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C,-Estimates for certain kernels on local fields
f by
DAN TIMOTIN (Bucuregti)

Abstract. We give necessary and sufficient conditions for certain operators defined on
I*(K) (K a local field) to belong to Schatten-von Neumann ideals. The operators considered are
defined by a type of integral kernels.

1. The purpose of this paper is to extend to the case of a local field K
the results proved in [9] for the real case. They concern necessary and
sufficient conditions for certain kernels to give rise to operators.(on L*(K))
belonging to Schatten—von Neumann classes (for the theory of Schatten—von
Neumann classes, see, for instance, [1]). Though the main ideas are the same
as in [9], their .actual application needs several adaptations to the new
context. . .

In order to present the resulis, we have first to establish the notation
and to remind some facts from the theory of local fields; the basic reference
for this topic is [7].

Let K be a local field, that is, a locally compact, nondiscrete, totally
disconnected field with the valuation | |. We write © = {xe K, |x| <1}, O*
=IxeK, |x =1}, B={xeK, |x| <1}. It is known that there exists pe®P
such that P = pD (this p will be fixed in the sequel). The residue space T/
is a finite field; let Q be a complete set of representatives for it. If card Q = g,
then the image of K* in (0, co) under the valuation | | is the multiplicative
subgroup. of (0, ®) generated by g; also |p| = g"'. We have P
= {xeK, |x] < ¢7%}, and we will write S, = {xeK,|x| =q7*}; & will be the
characteristic function of 9. & = &(K) will denote the space of finite linear
combinations of characteristic functions of balls.

The Fourier transform on K is defined as follows: let y be a fixed
character on K that is trivial on O but is nontrivial on B! Then, for

fel (K),
R ENRGPTRES

The standard properties of .the Fourier transform can be found in [7,
Chap. II]. . .
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Caution: the sign | | is used to denote the -valuation on K as well as the
modulus of a complex number,

The author thanks Dan Voiculescu for many useful discussions.

. 2. In the sequel we shall recapture the main results of [9]. We shall
consider operators given by kernels of the form

1 - A(x, y) §(x~y)

where the main condition imposed on the continuous function A is its p-
homogeneity:

(@) Alpx, py) = A(x,y), Vx,yek.

Further restrictions on A4 will be stated when necessary.
Let us also introduce the equivalent of Besov spaces on K. If R, (x)
=q7*®_,(x), then R, = &,; we define, for p, ¢ > 1, seR,

Bqu = B;q(K) = {fe y” {q—gk“f*(Rk*Rkv I)Hp}k&'ze lq}
These spaces appear in [7] (actually, we use their “homogeneous” version).
Now, let T(4, ¢) be the operator whose kernel is 4 (x, y) @ (x~y), and
T(A) the operator whose kernel is 4 (x, y). The supplementary conditions on

A which will appear below will tend towards establishing, for a fixed A4, the
equivalence “T'(4, )eC, if and only if peBYr”.

Lemma 1. Let E = {(x, y)e K xK, |x—y| = 1}, and let y(x, ) be the
characteristic function of E. Define
a(4) = IT (x4, -
Then

IT(4, o)llc, < Ca, (ADllellsy -

The proof is similar to that of Lemma 1 in
given simply by ¥ = &, &, _,.

Also, with a proof similar to that of Lemma 2 in [9], we obtain

Lemma 2. Define

[9]. The functions , are

ay(4)* = sup [|4(y+t, y)2dy.
=1 Kk
Then
IT(4, o)llc, < Ca, (A)Ilqolla;/zz-

In order to apply Lemmas 1 and 2, we state the following result, which
can be proved by methods analogous to those in [1, X1, 9].

PropPosITION A. Suppose ¢, ne K, K (x, y) is a kernel defined on ¢+ 0
x(n+ D), and T(K) is the operator corresponding to K; suppose also o > %

icm®
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Define
K| = max {sup|K (x, y)l, Suphlhl"“lK (x, y+h)—K(x, yI}.
Xy X, ¥y

Then, if ||IK||| < o0, T(K)eCy, and
IT (Kle, < ClIKII-

We may now state

THEOREM 1. Suppose A is continuous on (K x K)\ {0}, satisfies (2) and,
moreover, on B = {(x, y)e K xK, max {|x|, [y|} =1} we have

(i) 1A, yI< Clx—yl%,

(i) |A(x, y+h)—A(x, y)l < ClH",
where o > 1/p, 1< p<2.

Then there is a constant C (depending on A and p) such that

IT(4, @llic, < Cliollssp-
PP

Proof. We shall suppose 1 < p <2 (otherwise the proof is simpler).
Consider the analytic family of kernels
A—a
] A(x, )

[x—y|
max {|x|, [y}

3) Ai(x, y) = [

defined for ap/2 < Rel < ap.

We will use interpolation between Red = ap/2 and Reld = ap.

