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A characterization of homomoerphisms
in certain Banach involution algebras

by
GEORGE MALTESE (Minster) and REGINA \WILLE-FIER (Miinchen)

Abstract. The following question related to the Gleason-Kahane-Zelazko theorem is
discussed: If ¢ is a continuous linear form on a Banach algebra A such that every element in
ker ¢ belongs to the kernel of some nontrivial multiplicative form, does it follow that ¢ = ch for
some ¢ # 0 and some nontrivial multiplicative form h? An affirmative answer is given for a class
of Banach involution algebras. Applications to C,(X), X locally compact and to I'(G), G a
locally compact metrizable group, are given.

0. Introduction. In this paper we discuss the following question related to
the Gleason-Kahane-Zelazko theorem: Suppose ¢ is a continuous linear
functional on a complex Banach algebra A such that every element in ker ¢
is in the kernel of some complex homomorphism (# 0) on 4. Does it follow
that @ = ch for some 0 % ce C and some nontrivial complex homomorphism
h on A? It is shown that this question has an affirmative answer if 4 is a
complex involutive Banach algebra such that the space 4, of nontrivial
complex cortinuous homomorphisms of 4 endowed with the relative
o (4, A) topology is sigma-compact and the involution is symmetric, i.e. h(x)
is real for every selfadjoint x and every h in 4,. On the other hand, the
hypothesis of sigma-compactness of 4, turns out to be an essential assump-
tion since it is necessary in order to guarantee the existence of at least one
element in A which belongs to no regular maximal ideal of codimension 1.

In the sequel we consider two important examples. First, the above
characterization always holds for the convolution algebra L!(G) of a metri-
zable group G. Moreover, in the case of an abelian group G the essential
hypothesis of sigma-compactness of the space 4, is fulfilled if dand only if
L1(G) possesses a sequential approximate identity. Similarly for the Banach
algebra Cy(X) of continuous complex-valued functions vanishing at infinity
on a locally compact Hausdorff space X, the sigma-compactness of X (and
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consequently the sigma-compactness of Acx) is equivalent to the existence
" of a sequential approximate identity in the algebra Coy(X).

1. Preliminaries and basic assumptions. Throughout this paper “algebra”
means “complex associative algebra” and “homomorphism” means “complex
homomorphism”. In a commutative Banach algebra A with identity the
famous theorem of Gleason-Kahane-Zelazko gives the following characteri-
zation of maximal ideals (see [2], [4] and [13]): Let m be a subspace of
codimension 1 in 4. Then m is a maximal ideal if and only if each element of
m belongs to some maximal ideal.

It is natural to ask whether this characterization holds for the regular
maximal ideals of a commutative Banach algebra without unit element. In
1969 Warner and Whitley considered this problem in [10] and they showed
that there are commutative Banach algebras in which every element belongs
to some regular maximal ideal. Hence apparently the above characterization
cannot be valid for arbitrary Banach algebras without identity.

On the other hand, Warner and Whitley did obtain the above characteri-
zation in two important cases: first, for the convolution algebra L' (G) of a
metrizable abelian topological group G, and secondly, for a Banach algebra
generated by one element. In the second case they need the additional
hypothesis that the considered subspace be closed.

Throughout this paper we prefer to work with multiplicative linear
functionals rather than with regular maximal ideals. Moreover, we shall use
some notation, which is familiar for commutative Banach algebras, also in
the noncommutative case: so 4, will denote the set of all nontrivial
homomorphisms on a Banach algebra A. In the case of a commutative
Banach algebra it is well known from Gelfand theory that A4, may be
identified with the set of regular maximal ideals, since any regular maximal
ideal has codimension 1. For a noncommutative Banach algebra A4 the
codimension of a régular maximal ideal in 4 is not necessarily 1; hence, in
general, 4, must be identified with the set of regular maximal ideals with
codimension 1 (see 19C in [15]).

In general, the existence of nontrivial continnous homomorphisms,
especially for a noncommutative Banach algebra without unit element, is not
guaranteed. Throughout this paper we shall assume that the space 4, of the
considered Banach algebra is not empty. In fact, this hypothesis is fulfilled
for the two important examples which are discussed in the last two sections.

