

STUDIA MATHEMATICA, T. LXXXVIII. (1988)

- [8] M. Taibleson, The existence of natural field structures for finite dimensional vector spaces over local fields, Pacific J. Math. 63 (1976), 545-551.
- [9] D. Timotin, A note on C_p estimates for certain kernels, Integral Equations Operator Theory 9 (1986), 295-304.

INCREST
DEPARTMENT OF MATHEMATICS
Bdul Pacii 220, 79 622 București, Romania

50

Received February 25, 1986 (2140) Revised version October 20, 1986

Subspace mixing properties of operators in R^n with applications to Gluskin spaces

bv

P. MANKIEWICZ (Warszawa)

Abstract. There is a constant c > 0 such that for every $n \in \mathbb{N}$ there is an *n*-dimensional Banach space X_n with the property that whenever G is a compact group of operators acting on X_n then

$$\sup \{ ||T||_{X_n} \colon T \in G \} \geqslant \frac{c(n-t(G))}{n^{1/2} \log^{3/2} n}$$

where $t(G) = \inf\{|\text{tr } T|: T \in G\}.$

E. D. Gluskin in [3] introduced a class of random n-dimensional Banach spaces in order to prove that the Banach-Mazur diameter of the set of all n-dimensional Banach spaces is of order n. Later the same author in [4] and independently S. J. Szarek [8] used different variants of spaces defined in [3] to prove the existence of finite-dimensional Banach spaces with the "worst possible" basis constants. Another variant of Gluskin spaces was used by the author in [5] to construct finite-dimensional Banach spaces with the "worst possible" symmetry constants. The importance of the notion of "subspace mixing operators on R"" in the context of Gluskin spaces was implicit in [4] and "almost explicit" in [5]. The final step in this direction was done by S. J. Szarek [9], who proved that a "vast majority" of Gluskin spaces enjoy the property that every subspace mixing operator on such a space has large norm. The subspace mixing property was used in that paper to prove the existence of finite-dimensional Banach spaces with two essentially different complex structures. Later on, the techniques developed in [9] were used by the same author to construct infinite-dimensional Banach spaces with some pathological properties [10], [11]; however, the credit for the first use of Gluskin spaces to construct pathological infinite-dimensional Banach spaces should be given to J. Bourgain [1].

In this paper we study subspace mixing properties of operators in \mathbb{R}^n with special attention turned to operators which belong to a compact group of operators. The main difference in the approach between [9] and this paper lies in the fact that in [9] the author studied the subspace mixing property of an operator T in terms of certain "distances" of T to the line $\{\lambda \operatorname{Id}\}_{\lambda \in \mathbb{R}}$ while

we study the same property in terms of some other "distances" of T to the operator $n^{-1}(\operatorname{tr} T)\operatorname{Id}$, and the values of the latter "distances" are easier to handle.

Finally, we use the results on subspace mixing properties to prove the existence of finite-dimensional Banach spaces with some pathological properties, or more precisely to establish some pathological properties of a "vast majority" of Gluskin spaces. The main result in this direction can be stated as follows (cf. Th. 5.3 below):

There is a constant c>0 such that for every $n\in N$ there is an n-dimensional Banach space X_n with the property that whenever G is a group of linear operators acting on X_n ,

$$\sup \{ ||T||_{X_n} : T \in G \} \geqslant \frac{c(n-t(G))}{n^{1/2} \log^{3/2} n}$$

where $t(G) = \inf\{|\text{tr } T|: T \in G\}$.

This answers a question posed by S. J. Szarek in [9].

Let us note that the theorem quoted above contains "up to a logarithmic factor" the results proved in [4], [5], [8], [9].

1. Notation and preliminaries. We shall use the standard notation. By e_1, \ldots, e_n we shall denote the standard unit vector basis in \mathbb{R}^n and by $\|\cdot\|$ the standard Euclidean norm in \mathbb{R}^n . S^{n-1} will stand for the unit sphere in \mathbb{R}^n while μ_{n-1} will denote the normalized surface Lebesgue measure on S^{n-1} . O_n and h_n will stand for the orthogonal group on \mathbb{R}^n and the normalized Haar measure on it respectively. If E is a linear subspace of \mathbb{R}^n then by P_E and E^\perp we shall denote the orthogonal projection on E and on the orthogonal complement of E in \mathbb{R}^n respectively.

We shall say that a linear operator $T \in L(\mathbf{R}^n)$ has the (α, β) -subspace mixing property for $\alpha, \beta \geqslant 0$ iff there is a linear subspace $E \subset \mathbf{R}^n$ with dim $E \geqslant \alpha$ such that

$$||P_{E^{\perp}} Tx|| \ge \beta ||x||$$
 for every $x \in E$.

The set of all operators in $L(\mathbb{R}^n)$ having the (α, β) -subspace mixing property will be denoted by $M_n(\alpha, \beta)$. Obviously for $T \in L(\mathbb{R}^n)$:

- (i) $T \notin \bigcup_{\alpha,\beta>0} M_n(\alpha,\beta)$ iff $T = \lambda \operatorname{Id}_{\mathbf{R}^n}$ for some $\lambda \in \mathbf{R}$.
- (ii) $T \in M_n(\alpha, \beta)$ iff $\lambda T \in M_n(\alpha, |\lambda| \beta)$ for every $\lambda \in \mathbb{R}$.
- (iii) $T \in M_n(\alpha, \beta)$ iff $T \lambda \operatorname{Id}_{\mathbf{R}^n} \in M_n(\alpha, \beta)$ for every $\lambda \in \mathbf{R}$ iff $T \lambda \operatorname{Id}_{\mathbf{R}^n} \in M_n(\alpha, \beta)$ for some $\lambda \in \mathbf{R}$.

We shall write $T \in \widetilde{M}_n(\gamma)$ iff $T \in M_n(\alpha, \beta)$ for some $\alpha, \beta \ge 0$ with $\alpha\beta \ge \gamma$. Recall that every operator $T \in L(\mathbb{R}^n)$ can be written in the form

$$T = \sum_{i=1}^{n} \lambda_i(T) \langle \cdot, u_i \rangle v_i$$

where $\lambda_1(T) \ge \ldots \ge \lambda_n(T) \ge 0$ and $\{u_i\}_{i=1}^n$ and $\{v_i\}_{i=1}^n$ are orthonormal systems in \mathbf{R}^n . Any representation of an operator $T \in L(\mathbf{R}^n)$ in the form (*) will be called a *polar decomposition* of T. It is well known that while the polar decomposition of an operator T need not be unique the sequence $\{\lambda_i(T)\}_{i=1}^n$ is uniquely determined by T.

