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Subspace mixing properties of operators in R" with
applications to Gluskin spaces

by

P. MANKIEWICZ (Warszawa)

Abstract. There is a constant ¢ > 0 such that for every ne N there is an n-dimensional

Banach space X, with the property that whenever G is a compact group of operators acting on
X, then

. c(n—1(G))
sup {ITlly,: TeG} > g

where t(G) = inf {tr T|: TeG}.

E. D. Gluskin in [3] introduced a class of random n-dimensional
Banach spaces in order to prove that the Banach-Mazur diameter of the set
of all n-dimensional Banach spaces is of order n. Later the same author in
[4] and independently S. J. Szarek [8] used different variants of spaces
defined in [3] to prove the existence of finite-dimensional Banach spaces
with the “worst possible” basis constants. Another variant of Gluskin spaces
was used by the author in [5] to construct finite-dimensional Banach spaces
with the “worst possible” symmetry constants. The importance of the notion
of “subspace mixing operators on R™ in the context of Gluskin ‘spaces was
implicit in [4] and “almost explicit” in [5]. The final step in this direction
was done by S. J. Szarek [9], who proved that a “vast majority” of Gluskin
spaces enjoy the property that every subspace mixing operator on such a
space has large norm. The subspace mixing property was used in that paper
to prove the existence of finite-dimensional Banach spaces with two essential-
ly different complex structures. Later on, the techniques developed in [9]
were used by the same author to construct infinite-dimensional Banach
spaces with some pathological properties [10], [11]; however, the credit for
the first use of Gluskin spaces to construct pathological infinite-dimensional
Banach spaces should be given to J. Bourgain [1].

In this paper we study subspace mixing properties of operators in R"
with special attention turned to operators which belong to a compact group
of operators. The main difference in the approach between [9] and this paper
lies in the fact that in [9] the author studied the subspace mixing property of
an operator T in terms of certain “distances” of T to the line {A1d}; ., while
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we study the same property in terms of some other “distances” of T to the
operator n~*(tr 7)1d, and the values of the latter “distances” are easier to
handle.

Finally, we use the results on subspace mixing properties to prove the
existence of finite-dimensional Banach spaces with some pathological proper-
ties, or more precisely to establish some pathological properties of a “vast

majority” of Gluskin spaces. The main result in this direction can be stated .

as follows (cf. Th. 5.3 below):

There is a constant ¢ >0 such that for every neN there is an n-
dimensional Banach space X, with the property that whenever G is a group of
linear operators acting on X,

(n t(G))

TeG} > Y log*%n

sup {[| Tllx,:

where t(G) = inf {tr T|: TeG}.
This answers a question posed by S. J. Szarek in [9].

Let us note that the theorem quoted above contains “up to a logarith-
mic factor” the results proved in [47, [5], [8], [9].

1. Notation and preliminaries. We shall use the standard notation. By
ey, ..., e, we shall denote the standard unit vector basis in R” and by ||-|| the
standard Euclidean norm in R". §"~! will stand for the unit sphere in R"
while ,..; will denote the normalized surface Lebesgue measure on S"~ ! . 0,
and h, will stand for the orthogonal group on R" and the normalized Haar
measure on it respectively. If E is a linear subspace of R" then by P, and E*
we shall denote the orthogonal projection on E and on the orthogonal
complement of E in R" respectively.

We shall say that a linear operator TeL(R") has the (x, f)-subspace
mixing property for o, f > 0 iff there is a linear subspace E = R" with dim E
= o such that

= Blixll

The set of all operators in L(R" having the (a, ﬂ)-subspaée mixing
property will be denoted by M, («, f). Obviously for Te L(R"):

O T¢ U My(x, B) iff T=2ld, for some LeR.
a,p >0

(i) TeM,(«, p) iff ATeM,(«, |4| B) for every AeR.
(i) TeM,(, p) iff T—AId ,eM,(x, B) for every LR
iff Tw/lId eM,(a, B) for some leR.

