, namely o' (T), ¢"(T)
or ap(T) is a subset of R™. Since Sp(T) is a subset of each of these it follows
that Sp(T) < R™ from which we have already seen that (iii) follows. m

We now prove Theorem 2. Suppose T has the partition I7(T) = (U, V).
It suffices to prove the set inclusions

®) Sp(Nuou(T) <0'(T) S a(T, {U;, V}") < p(y(IT (D)),

where p: C*™— C™ is the polynomial (6). Indeed, on applying Lemma 2, we

note that these sets are all equal and Theorem 2 follows immediately, after

noting that o(T, {U;, V;}") =¢”(T) in the case when T is extra strongly
commuting with respect to IT(T).

) The first inclusion in (8) was noted in (4). The next follows from

ki " G
U, v} = {1}

To prove the final inclusion in (8), choose AeC™\p(y(II(T))
= p(R*™\y(I1(T))). Then A = p(u, v) = u+iv where (u, v)e R*™\y(I1(T)), and
hence

W =

gk

(Uj=w)*+(V;~vy)?)

j=1

is invertible in L(X) with W~! clearly an element of {U s Vj . Now define
9 A; = '1((Uj—uj)——i(V-—~v~)) j=1,.

Then each 4;e{U;, V;}, 1 <j<m. It follows from (9) that Z (T—4)
=1 Accordmgly, Ae C"\a(T, {U;, V;}") as required. m

We include here a result of K. Rudol which is related to Theorems 1
and 2.

A compact subset K of C™ is called rationally convex if
K ={zeC"; q(z)eq(K) for every polynomial q: C"— C}.

THEOREM 3. Let T be a commuting m-tuple in L(X)". Let G(') be an
abstract spectrum for L(X) in the sense of Zelazko [19]. Then op(T) =6(T) if
and only if G(T) is rationally convex.
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Proof. Since &(-) is an abstract spectrum the identities

q(3(1) = G(a(7) = o (a(T)

are valid for every polynomial g: C™ — C [19]. It follows from the definition
of op(T) that

op(T) = {ze C"; q(2)eq(5(T)) for every polynomial g: C™— Cl =

Remark 3. The Taylor spectrum and Harte spectrum are abstract
spectra [19]. Furthermore, it is not difficult to show that compact sets
K < C™ which are contained in R™ are rationally convex (the polynomials g;
in the proof of Proposition 1 play a role here). Accordingly, (4) and Theorem
3 imply that

Sp(T) = ou(T) = o' (T) = 6" (T) = op(T)
whenever o(T) <R for each j=1,..., m (cf. Theorem 1).

We end this section with a sufficient condition which ensures that a
strongly commuting m-tuple is extra strongly commuting. First we need the
following result from which Proposition 3 follows easily.

Lemma 3. Let Te L(X) and let U, V be commuting operators such that T
= U+iV and the groups t— exp(itU), teR, and s- exp(isV), seR, are
uniformly bounded in L(X). Let T* = U—iV. If Ae L(X) commutes with T
then A also commutes with T*, In particular, {U, V} = {T}".

Proof. The elegant proof, due to M. Rosenblum, of Fuglede’s theorem
for normal operators in a Hilbert space can easily be adapted to the present
scttmg, see [7; Theorem 7.21], for example. m

Remark 4. The hypotheses of the lemma imply that U and V have real
spectra and are generalized scalar operators [5; Ch. 5, Theorem 4.5]. If X is
a Hilbert space, then U and V are actually selfadjoint [7; Theorem 7.23].
However, in Banach spaces they need not be scalar-type spectral operators
[7: p. 195] although, as already noted, they are generalized scalar operators.

ProrosiTION 3. Let T be a commuting m-tuple in L(X)"‘ If there exists a
partition IT(T) = (U, V) of T such that the groups A —exp (i}, 4; U), AeR™,
and p— exp(zjulyj V), ue R, are uniformly bounded in L(X’) then {u, vy
= {T;})' and hence T is extra strongly commuting.

3. Examples. In this section we exhibit some classes of operators with
the property that any commuting tuple of operators from such a class is
necessarily strongly or extra strongly commuting,

ExampLe 1. Let Te L(X) be a generalized scalar operator in the sense of
Colojoard and Foiag [5], that is, there exists a spectral distribution
&: C*(C) = C*(R? — L(X) such that @(4) = T, where A denotes the identity
function on C. Then T is called regular if there exists a spectral distribution
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for T which takes its values in the bicommutant {T}". Such a spectral
distribution for T is said to be regular.