For ReA = ap/2, the estimate is rather straightforward. If |yl = ¢* > 1,
and |t| = 1, we have, using condition (i) in the theorem,

Az +e, Yl = [y P2 DAy 41, y) = ¢TI APE(+1), PV
s qua(l—-p/Z)q—-ka =ucq~k/2q—k(ap— 1)/2.

Therefore, for |t =1,

[+t Pdy=C+ [ [0+ 0)Pdy=C+ Y [ |4+t )7 dy
K bl>1

HES k=1 |y =gk

SC(+ Y g*q7* g™ V) <0
k=1
whence a,(4;) < co. -

Suppzse now Rel=ap. We have to estimate a,(4;) = [IT(x4)llc,,
where y is the characteristic function of the set E = K xK, E = {(x, y), [x—yl.
=1} .

We shall need some preliminary notation. Suppose xc K. Then x
= Zm p*x,, where xeQ; that is, x, belongs to a set of g elements.

k=ko s

Moreover, in this case |x| = g~ ‘°. Define a function 1: K — K by putting 1(x)
t
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=X, where ¥ =Y, p*x, (in case ko > —1, we put X = 0). Then 1(K) is a
denumerable set of elements. Define Io=1{0} and, for k>=1, I,
= xe1(K), X = ¢}

Then 1(K) = U:; oli» and the number of elements in J; is less than g~
Also, |x—y| =1 is equivalent to 1(x) =1(y) and 1(p~'x) # 1(p~ ' y). If B(x, ¢
denotes the (closed) ball of center x and radius ¢, then, for ¢e:(K), we have

B, 1) (=¢+D) =C%B(€+p£, g,
and we may write the set E as a disjoint union
E= U U BE+pl, g7 ") xBE&+py, g7 ")
e K) CEU:'?

=U U U BE+pl, g~y xB(E+pn, ¢7).
k=0 &el) L neQ
C#n
Write
Egpn=B(E+pL, g7 ) xB(E+pn, q7Y),

and let us estimate ||T(xe, 4,)l| (the estimate below is actually valid for k
=1; I, can be treated similarly).

Recall that 4, is given by formula (3); however, when (x, y)e Ey,,, we
have |x—y| =1 and max {|x], |y|! = ¢~

Also, by homogeneity (relation (2)), we have

Kean = Xegg,p»

[A(x, )l = |A(P*x, p*)) < Clptx—p*y| = g™
and, for |h <1,

=% |A(x, y+h)—A(x, y)| = h~%|A(p* x, Pty +p* )= A (p* x, p*y)|
S Clh™*g™™|hf = Cq~*
(since (x, y)e Ey, , implies |p* x| = |p*y| = 1, we have applied (i) and (ii) in the
hypothesis).
By Proposition A, we have

”T(XC:K.rr A).”C1 < Cq«‘m
and therefore

HT(AA)“CI <C Z Z Z q—km(p"'l)q"ku
| k=0 celignco

9]

<SCY ¢ g™ <o
=0

(by the condition a > 1/p).
To end the proof, consider, for ap/2 < Rei < ap, the analytic family of
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operators 7, which associate to.the function ¢ the operator T(A4,, ¢). Then,
for Re A =up/2, 7, maps B3} into C,, while, for Re A = ap, it maps B} into
C,. The desired conclusion follows by interpolation.

3. We shall now treat the reverse problem. We rely on the following
lemma, whose proof is similar to that of Corollary 1 in [9].

LemMMA 3. Let A be some locally integrable kernel on K x K; suppose
o, a'c S (K). Define the function a by its Fourier transform:

au) =o' (u) [ AQx+u, xja(x)dx. .
K

Suppose suppa, suppa-+suppa’ = {xeK, |x| < R}, and denote by P, P'
the projections onto I*(suppa), L?(suppa+suppa’), respectively. Then, for
1< p< oo, ‘

llall , < CR'™P||P'T(A) P,

where C depends on the multiplier norm (in L') of o« and on the uniform norm
of a.

The following proposition, which we will use in the sequel, is an
immediate consequence of [5, 3.Corollary 2].

PROPOSITION B. If me BY2(K), then e L} (K); therefore m is a multiplier in
all (K), 1 <p< .

We may now state the theorem.

THeOREM 2. Let A be continuous on K x K\ {0}, satisfying (2). Suppose
that: ‘

(i) There is « >3 such that
[A(x+h, =A@, Y <ClyP* for Ix =l =1,[A <1.

(ii) For any ueK\ {0}, there exists xe K such that A(x+u, x)# 0.
Then

|1<P||s;’§]p < C|T(4, o), Jor L<p<oo.

Proof. Let {Q;} be a finite open cover of D* (we may choose it to be
open also in K), D; open sets in K\{0}, »;€ C, || = 1, such that Re (3, A (x
+u, x)) >0 for uef;, xeD;. Take Q) €Q; such that {@;} is still an open
cover of O* and choose positive functions a;, o€ & (K). such that:

(i) aj(w) >0 for ueQ;

(ii) suppaj = Q;, suppe; < Dj.