We shall write Te M,(y) 1ff TeM,(x, f) for some a, B > 0 with «f >
Recall that every operator TeL(R") can be written in the form

) 7= 4 G

1Py Txi[ for every xekE.
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where A, (T) > ... 2 2,(T) = 0 and {y}}-, and {v;}’=, are orthonormal sys-
tems in R". Any representation of an operator Te L(R" in the form (%) will
be called a polar decomposition of T. It is well known that while the polar
decomposition of an operator T need not be unique the sequence (M,
is uniquely determined by T

For a subset A = R", [4] will denote the linear hull of A. Sometimes, we
shall identify an operator TeL(R") with its matrix representation (@)=

with respect to the basis {¢;}l-,. For TeL(R") we define
_[M(T)  for n=12k,
mm"{xk+1(7') for n=2k+1.

For TeL(R", ||T|lys will denote the Hilbert—Schmidt norm of T and
tr T will denote its trace. We shall make use of the following trivial

equalities:

I Tlis = Ziz(T)*n § ||Tx|[2d,u,, 1(x),

snm1

trT = Z (D) u, 0> =n | (Tx, xDdpy_y (x)
i=1 sn—1
for every TeL(R") and every polar decomposition of T.
Finally, we define

O(T) = inf {J| T~ A1d llys: A€ R}
for every TeL(R". It can easily be seen that for Te L(R")
3(T) = | T—(n" " tr T)Id i3 = | Tllds =~ (tx TY2.

By %, we shall denote the set of all compact groups of operators acting
on R". We define

XY, = |) G, (G =inf{trT|: TeG} for Ge¥,.
Ge#,

Since tr(Id,,) =n one has t(G) <n for Ge%, and t(G)=n iff G {IdR,,

—Id R,,}. For a compact group G we shall denote by hg the normalized Haar

measure on G.

We shall say that a group Ge %, acts trivially on a subspace E — R" iff
T|E = ¢ldg, with ee{l, —1}, for every TeG. Also, we shall say that a
group Ge %, acts essentially nontrivially on R" iff it does not act trivially on
any subspace of R" with positive dimension.

The letter ¢ with indices or without will always stand for an absolute
numerical constant, in general different in different places.

We shall deal only with spaces over the reals; however, all the results

after suitable modification remain valid in the complex case.
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2. Mixing properties of contractions in R". We begin with
ProrosiTioN 2.1. Let Te L(R"). Then

J' HP[,,].L TP[x]”ﬁs dpty— 1 (x) = j HP[x]L Tx|[* dpt,- 1 ()
sn—1 gn—1

- o*(T)

n(n+2) n+2’

Proof. The first equality, as well as the inequality, is trivial. To prove

(4 DI TR~ (tr TV ~tr %) >

the second equality set T =(a;);=; and observe that for x
=(x{, ..., x,)e 8" !
1P Tl = |1 Td|* = (Toc, x)* = || Te|| >~ Z % %)%
Hence e
W J IR B di () = [ (1T ey ()
sn— 1 sn—1

n
= [ (2 ayxx)du,-y (0.
sn~1 hj=1
Since. the first integral on the right-hand side is equal to n™!||T|l, it
remains to evaluate the second one. Expanding the square of the sum,

skipping the integrals which are obviously equal to zero and taking into
account that

. 3 ) 1
x?dun— (x)= ’ |2 2d - T T
S"j_l RTCN) S"J_lx X - (x) = S
for i,j=1,...,n and i #j, we have
(2)
[ (3 ) i (9 = —— (32
5.:—1 =1 Y i n(n+2) “ﬂ*zau“ﬁéawzamﬁ)
v¥#J .
1 n
= — a,?*i‘ , 2 )
n(n+2)(.-;jz=:1 1 (iglal) +I’J'Z=1ai./aﬂ)
n(n+2 — (|| T||3s +(tr T)* +tr T?).

Combining (1) and (2) we obtain

1 1
2 -
S,,L“P["”Tx” Aty 1(x) —-~IITllﬁs ) ——— (I Tllfis +(tr T)?+tr T?)

n+2 ((’H'l MTNEs —(te T —tr TZ)

which concludes the proof.
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Thus we have

CoroLLaRY 2.2. TeM,(1, (n+2)""258(T)) for every TeL(R").