For any element x in a Banach algebra A the Gelfand transform of x is
defined by %: 4, — C, h—h(x). If 4, is endowed with the Gelfand topology
(ie. the weakest topology on 4, for which every % is continuous), then 4, is
a locally compact Hausdorff space such that every Gelfand transform
vanishes at ‘infinity (see 19B in [5]).

Thus for this paper the problem of Warner and Whitley [10] is

icm°®

Homomorphisms in Banach a}gebras 135

reformulated in the following way: Let 4 be a Banach algebra and let ¢ be a
continuous linear functional on A. Is ¢ the scalar multiple (s 0) of some
homomorphism (3 0) on 4 if it is known that every element in the kernel of
¢ belongs to the kernel of some homomorphism (s 0) on A4?

In contrast to [10] we do not suppose that the considered Banach
algebra is commutative. Hence the above formulation ' just cha.racterlzes
those regular maximal ideals which are of codimension 1.

In the first section of this paper we obtain the following result (Theorem
23) (1: the above question has an affirmative answer whenever A is an
involutive Banach algebra such that the space 4, is sigma-compact (ie. a
countable union of compact sets) and the involution in 4 is symmetric (%).

Moreover, we prove that the hypothesis of the sigma-compactness of 4,
is fulfifled if the Banach algebra A possesses a sequential approximate
identity. In this context we also show that the hypothesis of the sigma-
compactness of 4, is an essential assumption, since it is necessary in order to
guarantee the existence of at least one element in 4 which belongs to no
regular maximal ideal of codimension 1. )

The last two sections of this paper treat two important examples. First
we examine the Banach algebra C,(X) of continuous complex-valued func-
tions vanishing at infinity on a locally compact Hausdorff space X. It is
shown that the above characterization of homomorphisms holds for Cq(X) if
and only if the algebra C,(X) possesses a countable approximate identity
and that this latter condition is equivalent to the sigma-compactness of X.

The second example is the convolution algebra L!'(G) of a locally
compact topological group G. The above characterization of homomor-
phisms is realized even for a nonabelian metrizable group. In the case of an
abelian group G the characterization holds if and only if G is metrizable. In
analogy to the algebra C,(X), the characterization for commutative convolu-
tion algebras is equivalent to the existence of a sequential approximate
identity in L'(G).

We wish to thank Gerd Niestegge for useful discussions during the
preparation of this paper. Special thanks are due to the referee for many
constructive comments which simplified the exposition.

2. A generalization of the Theorem of Gleason-Kahane-Zelazko. If the
above characterization of homomorphisms is valid for a Banach algebra A4
and, on the other hand, if there exist linear functionals (5 0) on A which are
scalar multiples of no homomorphism on A4, then there is an element w in A

(*) Recently our attention was drawn to the fact that a commutative version of this
theorem was proved by Warner and Whitley in [11].  Our noncommutative proof relies on
different methods.

(3) The involution is symmetric if and only if h(x*) = h(x) for each h in 4, and x in 4.
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with the property h(w)= 0 for all h in 4,. In particular, in the case of a
Banach algebra with unit element e the unit element never belongs to the

kernel. of a homomorphism (% 0) on A. Hence the hypothesis that an’

element w exists for which h(w) = 0 for all h in 4, weakens in a natural way
the condition that the Banach algebra A be unital. .

The following theorem shows that this weakening is also expressed in
the topological properties of the space 4,: the compact maximal ideal space
of a commutative unital algebra is replaced by the sigma-compact space 4,4

in the general case.

TueoreM 2.1. Let A be a complex Banach algebra and let w be an element
in A such that h(w) O for all h in A,. Then the space 4, is sigma-compact in
the Gelfand topology. Furthermore, if A has a symmetric involution, then the
converse implication also holds; viz. if A, is sigma-compact, then there exists
weAd with h(w)# 0 for all h in 4,.

Proof. The first assertion follows by writing
Ay = [:)1 {hed,: |h(w) = 1/n}

since every term in this countable union is compact (W vanishes at infinity).
The second assertion follows from the fact that for every h in 4, there exists
x, in A with h(x;) # 0. Since A has a symmetric involution we have h(x* x)
>0 for all hin 4, and all x in 4. The relation h(x} x;) > 0 implies that
there is a neighborhood ¥, of h in 4, with ¢(x} x;) > 0 for.all ¢ in ¥,. We
have 4, =) {¥: hed,} and since 4, is sigma-compact, we can choose
from {V}};4, a countable subcover {Vi }#Z 1. For each k-let u, 1= x}, x,, and
finally let

© Uy

wi= Yy =
12:1 2|l
Clearly h(w) >0 for all h in 4, and the conclusion follows.