(The possibility of this construction follows from (ii) in the statement of the

theorem.)
Define now the functions by by

by(u) = @uyo(p~*u) [ AGetu, o (p~  x)dx.
K
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If P, Py are the corresponding projections, then we have, by Lemma 3
5 bl < Cq™* =Y ||P T(A, ¢) Pyllc,-

(Note tbat C depends on the multiplier norm of aj, and can therefore be
chosen independently of k and j).
Write

Oy (u) = aj(p™ ) [ A(x+u, x)oy(p~* x)dx.
X

A change of variables yields
B (u) = g7 %00 (p ™" u).

Now, define ¢, W, by =Y 505, ¥, =y(p*
- ’ %1050, Vi) = (p7*u). Note that
supp 00, suppy = D*. Also, for |u| =1, [v] <1, we have, by condition (i),

160 (u+ v}~ 60 ()| < Cof*
and therefore '
W (u+0) = ()] < Clof*.
cstiml:tx: (\:;c th:/e Rey) >0 on O and therefore 1} satisfies a similar
WD) 1+ 0) — (D) ()] < C ol

It follows easily, since 14 is supported on O that it belongs to

Bi*(K), and we may apply Propositi g .
4 position B to conclud i
on any I?(K). clude that it is a multiplier

From (5) we obtain

4@ billpy < Tlbillyy < g™ (S|P T(4, 0) Pyl
J j P

whence
T llowyull, < C(Ej: 1P T(A, @) Pylle ).
Therefore
© 2 a Mol < C X SIIPLT(A, o) Pyle
= = ’

<CIT4, P2,

since P?kl, P}, and Py, Py, are disjoint for |k, —k,| sufficiently large
(depending only on the sets D).
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But, since 1/, are multipliers of uniformly bounded norm in I, it
follows that

lle *'//k”,_p = Clle *(Rk—Rk—l)”Lp
and, by (6),

llllgy, < CUIT (A4, Qlic,
P

4. Final remarks. 1. The results presented apply in particular to commu-
tators of multiplication operators with singular integral operators of the
type considered in [7, VL4] (this is the analogue for local fields of the
commutators considered in [4], [6]).

2. The results of [9] are proved for operators on I?(R"); thus one might
think of extending them to L?(K"). Actually, no generality is obtained in this
way, since, by [8], K" has a natural local field structure, with valuation given
by |x| = max x| (x = (X1, ..., Xs)- The difference in homogeneity implies
that in K" we would have to consider the Besov space Brr, while the
condition > 1/p becomes « > n/p. The author thanks the referee for this
remark and for bringing [8] to his attention. .

3. In a recent work ([3]), Janson and Peetre extend the results of [2]
and of [9]; by combining their method with the proof of Theorem 1 above,
the range of the latter may be extended to the whole 1 <p < 0.
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Subspace mixing properties of operators in R" with
applications to Gluskin spaces

by

P. MANKIEWICZ (Warszawa)

Abstract. There is a constant ¢ > 0 such that for every ne N there is an n-dimensional

Banach space X, with the property that whenever G is a compact group of operators acting on
X, then

. c(n—1(G))
sup {ITlly,: TeG} > g

where t(G) = inf {tr T|: TeG}.

E. D. Gluskin in [3] introduced a class of random n-dimensional
Banach spaces in order to prove that the Banach-Mazur diameter of the set
of all n-dimensional Banach spaces is of order n. Later the same author in
[4] and independently S. J. Szarek [8] used different variants of spaces
defined in [3] to prove the existence of finite-dimensional Banach spaces
with the “worst possible” basis constants. Another variant of Gluskin spaces
was used by the author in [5] to construct finite-dimensional Banach spaces
with the “worst possible” symmetry constants. The importance of the notion
of “subspace mixing operators on R™ in the context of Gluskin ‘spaces was
implicit in [4] and “almost explicit” in [5]. The final step in this direction
was done by S. J. Szarek [9], who proved that a “vast majority” of Gluskin
spaces enjoy the property that every subspace mixing operator on such a
space has large norm. The subspace mixing property was used in that paper
to prove the existence of finite-dimensional Banach spaces with two essential-
ly different complex structures. Later on, the techniques developed in [9]
were used by the same author to construct infinite-dimensional Banach
spaces with some pathological properties [10], [11]; however, the credit for
the first use of Gluskin spaces to construct pathological infinite-dimensional
Banach spaces should be given to J. Bourgain [1].

In this paper we study subspace mixing properties of operators in R"
with special attention turned to operators which belong to a compact group
of operators. The main difference in the approach between [9] and this paper
lies in the fact that in [9] the author studied the subspace mixing property of
an operator T in terms of certain “distances” of T to the line {A1d}; ., while
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