ProposiTioN 2.3. For every k-dimensional subspace E — R" and every
TeL(R"

J1Pyes TPuslisdn(V) = i
k(n—k)

T (n-1)(n+2)

Proof. Since the integral does not depend on a particular choice of a
space E but only on the dimension of E, let E =[ey, ..., &]. We have

@) [ IPygs TPu@llis @ (V) = [UP, U™ TUPE U™ llis dh,(U)
Oy Op

((ne 1) Tl ~ax Yt T

5(T).

= [P, U TUPglis dhy (V).
O'l

Let UTU ™! = (a;(U));=, for UeO, and observe that for every U,e0,

0; a5 (V) dh(U) = | a3 (UU,)dh, (V).

By a simple “change of coordinates” argument we get
4 [ a}(U)dh,(U) = [ ai(U)dh,(U)
o, 0,
for all i # j and ! m. Let a(T) be the common value of all integrals of the

form (4). We have
k

5) [P, U TUPHlEsdh,(U) =Y % |

j=i i=k+10y

a3 (U)dh,(U) = k(n—k) a(T).
on

On the other hand. Prop. 2.1 means that

Y. | ai;(U)dh,(U)

j=20,

(6) (n—Da(T) =

= 2 _ 2_ 2
—n(n+2)((n+1)HT”HS (tr T) trT).

Now, combining (3), (5) and (6) completes the proof.

The main result of this section is

TaeoreM 24. Te M, (750*(T), 5(T)/\/—) for every TeL(R") with
1m<1

Proof We shall assume that n is even. The case of n odd can be treated
in a similar way. By Prop. 2.3, there is an E — R". dimE = n/2, such that

w §*(T) = $0%(T).

@] [} TP > m
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Let V=P, TP and let

nf2

V= Z (VY oy uppy;

i=1
be a polar decomposition of V. Obviously {} and {y} are orthonormal
systems in E and E* respectively and 4, (V) <1 for i =1, ..., n/2. By (7) we
have

nl2
Y AEW) = 484(T)
i=1

This implies that more than #6%(T) of the A (V)s are greater than
(5m)~ Y25 (T). Set

Eo=[w:i=1,.., [{6*(T)]+1],
where [$56%(T)] denotes the integer part of {762(T). Then
||PELTx|| 1P, L Tl = ||Vl = (5m)~ > 8(T)

for xe Eq, which yields that Te M, (-;1062(7'), §(T)//5n) and completes the
proof.

Remark 25. Observe that the theorem above gives (up to some
constants) the best possible “mixing properties” for contractions in L(R")

with values of & “proportional” to \/ﬁ, while it is far from the best for
contractions with relatively small values of 6.

In the sequel we shall need the following

LeMMA 2.6. Let a>b >0, me N and let Te L(R") be such that there are
two orthogonal subspaces E,, E, = R", dimE, = dim E, = m, with the proper-
ties:

NI 7l for xeE,,
Then Te M, (4m, $(a—b)).

Proof. Without any loss of generality we may assume that a = 1. In
order to simplify the notation we shall assume that m = 4k for some ke N.
Let p be the maximal nonnegative integer such that TeM,(p, H{1—h).
Assume to the contrary that p <k, and let F = R" be such that

1Py Tl = 4(1=b) [|x]|

= al|x] 1T} < b||x|| for xeE,.

for xeF, dimF =p.

Set
Ey =[FUTF U T*F U T*TF]* N E,,
E,=[FUTFUT*FUT*TF]*nE,

and observe that dimE; > dimE,—4dimF > 4(k—p)=4. By the same
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token dim E, > 4. Using the same argument as in the proof of the fact that
every 2k-dimensional ellipsoid has a k-dimensional spherical section we
deduce that there are two orthogonal vectors x;, x,€ E;@®E, such that -
| Txsll = [1x,]| and || Tzl = bllx,|l. Let Es =[xy, x,] and note that || T|Es]l%s
= 1+b? while |tr Py, T|Es| < 1+b. Now, if

(1 T|E5“HS 1(1-b)%,
then there is an xy,eEs, ]|x0|| =1, such that
1Py Teoll > 4(1-b).

