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Abstract. In this paper several results on the structure of (the general class of) Corson-
compact spaces (and some proper subclasses) are presented. For a Corson-compact space K we
prove:

(a) The Banach space C(K) is strictly convexifiable.

(b) C(K) is weakly Lindelsf if and only if there exists a bounded linear one-to-one
operator T: C(K)* — l:’+ (I') that is weak* to pointwise continuous, where l:+ (I is the Banach

space of all bounded functions f: I' — R such that the set {yeI: f(y) =0} is at most countable,
endowed with the supremum norm.

The above theorems generalize the corresponding results of Amir-Lindenstrauss for the
subclass of Eberlein-compact spaces. We also give a variety of examples (most of them assuming
the continuum hypothesis) of “pathological” Corson-compact spaces, such as: (a) assuming CH,
a Corson-compact ccc space  (and so with C(£) strictly convexifiable) such that the Banach
space C(G(£2)) is not strictly convexifiable, where G (£2) is the Gleason space of Q (it follows that
the geometrical condition of strict convexifiability is not a chain condition); (b) assuming CH, a
nonmetrizable Corson-compact Q with a strictly positive (normal) measure (of countable type),
and so with C(Q) not weakly Lindeldf.

Introduction. The class of Corson-compact spaces and the Z-products (see
Definition 0.3) were introduced by Corson in [Co]; and studied by several
authors, especially by Alster [A], Alster and Pol [A-P], Pol [P],, Michael
and Rudin [Mi-R], Gulko [Gu];, Benyamini-Rudin—Wage [B-R-W].

In the present paper we continue the study of the structure of K and
C(K) for K a Corson-compact space.

In Section 1 we extend some classical results of Amir-Lindenstrauss for
Eberlein-compact spaces; in particular, we prove that every Banach space of
the form C(K), where K is a Corson-compact space, is strictly convexifiable.
As a consequence of our methods we answer in Theorem 1.11 a question
posed in [C-NJ, p. 179.

Section 2 is a study of “chain conditions” in the class of Corson-
compact spaces. We give several examples, assuming the continuum hypothe-
sis, of “pathological” Corson-compact spaces (Theorem 2.3) that indicate the
complicated structure and the extent of the class of Corson-compact spaces.
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We also prove, at least assuming the continuum hypothesis, that the geome-
trical condition of strict convexifiability for Banach spaces of the form C(K),
where K is a compact space, is not a chain condition for X (Theorem 2.11).

Section 3 contains characterizations of a significant subclass of Corson-
compact spaces (Theorem 3.5), namely those with property (M) (see Defini-
tion 3.1). We prove that this class is identical with the class of Corson-
compact spaces K for which C(K) is weakly Lindelsf. We also establish a
characterization similar to that of Amir-Lindenstrauss for WCG' Banach
spaces (a Banach space E is WCG if and only if there is a one-to-one
bounded linear operator T: E* — ¢o(I') that is weak* to pointwise conti-
nuous; cf. [Am-L], see also [M],, Ths. 4.1, 4.2). We also prove that if we
assume the continuum hypothesis then the subclass of Corson-compact
spaces with property (M) is strictly contained in the general class of Corson-
compact spaces (Theorem 3.12).

In the last Section 4 we introduce a (new) subclass of Corson-compact
spaces (with property (M)), namely the Corson-compact spaces of bounded
order type (see Definition 4.6). Using combinatorial methods, we are able to
construct an example of a non-Gulko-compact Corson-compact space of
order type w (Theorem 4.4), a rather surprising result.

0. Preliminaries. The ordinals are defined in such a way that an ordinal
is the set of smaller ordinals. A cardinal is an ordinal not in one-to-one'
correspondence with any smaller ordinal. The least cardinal strictly greater
that o is denoted by o*. ;

The cardinality of a set 4 is denoted by [A|, the cardinality of the family
"P(a) of all subsets of (a set of cardinality) « is denoted by 2*. We set, for a
set 8, [S}F={d4<S5: |4 =k}

The (cardinality of the) set of natural numbers is denoted by . The
continuum hypothesis (CH) is the proposition o™ = 2.

By the term space we mean a Hausdorff completely regular topological
space.

For a space X, w(X), d (X) and C(X) denote the (topological) weight,
the density character, and the Banach space of continuous bounded real-
valued functions on X with supremum norm, respectively. The pointwise
topology on C(X) is determined by the requirement: a net (fier converges to
S in the pointwise topology (for Jfi. feC(X)) if lim f;(x) = f (x) for all xe X.

A family # of nonempty open subsets of a space X is called a
pseudobase for X if every nonempty open subset of X contains an element of
the family 4.