That the converse implication in Theorem 2.1 may fail if the involutive
Banach algebra is not symmetric is shown in the following example (which is
also discussed in [10]):

ExaMpLE. Let 4 be the uniform algebra of all functions of two complex
variables which are continuous on the bidisc 4%:= {1, WeC* |A <L,
|z < 1} and holomorphic in its interior. Let M, be the maximal ideal of A4
defined by M, := {fe A: f(0, 0) = 0}. Then M, is a Banach algebra with a
nonsymmetric involution given by. f*(4, u):= f(4, [). Clearly we have 4 Mo
= A\{(0, 0)} and so A, is sigma-compact. On the other hand, M, does
not contain any nonvanishing function since every holomorphic function on
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A% in two complex variables which vanishes at (0, 0) must vanish also on an
analytic subset of 4> which meets its boundary.

Theorem 2.1 shows that for the above-discussed version of the theorem
of Gleason-Kahane-Zelazko it suffices to consider Banach algebras with 4,
sigma-compact. On the other hand, this essential hypothesis is always
fulfilled if the Banach algebra possesses a sequential approximate identity.
For the sake of completeness we include a proof of this result.

TueoreM 2.2. Let A be a Banach algebra with a countable lefi (resp. right)
approximate identity u,. Then the maximal ideal space of A is sigma-compact.

Proof Let u, be a left approximate identity (the proof for a right
approximate identity is analogous). Since for any h in 4, there is an element
xo in A such that h(xo) # 0, the relation h(u,x)— h(x) for all h in 4, and x
in A implies h(u,) — 1 for all h in 4,. It follows that the sets

Kn:={hEAA: |ﬁ,,(h)|?‘%}, Tl=1, 23""

form the desired countable covering of 4,: for since the Gelfand transforms 4,
vanish at infinity, every K, is compact in 4,. Furthermore, since h(u,) — 1
for all h in A4,, each h belongs to some K,.

The following theorem solves the characterization problem formulated:
in the introduction for every involutive symmetric Banach algebra A.

. THEOREM 2.3. Let A be a Banach algebra with A4 sigma-compact and with
a symmetric involution. Then for every linear functional ¢ the following
conditions are equivalent:
(i) There is a e C\{0} such that Ap is in 4. ‘
(ii) For every x in the kernel of ¢ there is a homomorphism h in A4 such
that x belongs to the kernel of h. '

Proof. Since any homomorphism on 4 has property (ii), the implication
(i) = (ii) is obvious. ' ‘ |

In order to prove the converse implication let ¢ be a linear functional
on A such that (i) holds. According to Theorem 2.1 there is an element w in
A with h(w) # 0 for every h in 4. Considering ww* we may suppose w to be
selfadjoint. Now property (i) implies ¢(w)# 0 and @(w?) # 0. Since the
linear functional A¢ fulfills (ii) for any Ae C\{0}, we may even assume that
ew) =1 ‘

Hence without loss of generality we may reduce to the following
situation: ¢ is a linear functional on A with property (i), o(w) =1 and
¢(w? # 0 for a selfadjoint w such that h(w)# 0 for all h in 4,.

We shall show that the mapping F: A — C defined by

F(x):=pW)e(® (xed)

3 — Studia Math. 89.2

f
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is a homomorphism. We have F(w) = ¢(w? and F(w?) = e wH e (w? so
that
(1) F(w?) = [F(w)]*

By definition ker F = ker ¢ and so by (ii), F (x) = 0 implies h(x) = 0 for some
hed, (h depends on x). )

By (1), F(w*—F(w)w)=0 so there exists h in 4, with h(w?)
= h(w) F (w); hence F(w) is real. For any selfadjoint u we have

F( F )F("))

so there exists g in 4, with g(u) = (g (W)/F (W))F (), and so F(u) is real for
each selfadjoint u. For any x,y in A we have

F (xy—yx ——F(xy— yx})

F(w)

so there exists k in A, with k(xy—ypx) = (k(w)/F (W)} F (xy~yx), and so we
obtain '

) F(xy)=F(yx) for all x, ye 4.