Since xo€ E;@E, it is a matter of a routine calculation to verify that if F,
=[F U {xo}] then

I1Ppy Tl = 11P, . Tl 2 (1= B) [yl
1
=1IP, ;1 Toll = %(1-D),

for yeF,

”PF]—.LTXOH PF%TXOJ._PF%TFs

and therefore

1P, Txll > 2(1—b)llx|| for xeFy,
1 .

a contradiction to the assumption that F has the maximal dimension. On the
other hand, if

1P TIESHHS 3(1-b)%,

then treating Es as Rz.wevhave.
P T|Es|lZ% —%(tr Peg TIEs)> > 3(1—b).
Thus 6(Pg, T|Es) = 4(1—b) and hence, by Cor. 2.2, there is an xq€ Es, ||xoll
=1, with the property that
1P g, ngxgrt Toll 2 2i(1-D),
and we get a contradiction Just as before, which completes thc proof.

3. Mixing properties of operators and compact groups of operators in R".
The theorem below describes the mixing properties of an operator T in terms
of m(T) and its trace.

TueoreM 3.1. There is a constant ¢ > 0 such that for every n 2
every Te L(R")

= 4 and for

Te M, (c|nm(T)—|tr T||/logn).
Proof. First observe that since
‘nm(T)—|trTH nm T—(n"ltrT)Id )
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for Te L(R") and since T has the same mixing properties as T—AIdR,, for

every A€ R, it is enough to prove the theorem in the case when tr T = 0. In

order to simplify the notation in what follows we shall assume that n = 29p

p=1,2,... ’
Fix TeL(R") with tr T =0 and let

T= Z,l (T udy,

be its polar decomposition. We shall consider the following three mutually
exclusive cases:

A. Either A,35¢(7T) = 3m(T) or Aassnase S $m(T)

B. A does not hold and Y A (T)<(1+4)nm(T).

i=1
C. Neither A nor B hold.
Case A. Note that, by Lemma 2.6, we have
TeM,(27'%n, 273 m(T)) = M, (273 nm(T))

and we are done.

Case B. First observe that

nf256 n nf2 255n/256
2 AT < Z AWM= ¥ W= Y (T
i=1 i= i=nf256+1 i=af2+1

< (1449 nm(T)—482nm(T) ~ 5 nm(T) < $nm(T)

and therefore |tr T|Ey| < 4nm(T), where E; = [uy, ..., Uy256]. Thus
®) ltr TIE#| <$nm(T).
On the other hand,

ITIEHEs > $nm? (T)+383 4m(T)
Since || T|Effl <3m(T) it is easy to see that
9) ”PE%TJEiL“I%lS > gnm*(T).
But (8) and (9) imply that

7)) > gnm?(T).

8(T) > grnm*(T)
~ L . .
v}:?sesrjzs;[‘ . :E L T|E{: Ei — E{ is considered as an operator acting in
R us, by Theorem 2.4 applied to the operator (2/3m(ﬂ) T we infer
a
2n m(T)

Te Ms5u256 (93a 9

) < M255n/256(2 13 m(T)),
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which obviously implies that Te M, (273 nm(T)), concluding the proof in
this case.

Case C. First note that
nf2
L AT > (143 mm(T)

and 4, = m(T) for i =1, ..., /2. Therefore

nm(T)
El[/l,-(T)—m(T)J> 28

log, (n/2) with the property that

nm(T)
2 1281og, (1/2)

Hence there is a j <
2,)(T)—m(T) >

which means that
1T > (1+(2 128 log, (7/2))
for xe[uy, ..., u,] Since 1T <
2.6, we infer that
TeM, (22,2777 * nm(T)/log, (n/2)) =

which completes the proof of the theorem.
As an easy consequence of the last theorem we have the following

THeorEM 3.2. For each ac(0, 1) there is a ¢, > 0 such that for every n
> max [(4a)” %, (4(1—a))"'} and for every TeL(R")

Te M, (¢, [nAgan (T)—tr Tl|/log n).