PropositioN 4. Let T =(T)) be a commuting m-tuple in L(X)" consisting
of regular generalized scalar operators. Then T is extra strongly commuting
and hence

(10) Sp(T) = oy (T) = o'(T) = 0" (T).

Proof. Let @; be a regular spectral distribution for T}, 1 <j < m. Then
T T,=T,T, implies, by regularity, that T;®.(f)= & (f)T; for each
feC®(C), which in turn implies (for each feC*(C)) that &;(g) P, (f)
= @, (f) P,;(g) whenever ge C*(C). Accordingly, the spectral distributions &,
1 €j < m, all commute with each other.

If U;j=a®;(Re(d) and V; =&, (Im(4), 1<j<m, then it is clear that
(U, V) is a commuting 2m-tuple in L(X)*" such that T; = U;+iV, for each j

=1, ..., m Since each element of {U;, ¥;] has real spectrum (cf. proof of ‘

i
Lemma 6.1 in Chapter 4 of [5]) it follows that II(T) = (U, V) is a partition
for T It is a simple consequence of the regularity of each ®;, 1 <j < m, that
T} = {U;, V;}'. Accordingly, T is extra strongly commuting and hence (10)
follows from Theorem 2. m
Remark 4. Still using the notation of Proposition 4 and its proof it
follows that the tensor product

(1) P=d®..08,: C(C"— LX)

of the &;, 1<j<m, exists, is again a spectral distribution [5; Ch. 4,
Proposition 3.1] and satisfies ®(n;) = T}, 1 <j < m, where 7;: C" — C is the
Jjth coordinate projection. Hence T is a C*(C™-scalar system in the sense of
[1] with &: C*(C™) — L(X) being a C*(C™-functional calculus for 7. Fur-
thermore, ¢ assumes its values in {T;}" by definition of the tensor product
and the regularity of each &;, 1 < j < m. Accordingly, an alternative proof of
(10), for T as specified in Proposition 4, follows from Theorem 6 of [1].
Actually, using this result (10) can be slightly strengthened to

(12) Sp(T) = oy (T) = '(T) = ¢"(T) = Supp(®),
where Supp (@) denotes the smallest closed set K = C™ such that &(f) =0
whenever feC*®(C™) has support disjoint from K.

We now present some important examples of classes of operators which
are regular generalized scalar operators.

(A) Scalar-type spectral operators. Let #(C) denote the c-algebra of
Borel subsets of C. An operator Se L(X) is a scalar-type spectral operator if
there exists a spectral measure P: #(C) — L(X), supported in o (S), such that

S=(zdP(z) = [ zdP(2),

c o($)
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where the integral exists in the usual sense of integration with respect to a
countably additive vector measure [8; p. 1938]. The spectral measure P,
necessarily unique [8; XV, Corollary 3.87, is called the resolution of the
identity of S. To say that P is a spectral measure means that E — P(E)x,
Ec#(C), is an X-valued, c-additive measure for each xe X, P(C) =1 and
P(EnF)=P(E)P(F) for each E and F in Z(C).

Define &g: C*(C)— L(X) by

(13) O5(f) = | f)dP(z), [feC™(O).

a($)
That g is a spectral distribution follows from [8; XVII, Theorem 2.10] and
that @g is regular is a simple consequence of [8; XV, Corollary 3.7].
Accordingly, if S is a commuting m-tuple of scalar-type spectral operators in
L(X), then it follows from Proposition 4, Remark 4 and (12) that

(14) Sp(S) = o (S) = ' (S) = ¢"(S) = Supp(Py),

where the spectral distribution @51 C*(C™ — L(X) of S (cf. (11)) is con-
structed from the ®; = Q)Sj, 1 <j<m, as specified by (13).

Remark 5. By (13), each spectral distribution <I>sj can be identified with
a measure, namely the resolution of the identity P;: #(C) - L(X) of §j,
1 <j < m. However, the tensor product ®g as given by (11), although always
existing as a spectral distribution in C™ (cf. Remark 4), need not correspond
to any spectral measure P: #(C")— L(X) via the formula

(15) Os(f)= [ f(NAP(D), [feC=(C™).
o

Indeed, this will only be the case if the product measure P (cf. [11] for the
definition) of the P;, 1 < j < m, exists. Although the product measure P need
not exist in general there are classes of Banach spaces X in which it always
exists. For example, this is the case if X is a Hilbert space, an Lf-space,
1 € p < o, an injective Banach space or H* (D) [8, 14]. For such spaces X
the identity (15) is valid and hence Supp(®y) is then precisely the support,
Supp(P), of the product measure P: #(C™) — L(X) (called the joint resolurion
of the identity of S), that is, the complement of the largest open set U = cn
such that P(U) = 0. So, if the joint resolution of the identity P exists, then
(14) becomes

(16) Sp(8) = ay () = ¢’ (8) = ¢"(S) = Supp(P).