For any selfadjoint u we have

F(u F )F(u)+1{u Fow 2)F(uz)})

- and hence there exists [ in 4, with

3) l(u Flw )F(u)+1{u Fow 2)F(uz)}>

Since F (u), F(u?), F(w), F(w?) are real, the elements u— (w/F(w))F (1) and u?
—(w?/F (wh)F (1% are selfadjoint and so since the involution is symmetric,
(3) implies

Iw) 1(w?)
l(u)—F( )F() l(u?) = Fond) F ().
Together with (1) this gives
” .
@ P =2 M—[;%F( [ - e

The relations (2) and (4) show that for any selfadjoint u, v in 4
2F (uv) = F (uv+vu) = F ((u+0v)* —u®—v?)
= (F (W) +F (v))* = F u*)—F (v*) = 2F (u) F (v).
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This immediately implies that F(xy) = F(x) F(y) for arbitrary x, y in. 4 and
completes the proof.

Remark. The above proof represents a generalization of the proof of
Corollary 1.1 in [13] for a Banach algebra without unit element.

3. Characterization of homomorphisms on C,(X) in the sense of Theorem
23. In this section we consider the commutative Banach algebra C,(X) of
continuous complex-valued functions vanishing at infinity on a locally com-
pact Hausdorff space X. If X is not sigma-compact, then the maximal ideal
space of Cy(X) is not sigma-compact either; hence Theorem 2.1 implies that
any element of C4(X) belongs to a regular maximal ideal of Cy(X). But
generally there will be linear functionals on Co(X) which are scalar multiples
of no homomorphism on C,(X). Hence in the case of a non-sigma-compact
space X the homomorphisms on C,(X) will hardly be characterized by
property (i) of Theorem 2.3, .

If on the other hand the space X is sigma-compact, then the homo-
morphisms on Cy(X) W111 always be characterized by condition (i) of
Theorem 2.3:

THeEOREM 3.1. Let X be a locally compact Hausdorff space and let F be a
linear functional (¢ 0) on Co(X). Then F is representable in the form

F(f)=#(x) (feCo(X)

Jor some xo€ X and some Ae C\{0} if and only if every function in the kernel
of F has a zero in X.

Proof. The assertion is a direct consequence of Theorem 2.3 if one uses
the well-known fact that any homomorphism on C,(X) is the point evalua-
tion at some point in X.

Thus the characterization of homomorphisms on C,(X) by property (ii)
of Theorem 2.3 is possible if and only if the space X is sigma-compact.
Another necessary and sufficient condition is that CO(X) possesses an
approximate identity sequence.

TueoreM 3.2. Let X be a locally compact Hausdorff space. Then there is
an approximate identity of Co(X) which is a sequence if and only if X is sigma-
compact. )

Proof. If Co(X) possesses a countable approximate identity, then
Theorem 2.3 implies that 4¢x, is sigma-compact; hence X is sigma-compact
too.

For the converse implication let X be the countable union of compact
sets K;. Since X is locally compact, every K; is covered by a finite number of

.open sets U;, with compact closure in X. Moreover, for every i the union of
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the U,, is a compact set containing K; in its interior. Hence without loss of
. generality we may choose compact sets K; such that

x=UK
i=1
(here K; denotes the interior of K;). Considering the sets

U K(’

=1
we may finally choose a sequence of compact sets C, with

Ué =X and C,,, >C, for every neN.
n=1

Now the countable approximate identity is defined in the following way:
for every C, the Lemma of Urysohn (see Proposition 7.1,8 in [1]) guarantees
the existence of a function u, in C,(X) such that u, is' real-valued withl
0<u,<1 and u,(x) =1 for every xeC,.

In fact, it is easy to show that u, is an approximate identity: Let g be
any element of Cy(X) and let & > 0. Since g vanishes at infinity, there is a
compact set K, with |g(x)] <e¢ for every x¢K,. Now K, is contained in the
union of the open sets C,. Hence a finite number of them already cover K.
Since C, = C, for all n, there is in particular an me N such that K, = C,
Vn > m. Consequently, we have for every n>m

Vtek,,
Vi¢K,.

lgun ()~ g O = g ) ~g (B =0
lgun(—g (O = 19 0 lun () —1] <&

Therefore we conclude that |lgu,—gl|,, <e. Thus gu, converges uniformly to
g, which means that u, is an approximate identity.