Proof. If | Ay (T)—m(T)| = | (T)—|tr Tiln™! then, by Lemma 2.6,
for 0<a<i

Te M, (4 [on], §|nAgn (T)—tr T|[n7%) < M,(
and we are done. If this is not the case then we have
i (T) = ftx 1| 3 [y (T) = Itx T = g (T) = (T}
>} nhgan (T) = Itr T1]-
Hence by the previous theorem
Te M, (c|nm(T)—|tr T||/log n) ) < M, ( %c|n/l[,,,,(T)—|tr T||/logn),

. The other case can be

tm)m(T)

m(T) for x€[Uyz+1, ..., Up), by Lemma

M, (273 nm(T)/logn),

& &t [y (T) —tx T))

which concludes the proof in the case 0 <o <
obtained in a similar way.
Remark 3.3. It may be of some value to note that the constant ¢, in
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the theorem above may be taken to be 27°a (resp. 27¢(1 —a)) for «
sufficiently close to O (resp. 1).

Now, we turn our attention to compact groups of operators acting on
R".

TreoREM 34. There is a constant ¢ >0 such that for every n >4 and
every Te U%Y,

{T, T™*} " M, (c(n~Itr T))/log n) # @.

In particular,

G N M,(c(n—t(G))logn) @
Sor every Ge¥,.

Proof. Obviously, it is enough to prove the first part of the theorem.
To this end, let Te %%,. Since either A;,;(T) or A2 (T 1) is not smaller
than 1 and since tr T = tr T~ !, replacing perhaps T by T, we may assume
that A2 (T) > 1. Thus by the previous theorem, since |tr T| < n, we have

T M, (c1y2 |nAgy2 (T)—|tr Tl|/logn) & M, (¢1y2(n~1tr T|)/logn),
which completes the proof.

Remark 3.5. Let us observe that Th. 3.4 answers (at least partially) a
problem posed by S. J. Szarek in [9].

. In.the se'quel, we shall need the following notation: if X, is an n-
dimensional linear space and ¢, ) is a scalar.product on X, then by
M,,'S,>(a), for @ >0, we shall denote the corresponding class of subspace
mixing operators in L(X,) with respect to ¢, >. Also, by 9(X,) (res
n. > . » N P

%(X,)) we shall denote the set (resp. the union) of all compact grnoups of
operators acting on X,.

The following result is just a small modification of the theorem above.

TheoRrEM 3.6. There is a constant ¢ > 0 such that for every n-dimensional
linear space X,

() Tew¥(X,) implies {T, T™'} N M, (c(n—|tr T|)/logn) @ for
every scalar product {, > on X,. In particular, :

(i) G n1\71,,,<,>(c(n——t(G))/log‘n) # Q for every Ge 9(X,) and every scalar
product { , > on X,.

_ 4. Compact groups of operators with relatively large values of ¢(-). In
view of the results of the previous section it may be of some interest to give a
more <.1etailed description of those groups Ge %, for which t(G) is relatively
large, i.e. for which n—¢(G) is relatively small. To this end let us recall some

basic facts about compact groups of operators acting on R".
Let Ge¥%,. Then:
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1° There is another scalar product ¢ , >, on R” such that G is a group
of isometries of (R, || |ly), where ||x||; = {(x, x>}/* for xeR"

2° There is a decomposition of R" into an < , );-orthogonal sum of
subspaces

(10) R=E®.. OF

with the properties:

@) T(E)=E; for every TeG and every i=1,..., k.

(i) G acts irreducibly on each E;, i=1,...,k, ie the group Gg
= {T|E;: TeG) c L(E,) does not admit a nontrivial invariant subspace for i
=1,..., k

(iti) If UeL(E;) commutes with every element of Gg, then

Ux, xy; = (dmE) ' tr U

for every xeE; with ||x|[; =1 and every i=1, ..., k.