It is worth while to indicate a more direct proof of (16) based on the
notion (+), assuming that the joint resolution of the identity.P of the P,
1<j< m, exists. If we define U; = [Re(})dP;(4) and V;= fIm(2)dP;(7),
then both U; and V; are scalar-type spectral operators [8: XVII, Theorem
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2.10] with resolution of the identity given by
P}(E)=P;(iweC; Re(weE}), P} (E)=P)(iweC; Im(w)eE}),

for each Ee#(C), respectively [8; XVII, Lemma 29]. It is clear that
Supp(Pj) = R and Supp(P}) <R, j=1, ..., m, and hence P} and P} may be
considered as spectral measures defined on the Borel subsets, #(R), of R.
Since the range of each measure P} and P? is a subset of the range of P,
1<j<m and {P(E)x; Ec#(C™) is relatively weakly compact, for each
xe X, then the product measure, say Q, of the 2m commuting spectral
measures (Pi, ..., PL, P}, ..., P2) is defined on #(R®*") [11; Theorem 8].
Observe that, for each j=1,..., m, the product of the spectral measures
P}: #(R)— L(X) and P}: %(R)— L(X), which is a spectral measure on the
Borel sets of R*> = C, can be identified with P; and that

Sy =Up+iVy= [ (A+i)dP;(4, ).
Rr?

Now II(S) = (U, V) is a partition for § and hence Lemma 2 implies that

Sp(S) = p(y(I1(S))),

where p: C*™— C™ is the polynomial (6). It can be shown that Supp(Q)
= y(I1(8)) and p(Supp(Q)) = Supp(P), and hence Sp(S) = Supp(P) follows.
Then (16) follows from Proposition 4 applied to S.

(B) Prescalar-type spectral operators. An operator SeL(X) is called a
prescalar-type spectral operator of class T', where I is a total subspace of the
continuous dual space X' of X, if there exists a spectral measure of class I,
say P (see p. 119 of [7]), such that S belongs to the commutant of the range
of P, the spectrum of the restriction of S to each closed invariant subspace
P(E)X, Ec #(C), is contained in the closure of E in C, and S = J zdP(2).

‘a(8)
The “integral” is defined via a process of continuous extension from the

simple functions; see [7; p. 120]. Define &5 : C*(C) — L(X) by the formula
(13). That &g, is a spectral distribution follows from [7; Proposition 5.9(i)],
and the regularity of &g is a consequence of [7; Theorem 5.12].

Accordingly, if § = (S)) is a commuting m-tuple in L(X)™, where S ,is a
prescalar-type spectral operator of class I';, 1 <j < m (the I'; may vary with
Jj) then it follows from Proposition 4, Remark 4 and (12) that

Sp(S) = au(S) = o’ (8) = ¢"(S) = Supp(&s),

where the spectral distribution ®g: C*(C" — L(X) of S (cf. (11)) is con-
structed from the @; = q’sj,rj, 1<j<sm

(C) Polar operators. For the definition of well bounded operators of type
(B) we refer to [7; Chapter 17]. Such operators necessarily have real
spectrum. An element Te L(X) is a polar operator [3; Definition 3.17 if there
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are elements R and A in L(X) such that R and A are commuting well
bounded operators of type (B) and T = Rexp(id). It is known that polar
operators are generalized scalar operators [3; Theorem 3.2]. Furthermore, if
Rexp(id) is the canonical decomposition of T in the sense of [3; p. 4417, then
it follows from Theorem 3.18(i) of [3] that the spectral distribution for T as
constructed in the proof of Theorem 3.2 of [3] is actually regular. According-
ly, polar operators are regular generalized scalar operators.