For a subset $A \subset \mathbb{R}^n$, [A] will denote the linear hull of A. Sometimes, we shall identify an operator $T \in L(\mathbb{R}^n)$ with its matrix representation $(a_{ij})_{i,j=1}^n$ with respect to the basis $\{e_i\}_{i=1}^n$. For $T \in L(\mathbb{R}^n)$ we define

$$m(T) = \begin{cases} \lambda_k(T) & \text{for } n = 2k, \\ \lambda_{k+1}(T) & \text{for } n = 2k+1. \end{cases}$$

For $T \in L(\mathbf{R}^n)$, $||T||_{\mathrm{HS}}$ will denote the Hilbert-Schmidt norm of T and $\mathrm{tr}\ T$ will denote its trace. We shall make use of the following trivial equalities:

$$||T||_{\mathrm{HS}}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}(T) = n \int_{S^{n-1}} ||Tx||^{2} d\mu_{n-1}(x),$$

$$\operatorname{tr} T = \sum_{i=1}^{n} \lambda_{i}(T) \langle u_{i}, v_{i} \rangle = n \int_{S^{n-1}} \langle Tx, x \rangle d\mu_{n-1}(x)$$

for every $T \in L(\mathbb{R}^n)$ and every polar decomposition of T. Finally, we define

$$\delta(T) = \inf \{ ||T - \lambda \operatorname{Id}_{R^n}||_{\operatorname{HS}} \colon \lambda \in R \}$$

for every $T \in L(\mathbf{R}^n)$. It can easily be seen that for $T \in L(\mathbf{R}^n)$

$$\delta^{2}(T) = \|T - (n^{-1} \operatorname{tr} T) \operatorname{Id}_{\mathbf{R}^{n}}\|_{HS}^{2} = \|T\|_{HS}^{2} - n^{-1} (\operatorname{tr} T)^{2}.$$

By \mathscr{G}_n we shall denote the set of all compact groups of operators acting on \mathbb{R}^n . We define

$$\mathscr{UG}_n = \bigcup_{G \in \mathscr{G}_n} G, \quad t(G) = \inf \left\{ |\operatorname{tr} T| \colon T \in G \right\} \quad \text{ for } G \in \mathscr{G}_n.$$

Since $\operatorname{tr}(\operatorname{Id}_{\mathbf{R}^n})=n$ one has $t(G)\leqslant n$ for $G\in \mathscr{G}_n$ and t(G)=n iff $G\subset \{\operatorname{Id}_{\mathbf{R}^n},-\operatorname{Id}_{\mathbf{R}^n}\}$. For a compact group G we shall denote by h_G the normalized Haar measure on G.

We shall say that a group $G \in \mathcal{G}_n$ acts trivially on a subspace $E \subset \mathbb{R}^n$ iff $T | E = \varepsilon \operatorname{Id}_E$, with $\varepsilon \in \{1, -1\}$, for every $T \in G$. Also, we shall say that a group $G \in \mathcal{G}_n$ acts essentially nontrivially on \mathbb{R}^n iff it does not act trivially on any subspace of \mathbb{R}^n with positive dimension.

The letter c with indices or without will always stand for an absolute numerical constant, in general different in different places.

We shall deal only with spaces over the reals; however, all the results after suitable modification remain valid in the complex case.

2. Mixing properties of contractions in R^n . We begin with

Proposition 2.1. Let $T \in L(\mathbb{R}^n)$. Then

$$\begin{split} &\int\limits_{S^{n-1}} \|P_{[x]^{\perp}} \, T P_{[x]}\|_{\mathrm{HS}}^2 \, d\mu_{n-1} \, (x) = \int\limits_{S^{n-1}} \|P_{[x]^{\perp}} \, T x\|^2 \, d\mu_{n-1} \, (x) \\ &= \frac{1}{n(n+2)} \big((n+1) \|T\|_{\mathrm{HS}}^2 - (\operatorname{tr} \, T)^2 - \operatorname{tr} \, T^2 \big) \geqslant \frac{\delta^2 (T)}{n+2}. \end{split}$$

Proof. The first equality, as well as the inequality, is trivial. To prove the second equality set $T = (a_{ij})_{i,j=1}^n$ and observe that for $x = (x_1, \ldots, x_n) \in S^{n-1}$

$$||P_{[x]^{\perp}}Tx||^2 = ||Tx||^2 - \langle Tx, x \rangle^2 = ||Tx||^2 - (\sum_{i,j=1}^n a_{ij} x_i x_j)^2.$$

Hence

(1)
$$\int_{S^{n-1}} ||P_{[x]^{\perp}} Tx||^2 d\mu_{n-1}(x) = \int_{S^{n-1}} ||Tx||^2 d\mu_{n-1}(x) - \int_{S^{n-1}} (\sum_{i=1}^{n} a_{ij} x_i x_j)^2 d\mu_{n-1}(x).$$

Since the first integral on the right-hand side is equal to $n^{-1}||T||_{HS}^2$, it remains to evaluate the second one. Expanding the square of the sum, skipping the integrals which are obviously equal to zero and taking into account that

$$\int_{S^{n-1}} x_i^4 d\mu_{n-1}(x) = \frac{3}{n(n+2)}, \qquad \int_{S^{n-1}} x_i^2 x_j^2 d\mu_{n-1}(x) = \frac{1}{n(n+2)}$$

for i, j = 1, ..., n and $i \neq j$, we have

(2)

$$\int_{S^{n-1}} \left(\sum_{i,j=1}^{n} a_{ij} x_{i} x_{j} \right)^{2} d\mu_{n-1} (x) = \frac{1}{n(n+2)} \left(3 \sum_{i=1}^{n} a_{ii}^{2} + \sum_{i \neq j} a_{ii} a_{jj} + \sum_{i \neq j} a_{ij}^{2} + \sum_{i \neq j} a_{ij} a_{ji} \right)$$

$$= \frac{1}{n(n+2)} \left(\sum_{i,j=1}^{n} a_{ij}^{2} + \left(\sum_{i=1}^{n} a_{ii} \right)^{2} + \sum_{i,j=1}^{n} a_{ij} a_{ji} \right)$$

$$= \frac{1}{n(n+2)} (||T||_{HS}^{2} + (\operatorname{tr} T)^{2} + \operatorname{tr} T^{2}).$$

Combining (1) and (2) we obtain

$$\int_{S^{n-1}} ||P_{(x)} \perp Tx||^2 d\mu_{n-1}(x) = \frac{1}{n} ||T||_{HS}^2 - \frac{1}{n(n+2)} (||T||_{HS}^2 + (\operatorname{tr} T)^2 + \operatorname{tr} T^2)$$

$$= \frac{1}{n(n+2)} ((n+1) ||T||_{HS}^2 - (\operatorname{tr} T)^2 - \operatorname{tr} T^2),$$

which concludes the proof.