For a fixed group Ge ¥, every decomposition of R” in the form (10)
satisfying 2°(i)(il) is said to be a decomposition of R into G-irreducible
subspaces. The properties 1°, 2%), (i) and the complex (stronger) version of
2%iii) can be found for example in [6]. We sketch the proof of the real case
of 2%iii). Let U be an operator in L(E;) which commutes with Gg,. Then, by

the same argument as in the complex case, we infer that U =4, U, where

A eR and U is an isometry on (E;, || [l;)- Set S = U —Idg,. Since S commutes
with Gg,, by the same token we deduce that § = A, § with 4,e R and § being
an isometry on (E;, || ||;)- We have for xeE;, with ||x|l; =1,

A2 = (Sx, Sx>; = U3 =2 <Ux, x>y +]Ixll; = 43 +1-2Ux, xD,.

Hence (Ux, x>, = const for xeE; with |ix], =1. Now, the exact value of
(Ux, x>, follows from the formula

tr U =dimE; | (Ux, x} duSEi(x),
sEi
where Ko, denotes the normalized Lebesgue measure on the unit sphere 5% of
(Eix Il 110)-

ProrosiTion 4.1. There is a constant ¢ > 0 such that for every ne N and
for every Ge %, the cardinality of the set of 1-dimensional subspaces in every
decomposition of R" into G-irreducible subspaces is at least n—c(n—t(G)).

Proof. Let Ge %,. In view of 1° above, without any loss of generality
we may and shall assume that (, )=, >;. Let

R =E;®...®FE,
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be a decomposition of R” into G-irreducible subspaces. Let n; = dim E;, i
=1, ..., k. Obviously, ZLI n=n. Assume that n; >...>n and let j
=max {i: n; > 1}. Note that to prove the proposition it is enough to prove
that there is a constant ¢ > 0 with the property

(%) i m < ¢(n—1(G)).

i=1

To this end, in order to simp&ify the notation, we shall assume that all n’s
are even for i <j. Let m=3},  n, and in each E,, i <j, choose arbitrary
two orthogonal subspaces F} and F? with dim F} = dim F? = n/2. Let

J J
F,=@F!, F,=@®F.
i=1 i=1
Consider the operators U;e L(E;) defined by
(11) U= [T |E;0 Py o T| Erdhg (1)
G

fori=1,,.., j. Obviously, U; commutes with every element of Gg,. By 24iii),

U;ix, x) =n71tr U; for every xe&E‘. On the other hand, it follows from
(11) that trU; = dim F} = n,/2. Hence

(12) WUix, x>=4%

for every i=1,...,j and every xeS. Set SFi2=Si for i=1,...,j and"

observe that by (12)

mj2 =

N

m | Usx, x>dﬂs,-(x)

15

i

i

M~

n I g {T™"1E;0 Pry 0 T\ E) x, xdhg (T) dps,(x)

1 §;
J
= g (X m [ 1Py T dps, (x)) dho (T)

i=1 &

J
= .Gf .Zl [IPry TPeallfis dho (T) = [||Pp, TPp,|Z dhg (T).
= G

Therefore there exists a Tye G such that

) IPe, To Pl > m2.

_Set E‘= E;®...®F; and let T = T,|E. Obviously T is an isometry in
L(E). Let {w: i=1,..., m/2) be an orthonormal basis in Fy and let {u;: i
=mf2+1, s m} be an orthonormal basis in F 5- Since E is the orthogonal
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sum of Fy and F, we infer that {s;: i=1, ..., m} is an orthogonal basis in
E. Let (g,-j)}"‘jﬂ be the matrix representation of T with respect to this basis.
Since || T|3s = m, by (13), we have

tr T =Y o < Y loud < /m(T @) < /mm—m/2)12
i=1 i=1 i=1
= m/\/ﬁ.

Thus

HG)Str Ty < ftr Tl +n—m

which yields () and concludes the proof.

Now, we are ready to derive the main result of this section.

THEOREM 4.2. There is a constant ¢ > 0 such that for every ne N and for
every group Ge 9, there is a subspace Eg = R* with dimEg > n—c(n—t(G))
on which G acts trivially.