4. Characterization of homomorphisms on L' (G) in the sense of Theorem
2.3. Here we consider the convolution algebra L'(G) of a locally compact
topological group G. Since the space ALI(G) may be identified with the
character group G’ of G (see Corollary 23.7 in [3]), there ‘are always
homomorphisms on L*(G).

The following theorem shows that the characterization of homomor-
phisms on L'(G) in the sense of Theorem 2.3 holds whenever G is metrizable
(even in the noncommutative case!):

THEOREM 4.1. Let G be a metrizable locally compact topological group.
Let ¢ be a linear functional on I'(G) with the following property (here
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®
=0, there exists x;eG' with

cj;f(x)x’f—(x—)d).(x) =

denotes a left Haar measure): If o(f)

Then there are pe C\{0} and a character x' such that

e(f)= #(I;I(X)x’(x) di(x) VfeLl(G).

Proof. We have to verify the hypothesis of Theorem 2.3. According to
Satz 5.8 in [6], L*(G) always possesses an approximate identity e;. Moreo-
ver, the index set of ey is a local base at e in G. But if G is metrizable there is
a countable local base at e (see Satz 1.1.13 in [6]); hence L'(G) even
possesses an approximate identity which is a sequence Now Theorem 2.2
implies that 416 is sigma-compact.

We still have to prove that the involution in L*(G) fulfills the symmetry
property demanded in Theorem 2.3. For this it suffices to prove that

h(f*) = ﬁm for every he4 and every fe !} (G).

L&

So let h be ény homomorphism on L'(G). According to Corollary 23.7
in [3] there is a-character x;, of G such that

h(f) = [f) %) dA)  (fel*(G).
G
Hence we have for every f in. L!(G)

B = [0, dA) = [ATHf (7Y x(x" ) dA).
G G

Here 4 denotes the modular function of G. Using Theorem 30.B in [5] we
conclude that

h(f*) = [ f () x,(x)dA(x) = if(x)x_;.@d/l(x) =h(f).
G

Thus all the hypotheses of Theorem 2.3 are fulfilled and the assertion
follows. i

Remark. The proof of Theorem 4.1 implies that the involution in LY(G)
always has the symmetry property

h(f*) = h(f)

On the contrary, an example in [8] (p. 324) shows that the involution of
a noncommutative convolution algebra need not be hermitian (which means
that every selfadjoint element in L!'(G) has a real spectrum).

(feL(G), hed,sq).
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Since for a noncommutative Banach algebra the image of the Gelfand
transform % is just a subset of the spectrum of x, the symmetry property in
Theorem 23 is of course weaker than the assumption of a hermitian
involution.

The last theorem shows that in the case of an abelian group G, the
hypothesis of metrizability is also necessary in order to characterize homo-
morphisms on L'(G) by condition (ii) of Theorem 2.3:

THEOREM 4.2. Let G be an abelian topologzcal group. Then the following
conditions are equivalent:

(i) G is metrizable.

(i) There is a countable local base. at ecG.

(iii) L*(G) possesses an approximate identity sequence.

(iv) 4,4 @ sigma-compact.

“Proof As to the equivalence of (i) and (i) see Satz 1.1.13 in [6].
(i) = (iii) is shown in the proof of Theorem 4.1. '

According to Theorem 2.2, (iii) =>(iv) holds for every Banach algebra,
The equivalence of (ii) and (iv) is proved in [3] (see 24.48).

Generally there exist even continuous linear functionals on L*(G) which
are scalar multiples of no homomorphism on L!(G): while the dual space of
LY(G) is represented by L®(G), the maximal ideal space of L'(G) may be
identified with the character group. ]

Hence for an abelian group G the characterization of homomorphisms
on L!'(G) by condition (ii) of Theorem 2.3 holds on the one hand if and only
if G is metrizable, on the other hand, similarly to C,(X), if and only if L*(G)
possesses a countable approxxmate identity.
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