Thus we have

COROLLARY 2.2. $T \in M_n(1, (n+2)^{-1/2} \delta(T))$ for every $T \in L(\mathbb{R}^n)$.

Proposition 2.3. For every k-dimensional subspace $E \subset \mathbf{R}^n$ and every $T \in L(\mathbf{R}^n)$

$$\begin{split} \int\limits_{O_n} \|P_{U(E^{\perp})} \, T\!P_{U(E)}\|_{\mathrm{HS}}^2 \, dh_n(U) &= \frac{k \, (n-k)}{(n-1) \, n \, (n+2)} \big((n+1) \, \|T\|_{\mathrm{HS}}^2 - (\mathrm{tr} \, \, T)^2 - \mathrm{tr} \, \, T^2 \big) \\ &\geqslant \frac{k \, (n-k)}{(n-1) \, (n+2)} \delta^2(T). \end{split}$$

Proof. Since the integral does not depend on a particular choice of a space E but only on the dimension of E, let $E = [e_1, ..., e_k]$. We have

(3)
$$\int_{O_n} \|P_{U(E^{\perp})} T P_{U(E)}\|_{HS}^2 dh_n(U) = \int_{O_n} \|U P_{E^{\perp}} U^{-1} T U P_E U^{-1}\|_{HS}^2 dh_n(U)$$
$$= \int_{O_n} \|P_{E^{\perp}} U^{-1} T U P_E\|_{HS}^2 dh_n(U).$$

Let $UTU^{-1} = (a_{ij}(U))_{i,j=1}^n$ for $U \in O_n$ and observe that for every $U_1 \in O_n$

$$\int_{O_n} a_{ij}^2(U) \, dh_n(U) = \int_{O_n} a_{ij}^2(UU_1) \, dh_n(U).$$

By a simple "change of coordinates" argument we get

(4)
$$\int_{O_{-}} a_{ij}^{2}(U) dh_{n}(U) = \int_{O_{n}} a_{lm}^{2}(U) dh_{n}(U)$$

for all $i \neq j$ and $l \neq m$. Let a(T) be the common value of all integrals of the form (4). We have

$$(5) \int_{O_n} ||P_{E^{\perp}} U^{-1} T U P_{E}||_{HS}^2 dh_n(U) = \sum_{j=1}^k \sum_{i=k+1}^n \int_{O_n} a_{ij}^2(U) dh_n(U) = k(n-k) a(T).$$

On the other hand, Prop. 2.1 means that

(6)
$$(n-1) a(T) = \sum_{j=2}^{n} \int_{O_n} a_{1j}^2(U) dh_n(U)$$

$$= \frac{1}{n(n+2)} ((n+1) ||T||_{HS}^2 - (\operatorname{tr} T)^2 - \operatorname{tr} T^2).$$

Now, combining (3), (5) and (6) completes the proof.

The main result of this section is

Theorem 2.4. $T \in M_n(\frac{1}{10}\delta^2(T), \delta(T)/\sqrt{5n})$ for every $T \in L(R^n)$ with $||T|| \leq 1$.

Proof. We shall assume that n is even. The case of n odd can be treated in a similar way. By Prop. 2.3, there is an $E \subset \mathbb{R}^n$, dim E = n/2, such that

(7)
$$||P_{E^{\perp}}TP_{E}||_{HS}^{2} \ge \frac{n^{2}}{4(n-1)(n+2)} \delta^{2}(T) \ge \frac{1}{5}\delta^{2}(T).$$

Let $V = P_{E^{\perp}} T P_E$ and let

$$V = \sum_{i=1}^{n/2} \lambda_i(V) \langle \cdot, u_i \rangle v_i$$

be a polar decomposition of V. Obviously $\{u_i\}$ and $\{v_i\}$ are orthonormal systems in E and E^{\perp} respectively and $\lambda_i(V) \leq 1$ for $i = 1, \ldots, n/2$. By (7) we have

$$\sum_{i=1}^{n/2} \lambda_i^2(V) \geqslant \frac{1}{5} \delta^2(T).$$

This implies that more than $\frac{1}{10}\delta^2(T)$ of the $\lambda_i(V)$'s are greater than $(5n)^{-1/2}\delta(T)$. Set

$$E_0 = [u_i: i = 1, ..., [\frac{1}{10}\delta^2(T)] + 1],$$

where $\left[\frac{1}{10}\delta^2(T)\right]$ denotes the integer part of $\frac{1}{10}\delta^2(T)$. Then

$$||P_{E_{0}^{\perp}}Tx|| \ge ||P_{E^{\perp}}Tx|| = ||Vx|| \ge (5n)^{-1/2} \delta(T)$$

for $x \in E_0$, which yields that $T \in M_n(\frac{1}{10}\delta^2(T), \delta(T)/\sqrt{5n})$ and completes the proof.

Remark 2.5. Observe that the theorem above gives (up to some constants) the best possible "mixing properties" for contractions in $L(R^n)$ with values of δ "proportional" to \sqrt{n} , while it is far from the best for contractions with relatively small values of δ .

In the sequel we shall need the following

LEMMA 2.6. Let a > b > 0, $m \in N$ and let $T \in L(\mathbf{R}^n)$ be such that there are two orthogonal subspaces E_1 , $E_2 \subset \mathbf{R}^n$, dim $E_1 = \dim E_2 = m$, with the properties:

$$||Tx|| \ge a||x||$$
 for $x \in E_1$, $||Tx|| \le b||x||$ for $x \in E_2$.

Then $T \in M_n(\frac{1}{4}m, \frac{1}{4}(a-b))$.

Proof. Without any loss of generality we may assume that a=1. In order to simplify the notation we shall assume that m=4k for some $k \in \mathbb{N}$. Let p be the maximal nonnegative integer such that $T \in \mathcal{M}_n(p, \frac{1}{4}(1-b))$. Assume to the contrary that p < k, and let $F \subset \mathbb{R}^n$ be such that

$$||P_{F^{\perp}} Tx|| \ge \frac{1}{4} (1-b) ||x||$$
 for $x \in F$, dim $F = p$.