Proof. Fix Ge %,. Replacing perhaps G by the group —G U G we may
assume that —Id,,e G. As in the proof of the previous proposition, without
any loss of generality we may assume that G is a group of isometries of R"
Since the trace is a continuous functional on L(R") equipped with the
Hilbert-Schmidt norm .and  its equal to \/; and

norm is since

G =S,z = (TeL(R: ||Tlys = /n}
we infer that there is a constant c; €(0, 1) with the property that if TeS,,
and tr T3> ¢;n then || T~1d llus <3/n.
Now, observe that if t(G) < ¢, n then the theorem holds trivially with ¢
= 2/(1—c,) and therefore it is enough to prove it for groups satisfying ¢(G)
>c;n Let G be such a group and define

Go=1TeG: r Tz c;n} ={TeG: tr T > 0}.

We claim that G, is a subgroup of G and G = — G, U G,. Indeed, the second
property of G, is trivial, and to see that G, is a subgroup, note that for
T, ,eG, we have [d,—T; BGllis <3/ hence tr(ld—T L) =n
—tr Ty T, < $n, which implies tr T; T; > 0 and therefore Ty T,&G,. In parti-
cular, we have t(Go) =t(G) = ¢y n.

Now, let R"=E,;®... ®E,, be a decomposition of R into G-irreducible
subspaces. Let {E;}%.; be the set of all 1-dimensional subspaces in this
decomposition. By Prop. 4.1, we have k > n—c,(n—1(G)), where c, is some
numerical constant. Let w;eE;, |luj] =1 for i =1, ..., k, and define

A ={i: Ty =y for every TeG,}, B={1,...,k}\4.
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Set F = [u;: ieB] and observe that if ieB then
[ (Tt ;> dhgy (T) = 0

Go
Hence

i

[ tr(TIF)dhg, = Y, [ T, u>dhgy(T) = 0.
Go ieB Gg

Thus there is a Toe G, with tr(TH|F) <
G Ktrh <
which implies that

0. We have
tr(Ty|F)+dim F* < n—dim F,

# B =dimF < n—t(G).

This yields
#A=k—#B>n—c,(n—1(G)—(n—1(G) = n—(c,+ 1) (n—1(G)).

Now, setting ¢ =c,+1 and Eg = [u;: ie A] concludes the proof.
. Remark 4.3. The theorem above states that if n—t(G) is relatively small
then G acts trivially on a large-dimensional subspace.

5. Application to the pathological properties of Gluskin spaces. We begin
with the crucial result due to S. J. Szarek [9].

THEOREM 5.1 (S. J. Szarek). There is a constant ¢ > 0 such that for each n
=4 there is a norm |||-|ll, on R" with the property

cal

A
Vnlogn
for every operator Te M, (o).
Remark 5.2, In fact, Szarek proved slightly more, namely, that Th. 5.1
holds for a “vast majority” of norms defined by E. D. Gluskin in [4].

Combining Th. 5.1 with Th. 3.4 we immediately get an answer to a
problem posed by S. J. Szarek in [9].

THEOREM 5.3. There is a constant ¢ > 0 such that for every n > 4 there is
an n-dimensional Banach space X, with the property that for every Te W% (X,)

- tr T|)
max {||T| T-! *‘*LW
Tl 1T~} > o
In particular,
n—t(G
sup{IITllx TeG} = 1(/zlog(3/2))

for every Ge %4(X,).
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As an application of the result above we shall deduce slightly weaker
versions (they differ by a logarithmic factor) of results due to E. D. Gluskin
[4] and S. J. Szarek [8].

COROLLARY 5.4. There is a constant ¢ > 0 such that for each n >
is an n-dimensional Banach space X, with the property

4 there

”P”X,, 1/zlog3/2

for every rank k projection P, with k < nf2.

Proof. For every such projection P it is enough to consider the group
Gp consisting of Idy,—2P and Idy,, and apply Th. 53 (note that tr(Idy,
—2P) = n—2k).