A compact space K is said to be extremally disconnected if the closure of
every ‘open subset of K is open, and angelic if for every A < K and xed
there is a sequence (x,) = 4 with X, — X.

If X, Y are spaces, a continuous surjective mapping f: X — Y is called
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irreducible if for every closed set F — X with F # X we have f(F)# Y. A
closed subset 4 of X is called a retract of X if the identity id: A — A (id(x)
= x) can be extended to a continuous function r: X — A4, which is called a
retraction of X.

Let X be a space. Then:

(2) X has caliber o™ if for every family {U,: & < @™} of nonempty open
subsets of X there is 4 < w* with |A| = w™* such that ., U; # @.

(b) X has property (K,) (where 2 < n <w) if for every family {U,: &
<"} of nonempty open subsets of X there is A « 0¥, |4| = 0¥, such that
any n elements of the family {U,: {e 4} have nonempty intersection. We
denote by (K) property (K,). It is clear that if X has caliber * then X has
property (K,) for all n with 2<n <. . :

(c) The Suslin number S(X) of X is the smallest cardinal number_oz such
that there is no family of cardinality « of pairwise disjoint nonempty open
subsets of X. A space X satisfies the countable chain condition (ccc) if
S(X)< ot .

(d) X has property () if the family of nonempty open subsets of
X, *(X), can be written in the form .

T*X)=U 7,
where for every n < there exist at most n pairwise disjoint sets in the
family 7. . .

() X has property (P) if for every family {U: ¢ <o™} of. noneml?ty
open subsets of X there are 4 < w* with |4 = »* and an ordinal ¢ w1_th
2<o0<w* such that if B A and ordertype(B) =¢ then there exist
& ¢eB with & # ¢ such that Us n Uy # Q. _ .

) () ¥f #={U,, ..., Uy} is a nonempty finite family of nonempty
subsets of X, indexed (not necessarily faithfully) by {1, ..., N}, t.hen cal #
denotes the largest integer k such that there is S = {1, ..., N} with |S| =k
such that s U; # @.

(i) If % is a nonempty family of nonempty open subsets of X, then

k(&) =inf {(cal F)N: 1 < N <0, F={Uy, ..., Uy} = F}.

© (ii) X has property (x«) if the set 7*(X) of nonempty open subsets of X
can be written in the form
T*X)=U Z,
with k(7,) >0 for n < w.

~We call any of the above properties (a) to (f) a chain condition on the
space X. The chain conditions on X are related as follows:
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(#%) = (¥) = (K) = (P) = productively-ccc (i.e. for
every ccc space ¥, the space X xY is ccc) = cec,
(x9) = (K,) for 2<n<wm.

We noti'ce that if .X is compact, then X has property (x#) if and only if
X has a strictly positive (regular Borel) measure (i€ u(U) >0 for every
nonempty open subset U of X). For detailed information on chain conditions
the reader should consult [C-N7.

y We mention several examples that separate some of the chain condi-
ions.

0.1. TueoreM ([C-NJ). (a) There is a compact‘space K with property (x)
fznd property (K,) for every n and with no strictly positive measure. Moreover
if we assume CH, K does not have caliber ™. ’
" (b; I(TI(ér)ever; n with 2 < n <, there is a compact space K with property
*) an » and with no strictly positive measure, and, i
o , , if we assume CH,

. (c) We assume CH. Then there is a compact ccc space K such that K x K
is not ccc.

(d) We assume CH. Then there is a compact e wi
withom () pact space with property (P) but

The examples of Theorem 0.1 belong to Gaifman ([C-N
. -NJ, Th. 6.23),
Argyros ([Ar]; see also [C-NJ, Th. 6.25), Laver-Galvin ([C-N7], Th. 7.13;
and Kunen ([C-N], Th. 7.4), respectively. ’

?.;Z.XDEFINITION ([C-N]). For spaces X, Y we write:
a < Y if there exists a base % for the topol i
- pology of X and a mappin,
qﬁ.f@’ < T*(X)— T*(Y) such that, for every finite subset & C.@pgvitlgl
N{U: Ue #) = @, it follows that N{o(U): Ue F} = .

b) X=Yif X<Yand Y<X.

It islcf:](;?r Ythat = is an equivalence relation in the class of spaces.