Set

$$E_3 = [F \cup TF \cup T^*F \cup T^*TF]^{\perp} \cap E_1,$$

$$E_4 = [F \cup TF \cup T^*F \cup T^*TF]^{\perp} \cap E_2$$

and observe that $\dim E_3 \ge \dim E_2 - 4 \dim F \ge 4(k-p) \ge 4$. By the same

token $\dim E_4 \geqslant 4$. Using the same argument as in the proof of the fact that every 2k-dimensional ellipsoid has a k-dimensional spherical section we deduce that there are two orthogonal vectors $x_1, x_2 \in E_3 \oplus E_4$ such that $||Tx_1|| = ||x_1||$ and $||Tx_2|| = b ||x_2||$. Let $E_5 = [x_1, x_2]$ and note that $||T|E_5||_{\mathrm{HS}}^2 = 1 + b^2$, while $||\operatorname{tr} P_{E_5} T|E_5| \leqslant 1 + b$. Now, if

$$||P_{E_5^{\perp}}T|E_5||_{HS}^2 \geqslant \frac{1}{4}(1-b)^2,$$

then there is an $x_0 \in E_5$, $||x_0|| = 1$, such that

$$||P_{E_{5}^{\perp}}Tx_{0}|| \geqslant \frac{1}{4}(1-b).$$

Since $x_0 \in E_3 \oplus E_4$ it is a matter of a routine calculation to verify that if $F_1 = [F \cup \{x_0\}]$ then

$$\begin{split} \|P_{F_{1}^{\perp}}Ty\| &= \|P_{F^{\perp}}Ty\| \geqslant \frac{1}{4}(1-b)\|y\| & \text{for } y \in F, \\ \|P_{F_{1}^{\perp}}Tx_{0}\| &= \|P_{[x_{0}]^{\perp}}Tx_{0}\| \geqslant \frac{1}{4}(1-b), & P_{F_{1}^{\perp}}Tx_{0} \perp P_{F_{1}^{\perp}}TF, \end{split}$$

and therefore

$$||P_{F_1^{\perp}} Tx|| \ge \frac{1}{4} (1-b) ||x||$$
 for $x \in F_1$,

a contradiction to the assumption that F has the maximal dimension. On the other hand, if

$$||P_{E_5^{\perp}}T|E_5||_{HS}^2 \leqslant \frac{1}{4}(1-b)^2,$$

then treating E_5 as \mathbb{R}^2 we have

$$||P_{E_5}||^2 T |E_5||^2_{HS} - \frac{1}{2} (\operatorname{tr} P_{E_5}|T|E_5)^2 \geqslant \frac{1}{4} (1-b)^2.$$

Thus $\delta(P_{E_5} T | E_5) \ge \frac{1}{2} (1-b)$ and hence, by Cor. 2.2, there is an $x_0 \in E_5$, $||x_0|| = 1$, with the property that

$$||P_{E_{\delta}\cap[x_0]^{\perp}}Tx_0|| \geqslant \frac{1}{4}(1-b),$$

and we get a contradiction just as before, which completes the proof.

3. Mixing properties of operators and compact groups of operators in \mathbb{R}^n . The theorem below describes the mixing properties of an operator T in terms of m(T) and its trace.

THEOREM 3.1. There is a constant c > 0 such that for every $n \ge 4$ and for every $T \in L(\mathbb{R}^n)$

$$T \in \widetilde{M}_n(c|nm(T)-|\text{tr }T||/\log n).$$

Proof. First observe that since

$$|nm(T)-|\text{tr }T|| \leq nm(T-(n^{-1}\text{ tr }T)\text{ Id}_{\mathbb{R}^n})$$

for $T \in L(\mathbb{R}^n)$ and since T has the same mixing properties as $T - \lambda \mathrm{Id}_{\mathbb{R}^n}$ for every $\lambda \in \mathbb{R}$, it is enough to prove the theorem in the case when tr T = 0. In order to simplify the notation in what follows we shall assume that $n = 2^{10} p$, $p = 1, 2, \ldots$

Fix $T \in L(\mathbb{R}^n)$ with tr T = 0 and let

$$T = \sum_{i=1}^{n} \lambda_{i}(T) \langle \cdot, u_{i} \rangle v_{i}$$

be its polar decomposition. We shall consider the following three mutually exclusive cases:

- A. Either $\lambda_{n/2.56}(T) \ge \frac{3}{2}m(T)$ or $\lambda_{2.5.5n/2.56} \le \frac{1}{2}m(T)$.
- B. A does not hold and $\sum_{i=1}^{n} \lambda_i(T) \leq (1 + \frac{1}{64}) nm(T)$.
- C. Neither A nor B hold.

Case A. Note that, by Lemma 2.6, we have

$$T \in M_n(2^{-10} n, 2^{-3} m(T)) \subset \tilde{M}_n(2^{-13} nm(T))$$

and we are done.

Case B. First observe that

$$\sum_{i=1}^{n/256} \lambda_i(T) \leq \sum_{i=1}^{n} \lambda_i(T) - \sum_{i=n/256+1}^{n/2} \lambda_i(T) - \sum_{i=n/2+1}^{255n/256} \lambda_i(T)$$

$$\leq (1 + \frac{1}{64}) nm(T) - \frac{127}{256} nm(T) - \frac{127}{277} nm(T) < \frac{1}{4} nm(T)$$

and therefore $|\operatorname{tr} T|E_1| < \frac{1}{3}nm(T)$, where $E_1 = [u_1, \ldots, u_{n/256}]$. Thus

(8)
$$|\operatorname{tr} T|E_1^{\perp}| < \frac{1}{3}nm(T).$$

On the other hand,

$$||T|E_1^{\perp}||_{HS}^2 \geqslant \frac{127}{256}nm^2(T) + \frac{127}{256}(\frac{1}{2}m(T))^2 > \frac{1}{2}nm^2(T)$$

Since $||T|E_1^{\perp}|| < \frac{3}{2}m(T)$ it is easy to see that

(9)
$$||P_{E_{\perp}}T|E_{1}^{\perp}||_{HS}^{2} > \frac{1}{4}nm^{2}(T).$$

But (8) and (9) imply that

$$\delta^2(\tilde{T}) > \frac{5}{81} nm^2(T)$$

where $\widetilde{T} = P_{E_{\frac{1}{1}}}T|E_{1}^{\perp}$: $E_{1}^{\perp} \to E_{1}^{\perp}$ is considered as an operator acting in $R^{255n/256}$. Thus, by Theorem 2.4 applied to the operator (2/3m(T)) \widetilde{T} we infer that

$$\widetilde{T} \in M_{255n/256}\left(\frac{2n}{9^3}, \frac{m(T)}{9}\right) \subset \widetilde{M}_{255n/256}\left(2^{-13}nm(T)\right),$$

which obviously implies that $T \in \widetilde{M}_n(2^{-13} nm(T))$, concluding the proof in this case.

Case C. First note that

$$\sum_{i=1}^{n/2} \lambda_i(T) > \frac{1}{2} (1 + \frac{1}{64}) nm(T)$$

and $\lambda_i \ge m(T)$ for i = 1, ..., n/2. Therefore

$$\sum_{i=1}^{n/2} [\lambda_i(T) - m(T)] > \frac{nm(T)}{128}.$$

Hence there is a $j \leq \log_2(n/2)$ with the property that

$$\lambda_{2^{j}}(T) - m(T) > \frac{nm(T)}{2^{j} 128 \log_{2}(n/2)}$$

which means that

$$||Tx|| > (1 + (2^{j} 128 \log_2(n/2))^{-1} n) m(T)$$

for $x \in [u_1, ..., u_2]$. Since $||Tx|| \le m(T)$ for $x \in [u_{n/2+1}, ..., u_n]$, by Lemma 2.6, we infer that

$$T \in M_n(2^{j-2}, 2^{-j-9} nm(T)/\log_2(n/2)) \subset \tilde{M}_n(2^{-13} nm(T)/\log n),$$

which completes the proof of the theorem.