As another application of Th. 5.3 let us mention the following weaker
version (“up to a logarithmic factor”) of a result proved by S. J. Szarek in
[91:

COROLLARY 5.5. There is a constant ¢ > 0 such that for every n = 2 there
is a 2n-dimensional Banach space X ,, with the property that for every complex
n-dimensional Banach space Y,f the Banach-Mazur distance over the reals
dp(Xam 19 is at least cn'?log™32n.

Proof. Let X,, be a Banach space satisfying Th. 5.3 and let T' X,,
— Y, be an “R-lincar” operator realizing the distance between X, and Y,C.
Define .

A= T”—lOiIdyCOT

Since 4% = ~1ldy,, it can casily be seen that tr 4 = 0. Now, it is enough to
apply Th. 5.3 for the group {4, —A, —Id, Id} and to note that on the other
hand HAHXZ <dR(X2m Ync)

The next result is a one more application of Th 5.3 concerning a “vast
majority” of Gluskin spaces.

THEOREM 5.6. There is a constant ¢ > 0 such that for every n =
an n-dimensional Banach space X, with the property: if

Ge9(X,) and sup{|Tlx,: TeG}=A4

then G acts trivially on some subspace of X, of dimension > n—cAn'/?log
Proof. The theorem follows directly from Th. 53 and Th. 4.2.
Remark 57. (i) Note that Th. 5.6 is nontrivial only if A
< ¢t nt?logT¥2n,
(ii) On the other hand, Th. 5.6 states that the situation in Corollary 5.4
is typical (Gp acts trivially on ker P, while dimker P = n—k).
Now, we shall deal with the problem of representing an operator T

4 there is

3/2 n.

5 = Studia Mathematicn t. 88 z 1
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acting on a finite-dimensional Banach space as a sum of some number of
“small rank” operators with “small” norms.

THEOREM 5.8. There is a constant ¢ > 0 such that for every n = 4 there is

an n- dlmenszonal Banach space X, with the property that for every Te L(X,), if

T= Z T, with rank T, < nf2 for i =1, ..., k then
- cltr T|
sup {[ITlx,: i=1,....k} > > o leg
In particular, if Idy, = Z:‘=1 T, with rank T<n/2 for i=1,..., k then
; cnli2
sup {1 Tl £ = Lo k) > o

Proof. First observe that for at least one of the T's we have |tr T}
2 k™ tr T while A3,4(T) =0, and next apply Th. 3.1 and Th. 5.1,

Remark 59. A standard argument shows that Th. 5.8 implies the
following result due to S. J. Szarek [11]:

There is a constant ¢ >0 such that for every neN there is an n-
dimensional Banach space X, with the property that whenever X, is C -
isomorphic to a Cy-complemented subspace of an m-dimensional Banach space
Y, then the basis constant of Y,, is greater than

CTiCytm™ 132 log=3%p, R

This shows that the estimates obtained from the corresponding positive
result due to A. Pelczynski [7] are “up to a logarithmic factor” the best
possible.

For a finite-dimensional Banach space X denote by .4 %(X) the set of
those compact groups of operators on X which act essentially nontrivially on
X. Define

ws(X, G) = sup {||Tllx: TeG}

for every Ge.#'%(X) and the weak symmetry constant ws(X) of X by
ws(X) = inf {ws (X, G): Ge .V "%(X)}
Obviously, for every finite-dimensional Banach space X:
(i) ws(X) =inf {d(X, Y): dimY = dim X and ws(Y) = 1},

(i) ws(X) <s(X) where s(X) denotes the symmetry constant of X
defined by D. J. H. Garling and Y. Gordon in [2] (cf. also [5]) and

(i) ws(X) < /dim X.

Th. 5.6 yields the following result which generalizes “up to a logarith-
mic” factor the main result of [5].
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TueoreM 5.10. There is a constant ¢ > 0 such that for each n z 4 there is
an n-dimensional Banach space X, with

ws(X,) = cn'?log™32n

Remark 5.11. One can construct for each neN an n-dimensional
Banach space X, with ws(X,)=1 and s(X,) 2 c\/n for some numerical
constant ¢ > 0.
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