Some of the most important examples of polar operators, not covered
by either of the classes (A) or (B) above, are the translation operators in
IF(G), 1 <p <o0, p#2, where G is a locally compact abelian group [7;
Chapter 20]. ' '

(D) Multiplication operators. Let Q be a locally compact Hausdorff

- topological space and let u be a regular Borel measure on Q. The space of C-

valued continuous functions on Q which are bounded (respectively vanish at
infinity) is denoted by C, (®) (respectively C,(€2)). The norm in each space is
taken to be the supremum norm. The notation IP (i), 1 < p < oo, is standard.

Let X denote one of the Banach spaces Co(Q), C,(2) or IP(w),
1< p< co. Define an element T, of L(X) by T,(f) = Af for all feX. It is
assumed that h: @ — C is a bounded Borel function if X = [P(u) for some
1< p< oo and that he C,(Q) if X is either Co(Q) or Cy(Q).

Let T = (T)) be an m-tuple in L(X)" given by T; = Ty, 1 <j < m, where
each fanction h(j): 2 — C is as specified above. If X = I?(y) for some 1 < p
< o0, then each operator Tj, 1 <j<m, is a scalar-type spectral operator. If
X = L*(w), then each operator T, 1<j<m, is a prescalar-type spectral
operator of class I' = L' (y). So in each case T is extra strongly commuting.
The case when X is Co(R) or C,(Q) requires a different argument. If
he C,(Q), then the mapping @,: C*(C)— L(X) defined by

yeC*(0),

is easily seen to be a spectral distribution for T;, supported by the closure
m of h(Q) = {h(w); weQ}. Accordingly, T, is a generalized scalar opera-
tor. The claim is that ¥, is regular. Indeed, if U = T,y and V = T, then
U and V commute, T, = U+iV and the groups s— exp(isU), se R, and t
- exp(itV), te R, are uniformly bounded in L(X). So Lemma 3 implies that if
AeL(X) commutes with T, = &,(%), then A also commutes with T,* =U
—iV=®,(1), where 1: C ~ C denotes the element of C*(C) given by (s, 1)
= s—it for each (s, tye R* ~ C. Using this observation and Proposition 3 it
can be shown that T is extra strongly commuting. A similar argument also
applies in the case of L*®(p). .

ExaMPLE 2. An operator Te L(X) is a spectral operator if there exists a
scalar-type spectral operator § and a quasinilpotent operator Qe {S} such
that T = S+Q [8; XV, Theorem 4.5]. Such a decomposition is unique; § is

Dy Y- Tyons
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called the scalar part of T and Q the radical part of T Spectral operators
need not be generalized scalar operators [5; Ch. 4, Theorem 3.6].
ProvpostiioN 5. Let T=(T) be a commuting m-tuple in L(X)™ consisting
of spectral operators. Then T is extra strongly commuting.
Proof. Let S; be the scalar part and Q; the radical part of T;, 1 <j < m.
Then define operators

V,= [Im(4)dP;(3), U;=Q;+ [Re(4)dP;(d),
¢ c

for each j =1, ..., m, where P; is the resolution of the identity for T (and
also for S)). The claim is that I (T) = (U, V) is a partition for T satisfying
(v, V)’ = (T}

It is clear that T, = U;+iV; and that each operator Vj, 1</ <m, has
real spectrum [8; XVII, Corollary 2.11(ii)]. Similarly, each U;, 1 <j <m, also
has real spectrum [8; XV, Lemma 4:4] since Q; commutes with {Re(1)dP;(2)

[

as it commutes with each projection P‘j‘(E), Ee#(C) [8; XV, Corollary 3.7].
It then follows from the commutativity of T =(T;) and the repeated use of
Corollary XV. 3.7 of [8] that IT(T) = (U, V) is a commuting 2m-tuple such
that (T} ={U, V). =

A consequence of this result, together with Proposition 2 and (16) is the
following

CoroLLARY 5.1. Let T = (T}) be a commuting m-tuple in L(X)™ consisting
of spectral operators and let S =(S;), where S; is the scalar part of T,
1<j<m Then

Sp(T) = 04 (T) = ¢'(T) = ¢"(T) = Sp(8) = 6y4(8) = '(5) = o"(S).

If the joint resolution of the identity of S exists, say P: #(C™) — L(X), then
each of the above spectra is also equal to Supp(P).

ExampLE 3. For the definition of a prespectral operator of class I', where
I is a total subspace of X', we refer to Definition 5.5 of [7].

ProposiTION 6. Let T =(T)) be a commuting m-tuple in L(X)" where T; is
a prespectral operator of class I;, 1 <j<m. Then T is extra strongly
commuting.