As an easy consequence of the last theorem we have the following Theorem 3.2. For each $\alpha \in (0, 1)$ there is a $c_{\alpha} > 0$ such that for every n

 $\Rightarrow \max\{(4\alpha)^{-1}, (4(1-\alpha))^{-1}\}\$ and for every $T \in L(\mathbf{R}^n)$

$$T \in \widetilde{M}_n(c_\alpha | n\lambda_{[\alpha n]}(T) - |\text{tr } T| | / \log n).$$

Proof. If $|\lambda_{[\alpha n]}(T) - m(T)| \ge \frac{1}{2} |n\lambda_{[\alpha n]}(T) - |\text{tr } T|| n^{-1}$ then, by Lemma 2.6, for $0 < \alpha \le \frac{1}{2}$

$$T \in M_n\left(\frac{1}{4}\left[\alpha n\right], \frac{1}{8}\left|n\lambda_{\left[\alpha n\right]}(T) - |\operatorname{tr} T|\right|n^{-1}\right) \subset \tilde{M}_n\left(2^{-6}\alpha \left|n\lambda_{\left[\alpha n\right]}(T) - |\operatorname{tr} T|\right|\right)$$

and we are done. If this is not the case then we have

$$|nm(T) - |\operatorname{tr} T|| \ge |n\lambda_{\{\alpha n\}}(T) - |\operatorname{tr} T|| - |n\lambda_{\{\alpha n\}}(T) - nm(T)|$$

$$> \frac{1}{2} |n\lambda_{\{\alpha n\}}(T) - |\operatorname{tr} T||.$$

Hence by the previous theorem

$$T \in \widetilde{M}_n(c | nm(T) - |\operatorname{tr} T| | / \log n) \subset \widetilde{M}_n(\frac{1}{2}c | n\lambda_{[\alpha n]}(T) - |\operatorname{tr} T| | / \log n),$$

which concludes the proof in the case $0 \le \alpha \le \frac{1}{2}$. The other case can be obtained in a similar way.

Remark 3.3. It may be of some value to note that the constant c_x in

the theorem above may be taken to be $2^{-6}\alpha$ (resp. $2^{-6}(1-\alpha)$) for α sufficiently close to 0 (resp. 1).

Now, we turn our attention to compact groups of operators acting on \mathbb{R}^n .

Theorem 3.4. There is a constant c>0 such that for every $n\geqslant 4$ and every $T\in \mathcal{UG}_n$

$$\{T, T^{-1}\} \cap \widetilde{M}_n(c(n-|\operatorname{tr} T|)/\log n) \neq \emptyset.$$

In particular,

$$G \cap \widetilde{M}_n(c(n-t(G))/\log n) \neq \emptyset$$

for every $G \in \mathcal{G}_n$.

linear space X_n

Proof. Obviously, it is enough to prove the first part of the theorem. To this end, let $T \in \mathcal{UG}_n$. Since either $\lambda_{\lfloor n/2 \rfloor}(T)$ or $\lambda_{\lfloor n/2 \rfloor}(T^{-1})$ is not smaller than 1 and since tr $T = \operatorname{tr} T^{-1}$, replacing perhaps T by T^{-1} , we may assume that $\lambda_{\lfloor n/2 \rfloor}(T) \geq 1$. Thus by the previous theorem, since $|\operatorname{tr} T| \leq n$, we have

$$T \in \widetilde{M}_n(c_{1/2} | n\lambda_{[n/2]}(T) - |\text{tr } T| | /\log n) \stackrel{\cdot}{\subset} \widetilde{M}_n(c_{1/2}(n - |\text{tr } T|) /\log n),$$

which completes the proof.

Remark 3.5. Let us observe that Th. 3.4 answers (at least partially) a problem posed by S. J. Szarek in [9].

In the sequel, we shall need the following notation: if X_n is an n-dimensional linear space and \langle , \rangle is a scalar product on X_n then by $\widetilde{M}_{n,\langle ,\rangle}(\alpha)$, for $\alpha \geq 0$, we shall denote the corresponding class of subspace mixing operators in $L(X_n)$ with respect to \langle , \rangle . Also, by $\mathscr{G}(X_n)$ (resp. $\mathscr{UG}(X_n)$) we shall denote the set (resp. the union) of all compact groups of operators acting on X_n .

The following result is just a small modification of the theorem above. Theorem 3.6. There is a constant c > 0 such that for every n-dimensional

- (i) $T \in \mathcal{UG}(X_n)$ implies $\{T, T^{-1}\} \cap \widetilde{M}_{n,\langle,\rangle}(c(n-|\operatorname{tr} T|)/\log n) \neq \emptyset$ for every scalar product $\langle \ , \ \rangle$ on X_n . In particular,
- (ii) $G \cap \widetilde{M}_{n,\langle , \rangle}(c(n-t(G))/\log n) \neq \emptyset$ for every $G \in \mathscr{G}(X_n)$ and every scalar product \langle , \rangle on X_n .
- 4. Compact groups of operators with relatively large values of $t(\cdot)$. In view of the results of the previous section it may be of some interest to give a more detailed description of those groups $G \in \mathcal{G}_n$ for which t(G) is relatively large, i.e. for which n-t(G) is relatively small. To this end let us recall some basic facts about compact groups of operators acting on \mathbb{R}^n .

Let $G \in \mathcal{G}_n$. Then:

1° There is another scalar product \langle , \rangle_1 on \mathbb{R}^n such that G is a group of isometries of $(\mathbb{R}^n, || ||_1)$, where $||x||_1 = \langle x, x \rangle_1^{1/2}$ for $x \in \mathbb{R}^n$.

 $2^{\rm o}$ There is a decomposition of ${\it R}^{\rm n}$ into an \langle , $\rangle_1\text{-orthogonal sum of subspaces}$

$$\mathbf{R}^n = E_1 \oplus \ldots \oplus E_k$$

with the properties:

- (i) $T(E_i) = E_i$ for every $T \in G$ and every i = 1, ..., k.
- (ii) G acts irreducibly on each E_i , $i=1,\ldots,k$, i.e. the group G_{E_i} = $\{T|E_i\colon T\in G\}\subset L(E_i)$ does not admit a nontrivial invariant subspace for $i=1,\ldots,k$.
 - (iii) If $U \in L(E_i)$ commutes with every element of G_{E_i} then

$$\langle Ux, x \rangle_1 = (\dim E_i)^{-1} \operatorname{tr} U$$

for every $x \in E_i$ with $||x||_1 = 1$ and every i = 1, ..., k.