- , Y are spaces and X < Y then if Y is ccc (resp. satisfies (%), (K,) o
P) it follows tha'n X is cec (resp. satisfies (%), (K,) or (P)). If « is (a:; (in‘l'i‘z]it;
f:ardmal, then X is ccc (resp. satisfies (), (K,) or (P)) if and only if X x {0, 1)*
is ccc (resp. satisfies (x), (K) or (P)) (see [C-N], Th. 2.17 and‘Cor, 2.2,8).j

0.3. DeFINITION. A compact s is sai
. 'TON. pace K is said to be a Corson-co i
is homeomorphic to a subset of et *

Z(R") = {xeR": supp(x) is countable},

where supp(x) = {yel x, 0! f r i '
. : ; for xeR" (here I rj
endowed with the produc: topology). ( o set and Rs
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The space X (R') is called a Z-product of the real line. Similarly, the X-
product X (X’) is defined for every subset X of R.

Corson-compact spaces and Z-products were studied by Corson [Co],
and more recently by Gulko ([Gu],, [Gul,), Alster [A], Alster—Pol [A-P],
Pol [P],, Michael Rudin [Mi-R], Benyamini-Rudin-Wage [B-R-W1].

It is not difficult to prove that every Corson-compact is angelic.

A (real) Banach space E is called: )

(a) Weakly corr}‘pactly generated— WCG, if E contains a weakly compact
total subset ([Am-L]), and

(b) Weakly countably determined—~WCD (resp. weakly K-analytic) if E,
endowed with the weak topology, is a continuous image of a closed subset of
a space of the form M x K, where K is a compact space and M a separable
metric space (resp. M a Polish space) ([Tal;, [N]).

It follows that every weakly K-analytic Banach space is WCD.

M. Talagrand has proved ([Ta];, Th. 3.2) that every WCG Banach
space is weakly K-analytic.

Let K be a compact space; K is called an Eberlein-compact if K is
homeomorphic to a weakly compact subset of a Banach space ([L]), and a
Gul’ko- (resp. Talagrand-) compact if C(K) is WCD (resp. weakly K-analytic)
([Ar-M-N], [N]).

It is known that K is an Eberlein-compact if and only if C(K) is WCG
(TAm-L]).

Talagrand has constructed a Talagrand-compact space that is not an
Eberlein-compact ([Ta],) and a Gulko-compact that is not a Talagrand-
compact ([Tal,).

In [Ar-N] it is proved that if K is a Gulko-compact then S(K)
= (w(K))*. So every ccc Gulko-compact is metrizable. S. P. Gul'ko has
proved that every Gul’ko-compact is a Corson-compact ([Gu];; see also [N]
and [M]y).

For the theory of WCG, weakly K-analytic and WCD Banach spaces
we refer to [Am-L], [N}, [Ta]; and [M],.

Given a set I, I®(I) is the Banach space of all bounded real-valued
functions defined on I' with the supremum norm; co(I") denotes the (closed
linear) subspace of [*(I") consisting of all f such that for every ¢ > 0 there
exists a finite subset F, of I' with |f(y)] <& for all y¢F,. It is clear that
co(I) = Z(R"). Also, I*(I') denotes the Banach space of all functions f: I’
— R such that ¥,/ ()| < +co, with the obvious norm.

04. DermviTion ([Da]). (8) A norm ||-|| of a Banach space E is strictly
convex if for all x, ye E with |[x|| = ||y]l = 1 we have [|(x+y)/2|| <1 whenever
X # Y.

A Banach space E is strictly convexifiable if there is a strictly convex
norm |||l on E equivalent to the original norm of E.
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(b) A norm ||'|{ of a Banach space E is locally uniformly convex if for
every sequence (x,) < E and every xeE such that ||x,|| =]||x|| =1 for all n

<, if lim|[(x,4+%)/2]| =1 then lim|jx,—x|| = 0.

If K is a compact space then we identify the dual C(K)* of C(K), via
the Riesz Representation Theorem, with the space M(K) of all finite real-

valued regular Borel measures on K (with |{u|| = |yl (K), where |y is the total

variation of w).

If pe M(K) we say that: :

(@) u is of countable type if the Banach space L'(u) of u-integrable
functions is separable.

(b) uis normal if u(A) = 0 for every closed nowhere dense subset 4 of K.

The support of a nonnegative measure ue M (K), denoted by supp(p), is
the set of all xeK for which #(U) > 0 for every open set containing x. The
support of a measure is a closed subset of K. It is clear that a nonnegative
probability measure pe M (K) is strictly positive if and only if supp(u) = K.

We follow, as closely as possible, the notation and terminology of [Ar-
M-N] and [N].

1. Corson-compact spaces and strict convexity. In this section we study

the geometry of Banach spaces of the form C(K) for a Corson-compact space
K.

We begin with the following
1.1. Notation. For J < T, we define r,: RT — R’ by

_fx i yed,
r’(x)“{o if yeI'\J.