Proof. Define

H;= [ Re(M)dP;(d), K;= [ Im(AdP;(A),
olT ) oT

j=1, ..., m, where P; is a resolution of the identity of class I'; for T;. Then

both H; and K| have real spectrum [7; Proposition 5.9()]. It is shown in the

proof of Theorem 5.12 in [7] that the three operators H;, K; and Q; =T,

—H;—~iK; (which is quasinilpotent) commute, and hence U; = H;+Q; also
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has real spectrum, j =1, ..., m. It remains to show that II(T)=(U, K) is a
commuting 2m-tuple satisfying {U;, K;}' = {T;}". This can be argued as in the
proof of Proposition 5 after noting that if Ae L(X) commutes with T;, then
A also commutes with H;, K; and Q;, 1 <j < m; see the proof of Theorem
512 in [7]. =

4. Finite-dimensional spaces. Let X be a complex Banach space and let
T =(T)) be a commuting m-tuple in L(X)™. A point Ae C™ is in the joint point
specirum, a, (T), of T, if there exists a nonzero element xe X such that T;x
=A;x, 1 <j < m Itis clear that 6, (T) < ¢”(T) is always valid. If X is finite-
dimensional, then this is actually an equality as shown in the following
result.

ProposiTION 7. Let X be a finite-dimensional Banach space and let T be a
commuting m-tuple in L(X)". Then

1n Sp(T) = oy (T) = o'(T) = ¢"(T) = 03 (T) = 6, (7).

Proof. By a theorem of Lie there is a basis of X such that the matrix of
each T}, 1 < j < m, is upper triangular with respect to this basis. Then o, (T)
= {2k, ..., 2); 1 <k < n} where n=dim(X) and {4}, ..., A}} are the dia-
gonal entries of the matrix for T}, 1 <j < m. So, if 6(T}) SR for all j, then it
is clear that y(T) = o, (T). For general T, let II(T) denote the partition of T
as given in the proof of Proposition 5 and let p: C*™ — C™ be the polyno-
mial (6). Then Lemma 2 implies the inclusions

Sp(T) = p(y (T (D)) = p(o, (T(D)) S 0, (T) =" (T)

from which (17) follows via (4), Theorem 3 and Remark 3 since Sp(7) and
oy (T), being finite subsets of C™, are rationally convex. =

Most of the equalities in (17) are known or follow from known results;
see [4, 19], for example. However, these results are often based on different
methods and techniques. The above proof, which has the advantage of giving
all the equalities in (17) at the one time, illustrates once again the usefulness
of the notion ().
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Asymptotic stability of linear differential
equations in Banach spaces

by

Yu. I. LYUBICH (Kharkov) and VO QUOC PHONG (Hanoi)*

Abstract. Let A be a generator of a strongly continuous bounded semigroup T(t), t = 0.
We prove that il the intersection of the spectrum of 4 and the imaginary axis is at most
countable and A* has no purely imaginary eigenvalues, then the Cauchy problem for the
differential equation x(t) = Ax(t), 1 = 0, is asymptotically stable.

We consider the differential equation
ity %(1) = Ax(1),

in a complex Banach space X, where 4 is a linear closed operator with a
dense domain D(4) = X. The Cauchy problem for equation (1) is stable (i.e.,
by definition, (1) has a unique bounded solution x(r) which depends conti-
nuously on the initial value x(0)eD(A) w.rt. the sup-norm topology) if and
only if the operator 4 generates a strongly continuous semigroup T'(1), t = 0,
which is bounded, i.e.

) szgllT(t)H =M <.

t=0,

This criterion, obtairied by S. Krein and P. Sobolevskii, is equivalent to the
fact that: (i) the spectrum of 4 does not meet the half-plane Re 4 > 0, and (ii)
the resolvents R; = (4 — AI)"! satisfy the Miyadera—Feller-Phillips inequality

5

(3 [|IRYI < n=1,2,..., M=const.

= Red”
These classical results are presented in detail in the monograph [3]. We
notice that, without loss of generality, one can put M = 1, which can be
obtained by introducing the equivalent norm sup,»o||T(r) x||. In this case the
infinite sequence of inequalities (3) is reduced.to one Hille-Yosida inequality

“ IRl <
* This paper was written during the second author's two-year stay at the Khar'kov State

University, US.S.R.
Key words and phrases: one-parameter semigroups, asymptotic stability..
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