For a fixed group $G \in \mathcal{G}_n$ every decomposition of \mathbb{R}^n in the form (10) satisfying $2^n(i)$ —(iii) is said to be a decomposition of \mathbb{R}^n into G-irreducible subspaces. The properties 1^n , $2^n(i)$, (ii) and the complex (stronger) version of $2^n(i)$ can be found for example in [6]. We sketch the proof of the real case of $2^n(i)$. Let U be an operator in $L(E_i)$ which commutes with G_{E_i} . Then, by the same argument as in the complex case, we infer that $U = \lambda_1 \tilde{U}$, where $\lambda_1 \in \mathbb{R}$ and \tilde{U} is an isometry on $(E_i, || \cdot ||_1)$. Set $S = U - \mathrm{Id}_{E_i}$. Since S commutes with G_{E_i} , by the same token we deduce that $S = \lambda_2 \tilde{S}$ with $\lambda_2 \in \mathbb{R}$ and \tilde{S} being an isometry on $(E_i, || \cdot ||_1)$. We have for $x \in E_i$, with $||x||_1 = 1$,

$$\lambda_2^2 = \langle Sx, Sx \rangle_1 = ||Ux||_1^2 - 2\langle Ux, x \rangle_1 + ||x||_1 = \lambda_1^2 + 1 - 2\langle Ux, x \rangle_1.$$

Hence $\langle Ux, x \rangle_1 \equiv \text{const for } x \in E_i \text{ with } ||x||_1 = 1$. Now, the exact value of $\langle Ux, x \rangle_1$ follows from the formula

$$\operatorname{tr} U = \dim E_i \int_{S^{E_i}} \langle Ux, x \rangle_1 d\mu_{S^{E_i}}(x),$$

where $\mu_{S^{E_i}}$ denotes the normalized Lebesgue measure on the unit sphere S^{E_i} of $(E_i, \| \ \|_1)$.

PROPOSITION 4.1. There is a constant c > 0 such that for every $n \in \mathbb{N}$ and for every $G \in \mathscr{G}_n$ the cardinality of the set of 1-dimensional subspaces in every decomposition of \mathbb{R}^n into G-irreducible subspaces is at least n-c(n-t(G)).

Proof. Let $G \in \mathcal{G}_n$. In view of 1° above, without any loss of generality we may and shall assume that $\langle , \rangle = \langle , \rangle_1$. Let

$$R^n = E_1 \oplus \ldots \oplus E_k$$

be a decomposition of R^n into G-irreducible subspaces. Let $n_i = \dim E_i$, i = 1, ..., k. Obviously, $\sum_{i=1}^k n_i = n$. Assume that $n_1 \ge ... \ge n_k$ and let $j = \max\{i: n_i > 1\}$. Note that to prove the proposition it is enough to prove that there is a constant c > 0 with the property

$$\sum_{i=1}^{j} n_i \leqslant c (n - t(G)).$$

To this end, in order to simplify the notation, we shall assume that all n_i 's are even for $i \le j$. Let $m = \sum_{i=1}^{j} n_i$, and in each E_i , $i \le j$, choose arbitrary two orthogonal subspaces F_i^1 and F_i^2 with dim $F_i^1 = \dim F_i^2 = n_i/2$. Let

$$F_1 = \bigoplus_{i=1}^j F_i^1, \quad F_2 = \bigoplus_{i=1}^j F_i^2.$$

Consider the operators $U_i \in L(E_i)$ defined by

(11)
$$U_{i} = \int_{G} T^{-1} |E_{i} \circ P_{F_{i}^{1}} \circ T| |E_{i}| dh_{G}(T)$$

for i = 1, ..., j. Obviously, U_i commutes with every element of G_{E_i} . By 2°(iii), $\langle U_i x, x \rangle = n_i^{-1} \operatorname{tr} U_i$ for every $x \in \mathring{S}^{E_i}$. On the other hand, it follows from (11) that $\operatorname{tr} U_i = \dim F_i^1 = n_i/2$. Hence

$$\langle U_i x, x \rangle = \frac{1}{2}$$

for every $i=1,\ldots,j$ and every $x\in S^{E_i}$. Set $S^{F_i^2}=S_i$ for $i=1,\ldots,j$ and observe that by (12)

$$\begin{split} m/2 &= \sum_{i=1}^{j} n_{i} \int_{S_{i}} \langle U_{i} x, x \rangle d\mu_{S_{i}}(x) \\ &= \sum_{i=1}^{j} n_{i} \int_{S_{i}} \int_{G} \langle (T^{-1} | E_{i} \circ P_{F_{i}^{1}} \circ T | E_{i}) x, x \rangle dh_{G}(T) d\mu_{S_{i}}(x) \\ &= \int_{G} (\sum_{i=1}^{j} n_{i} \int_{S_{i}} ||P_{F_{i}^{1}} Tx||^{2} d\mu_{S_{i}}(x)) dh_{G}(T) \\ &= \int_{G} \sum_{i=1}^{j} ||P_{F_{i}^{1}} TP_{F_{i}^{2}}||_{HS}^{2} dh_{G}(T) = \int_{G} ||P_{F_{1}} TP_{F_{2}}||_{HS}^{2} dh_{G}(T). \end{split}$$

Therefore there exists a $T_0 \in G$ such that

(13)
$$||P_{F_1} T_0 P_{F_2}||_{HS}^2 \ge m/2.$$

Set $\widetilde{E} = E_1 \oplus \ldots \oplus E_j$ and let $\widetilde{T} = T_0 | \widetilde{E}$. Obviously \widetilde{T} is an isometry in $L(\widetilde{E})$. Let $\{u_i \colon i = 1, \ldots, m/2\}$ be an orthonormal basis in F_1 and let $\{u_i \colon i = m/2+1, \ldots, m\}$ be an orthonormal basis in F_2 . Since \widetilde{E} is the orthogonal

sum of F_1 and F_2 we infer that $\{u_i: i=1,...,m\}$ is an orthogonal basis in \widetilde{E} . Let $(\alpha_{i,j})_{i,j=1}^m$ be the matrix representation of \widetilde{T} with respect to this basis. Since $||\widetilde{T}||_{2s}^2 = m$, by (13), we have

$$\begin{aligned} |\text{tr } \widetilde{T}| &= \Big| \sum_{i=1}^{m} \alpha_{ii} \Big| \leqslant \sum_{i=1}^{m} |\alpha_{ii}| \leqslant \sqrt{m} \left(\sum_{i=1}^{m} \alpha_{ii}^{2} \right)^{1/2} \leqslant \sqrt{m} (m - m/2)^{1/2} \\ &= m/\sqrt{2}. \end{aligned}$$

Thus

$$t(G) \leq |\operatorname{tr} T_0| \leq |\operatorname{tr} \tilde{T}| + n - m$$

which yields (*) and concludes the proof.

Now, we are ready to derive the main result of this section.

Theorem 4.2. There is a constant c>0 such that for every $n\in N$ and for every group $G\in \mathcal{G}_n$ there is a subspace $E_G\subset R^n$ with $\dim E_G\geqslant n-c\left(n-t\left(G\right)\right)$ on which G acts trivially.

Proof. Fix $G \in \mathcal{G}_n$. Replacing perhaps G by the group $-G \cup G$ we may assume that $-\mathrm{Id}_{R^n} \in G$. As in the proof of the previous proposition, without any loss of generality we may assume that G is a group of isometries of R^n . Since the trace is a continuous functional on $L(R^n)$ equipped with the Hilbert-Schmidt norm and its norm is equal to \sqrt{n} and since

$$G \subset S_{n^2} \stackrel{\mathrm{df}}{=} \{ T \in L(\mathbf{R}^n) : ||T||_{\mathrm{HS}} = \sqrt{n} \}$$

we infer that there is a constant $c_1 \in (0, 1)$ with the property that if $T \in S_{n^2}$ and tr $T \geqslant c_1 n$ then $||T - \operatorname{Id}_{\mathbb{R}^n}||_{HS} \leqslant \frac{1}{4} \sqrt{n}$.

Now, observe that if $t(G) < c_1 n$ then the theorem holds trivially with $c = 2/(1-c_1)$ and therefore it is enough to prove it for groups satisfying $t(G) \ge c_1 n$. Let G be such a group and define

$$G_0 = \{T \in G: \text{ tr } T \geqslant c_1 n\} = \{T \in G: \text{ tr } T > 0\}.$$

We claim that G_0 is a subgroup of G and $G=-G_0\cup G_0$. Indeed, the second property of G_0 is trivial, and to see that G_0 is a subgroup, note that for $T_1,\ T_2\in G_0$ we have $\|\mathrm{Id}_{\mathbf{R}^n}-T_1\ T_2\|_{\mathrm{HS}}\leqslant \frac{1}{2}\sqrt{n}$, hence $\mathrm{tr}(\mathrm{Id}_{\mathbf{R}^n}-T_1\ T_2)=n$ $-\mathrm{tr}\ T_1\ T_2\leqslant \frac{1}{2}n$, which implies $\mathrm{tr}\ T_1\ T_2>0$ and therefore $T_1\ T_2\in G_0$. In particular, we have $t(G_0)=t(G)\geqslant c_1\ n$.

Now, let $R^n = E_1 \oplus \ldots \oplus E_m$ be a decomposition of R^n into G-irreducible subspaces. Let $\{E_i\}_{i=1}^k$ be the set of all 1-dimensional subspaces in this decomposition. By Prop. 4.1, we have $k \ge n - c_2(n - t(G))$, where c_2 is some numerical constant. Let $u_i \in E_i$, $||u_i|| = 1$ for $i = 1, \ldots, k$, and define

$$A = \{i: Tu_i = u_i \text{ for every } T \in G_0\}, \quad B = \{1, ..., k\} \setminus A.$$

Set $F = [u_i: i \in B]$ and observe that if $i \in B$ then

$$\int_{G_0} \langle Tu_i, u_i \rangle dh_{G_0}(T) = 0.$$

Hence

$$\int_{G_0} \operatorname{tr}(T|F) dh_{G_0} = \sum_{i \in B} \int_{G_0} \langle Tu_i, u_i \rangle dh_{G_0}(T) = 0.$$

Thus there is a $T_0 \in G_0$ with $tr(T_0|F) \le 0$. We have

$$t(G) \leq \operatorname{tr} T_0 \leq \operatorname{tr} (T_0 | F) + \dim F^{\perp} \leq n - \dim F$$

which implies that

$$\#B = \dim F \leq n - t(G)$$

This yields

$$\#A = k - \#B \ge n - c_2(n - t(G)) - (n - t(G)) = n - (c_2 + 1)(n - t(G)).$$

Now, setting $c = c_2 + 1$ and $E_G = [u_i: i \in A]$ concludes the proof.

Remark 4.3. The theorem above states that if n-t(G) is relatively small then G acts trivially on a large-dimensional subspace.

5. Application to the pathological properties of Gluskin spaces. We begin with the crucial result due to S. J. Szarek [9].

THEOREM 5.1 (S. J. Szarek). There is a constant c > 0 such that for each $n \ge 4$ there is a norm $\|\|\cdot\|\|_n$ on \mathbb{R}^n with the property

$$|||T|||_n \geqslant \frac{c\alpha}{\sqrt{n\log n}}$$

for every operator $T \in \widetilde{M}_n(\alpha)$.

Remark 5.2. In fact, Szarek proved slightly more, namely, that Th. 5.1 holds for a "vast majority" of norms defined by E. D. Gluskin in [4].

Combining Th. 5.1 with Th. 3.4 we immediately get an answer to a problem posed by S. J. Szarek in [9].

THEOREM 5.3. There is a constant c > 0 such that for every $n \ge 4$ there is an n-dimensional Banach space X_n with the property that for every $T \in \mathcal{UG}(X_n)$

$$\max \{ ||T||_{X_n}, ||T^{-1}||_{X_n} \} \geqslant \frac{c(n - |\operatorname{tr} T|)}{n^{1/2} \log^{3/2} n}.$$

In particular,

$$\sup \{ ||T||_{X_n} : T \in G \} \geqslant \frac{c(n-t(G))}{n^{1/2} \log^{3/2} n}$$

for every $G \in \mathcal{G}(X_n)$.

As an application of the result above we shall deduce slightly weaker versions (they differ by a logarithmic factor) of results due to E. D. Gluskin [4] and S. J. Szarek [8].

COROLLARY 5.4. There is a constant c > 0 such that for each $n \ge 4$ there is an n-dimensional Banach space X_n with the property

$$||P||_{X_n} \ge \frac{ck}{n^{1/2} \log^{3/2} n}$$

for every rank k projection P, with $k \le n/2$.

Proof. For every such projection P it is enough to consider the group G_P consisting of $\mathrm{Id}_{X_n} - 2P$ and Id_{X_n} , and apply Th. 5.3 (note that $\mathrm{tr}(\mathrm{Id}_{X_n} - 2P) = n - 2k$).

As another application of Th. 5.3 let us mention the following weaker version ("up to a logarithmic factor") of a result proved by S. J. Szarek in [9]:

COROLLARY 5.5. There is a constant c>0 such that for every $n\geqslant 2$ there is a 2n-dimensional Banach space X_{2n} with the property that for every complex n-dimensional Banach space Y_n^C the Banach-Mazur distance over the reals $d_R(X_{2n}, Y_n^C)$ is at least $cn^{1/2}\log^{-3/2} n$.

Proof. Let X_{2n} be a Banach space satisfying Th. 5.3 and let $T: X_{2n} \to Y_n$ be an "R-linear" operator realizing the distance between X_{2n} and Y_n^C . Define

$$A = T^{-1} \circ i \operatorname{Id}_{Y} c \circ T.$$

Since $A^2 = -\operatorname{Id}_{X_{2n}}$ it can easily be seen that $\operatorname{tr} A = 0$. Now, it is enough to apply Th. 5.3 for the group $\{A, -A, -\operatorname{Id}, \operatorname{Id}\}$ and to note that on the other hand $\|A\|_{X_{2n}} \leq d_R(X_{2n}, Y_n^C)$.

The next result is a one more application of Th. 5.3 concerning a "vast majority" of Gluskin spaces.

Theorem 5.6. There is a constant c > 0 such that for every $n \ge 4$ there is an n-dimensional Banach space X_n with the property: if

$$G \in \mathcal{G}(X_n)$$
 and $\sup \{||T||_{X_n} : T \in G\} = A$

then G acts trivially on some subspace of X_n of dimension $> n - cAn^{1/2} \log^{3/2} n$. Proof. The theorem follows directly from Th. 5.3 and Th. 4.2.

Remark 5.7. (i) Note that Th. 5.6 is nontrivial only if $A < c^{-1} n^{1/2} \log^{-3/2} n$.

(ii) On the other hand, Th. 5.6 states that the situation in Corollary 5.4 is typical $(G_P \text{ acts trivially on ker } P, \text{ while } \dim \ker P = n - k)$.

Now, we shall deal with the problem of representing an operator T

acting on a finite-dimensional Banach space as a sum of some number of "small rank" operators with "small" norms.

Theorem 5.8. There is a constant c>0 such that for every $n\geqslant 4$ there is an n-dimensional Banach space X_n with the property that for every $T\in L(X_n)$, if $T=\sum_{i=1}^k T_i$ with rank $T_i\leqslant n/2$ for $i=1,\ldots,k$ then

$$\sup \{ ||T_i||_{X_n} : i = 1, ..., k \} \geqslant \frac{c |\operatorname{tr} T|}{k n^{1/2} \log^{3/2} n}.$$

In particular, if $\operatorname{Id}_{X_n} = \sum_{i=1}^k T_i$ with rank $T_i \leq n/2$ for i = 1, ..., k then

$$\sup \{ ||T_i||_{X_n} : i = 1, ..., k \} \geqslant \frac{cn^{1/2}}{k \log^{3/2} n}.$$

Proof. First observe that for at least one of the T_i 's we have $|\operatorname{tr} T_i| \ge k^{-1} |\operatorname{tr} T|$ while $\lambda_{13n/41}(T_i) = 0$, and next apply Th. 3.1 and Th. 5.1.

Remark 5.9. A standard argument shows that Th. 5.8 implies the following result due to S. J. Szarek [11]:

There is a constant c>0 such that for every $n\in N$ there is an n-dimensional Banach space X_n with the property that whenever X_n is C_1 -isomorphic to a C_2 -complemented subspace of an m-dimensional Banach space Y_m then the basis constant of Y_m is greater than

$$cC_1^{-1}C_2^{-1}m^{-1}n^{3/2}\log^{-3/2}n$$
.

This shows that the estimates obtained from the corresponding positive result due to A. Pełczyński [7] are "up to a logarithmic factor" the best possible.

For a finite-dimensional Banach space X denote by $\mathscr{NG}(X)$ the set of those compact groups of operators on X which act essentially nontrivially on X. Define

$$ws(X, G) = \sup \{ ||T||_X : T \in G \}$$

for every $G \in \mathcal{NG}(X)$ and the weak symmetry constant ws (X) of X by

$$ws(X) = \inf \{ ws(X, G) : G \in \mathscr{NG}(X) \}.$$

Obviously, for every finite-dimensional Banach space X:

- (i) $ws(X) = \inf \{ d(X, Y) : \dim Y = \dim X \text{ and } ws(Y) = 1 \},$
- (ii) $ws(X) \le s(X)$ where s(X) denotes the symmetry constant of X defined by D. J. H. Garling and Y. Gordon in [2] (cf. also [5]) and
- (iii) $\operatorname{ws}(X) \leqslant \sqrt{\dim X}$.

Th. 5.6 yields the following result which generalizes "up to a logarithmic" factor the main result of [5].

THEOREM 5.10. There is a constant c > 0 such that for each $n \ge 4$ there is an n-dimensional Banach space X_n with

$$ws(X_n) \ge cn^{1/2} \log^{-3/2} n$$
.

Remark 5.11. One can construct for each $n \in N$ an *n*-dimensional Banach space X_n with $ws(X_n) = 1$ and $s(X_n) \ge c\sqrt{n}$ for some numerical constant c > 0.

Acknowledgements. I would like to thank Staszek Szarek for interesting discussions concerning Gluskin spaces and Nassif Ghoussoub for a fascinating private lecture on some deep historical roots of an actual problem. Also, I would like to thank Tadek Figiel for plenty of remarks concerning the manuscript of this paper.

References

- [1] J. Bourgain, A complex Banach space such that X and \bar{X} are not isomorphic, preprint.
- [2] D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), 346-361.
- [3] E. D. Gluskin, The diameter of the Minkowski compactum is roughly equal to n, Funktsional. Anal. i Prilozhen. 15 (1) (1981), 72-73 (in Russian).
- [4] -, Finite-dimensional analogues of spaces without a basis, Dokl. Akad. Nauk SSSR 261 (1981), 1046-1050 (in Russian).
- [5] P. Mankiewicz, Finite-dimensional Banach spaces with symmetry constant of order \sqrt{n} , Studia Math. 79 (1984), 193-200.
- [6] M. A. Naimark and A. I. Stern, Theory of Group Representations, Springer, 1982.
- [7] A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-243.
- [8] S. J. Szarek, The finite dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Math. 151 (1983), 153-179.
- [9] -, On the existence and uniqueness of complex structure and spaces with few operators, Trans. Amer. Math. Soc., to appear.
- [10] -, A superreflexive Banach space which does not admit complex structure, Proc. Amer. Math. Soc., to appear.
- [11] -, A Banach space without a basis which has the bounded approximation property, preprint.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES Śniadeckich 8, 00-950 Warszuwa, Poland

> Received March 25, 1986 Revised version July 30, 1986

(2157)