Then 7; is a continuous retraction of R” onto R’ (or more precisely, onto R’
x{0}™). If K = R" and J = I, then J is called K-good if r;(K) < K (then
clearly the mapping 7,: K —r;(K) < K is a continuous retraction and r,(K)
is a retract of K). We sometimes denote the set r;(K) by K|J.
If D < Z(R") then it is easy to see that w(D)=d(D) = |Uxep SUpP (x)|-
The following lemma, containing a saturation-type argument, has been
used in various forms by Isbell, Kuratowski, Gulko, Benyamini- ([C-NJ).

1.2. Lemma. Let K be a compact subset of R containing a dense subset D
of points of Z(R") and I an infinite subset of I'. Then there is J with
IcJ<T, I|=]J|, and J K-good.

Proof. We define inductively suitable sets I =Jo=J, = ... = J, = ...

for n < o, with |J,| = [I|, and set J = |J, <, J,. Suppose J, has been defined.
We note that r; (K) has density character at most ||, so let x, « < |1, be

elements of D with {r; (x{"): a <|I|} dense in r 7, (K). Set

Tur1 =J,0 U {supp(x{): o <11}
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The compactness of K now easily implies the lemma.

1.3. LemMA. Let K be a compact subset of R as in Lemma 1.2. Then there
is a family {K.: w <& <|I'} of closed subsets of K, and continuous retrac-
tions rg: K — Ky for o <& <[ such that:

(1) reorg=ror=r, for o<{ <<

Q) wK)<|gl for o <E<ITI.

(3) If & is a limit ordinal, w < & < |I, then

K,= U K,, lmr(x)=r(x) for all xeK.
n<g n<¢

@) K, =K, and r\p is the identity on K.
) {€: @ <E<IT, [P () —rtea (NIl =&} is finite for all feC(K) and
£ >0 (where r¥: C(K)— C(K) is given by r¥(f) =fory.

Proof. The existence of K, 7;, @ < £ < [T, satisfying conditions (1) to
(4) of this lemma is easily proved by transfinite induction, using Lemma 1..2.
Property (5) easily follows from the fact that every sequence 1In
K X (R") has a convergent subsequence (cf. [Am-L] and [Gu],, Lemma 9).

1.4, Tueorem. Let K be a compact subset of R” containing a dense subset
of points of Z(R'). Then there are a set I' and a one-to-one bounded linear
operator T C(K)— co(I') that is also pointwise to pointwise continuous.

Proof. The proof proceeds by induction on the weight of K. A compact
space K of countable weight is metrizable and in this case certainly such an
operator exists (with I' = o).

Let t be an uncountable cardinal, and suppose that the theorem holds
for all cardinals « <t. Let K be a compact space of weight 1, so we may
assume K < R* (of course K nZ (K is dense in K). Let K¢, re, 0 < &<,
be as in Lemma 1.3. By the inductive assumption there is a 1-1 bounde-d
linear operator T;: C(Ky) —>co(I'y) for some set I, with || Tl =1, which is
pointwise to pointwise continuous. We may assume that the sets I, are
pairwise disjoint (and disjoint from w) and we set

F'=oulJilm,: o< <1}
We define T2 C(K)— co(I') by
T(f)() = T, (5 () ()

TU0) =4 Tar (31 (N=rEN)G)  for yeleer, @ <& <.

for n < w,

It follows easily from properties (1) to (5) of Lemma 1.3 that T has the
required properties.


GUEST


204 S. Argyros et al.
Remark. As the referee pointed out to us, Theoreh 1.4 above has also

’pcen proved by S. P. Gulko ([Guls, §9) by a similar method. We have
included the proof for completeness.

1..5. CoroLLary. If K is a compact subset of R' containing a dense subset
of points of (R, then C(K) is strictly convexifiable (Definition 0.4 (a)).

Proof. According to a classical result due to Day [Da], ¢co(I) is strictly
convexifiable, say with a norm |-|. Let T: C(K)—¢o(I') be a 1-1 linear
bounded operator given by Theorem 14. Then |||x|| = [|x][+]|T(x) for
xeC(K) defines an equivalent strictly convex norm on C(K).

1.6. Re.mark. Following a technique of Troyanski [Tr] we may show
thgt there is on C(K), for K as in Theorem 14, an equivalent locally
uniformly convex norm (Definition 0.4(b)).

Theorem 1.4 and Corollary 1.5 immediately imply the following result.

1.7. TueoreM. Let K be a Corson-compact space. Then there are a set I’
and a one-to-one bounded linear operator T: C(K) —co() that is also
pointwise to pointwise continuous, and so C(K) is strictly convexifiable.

There exists another class of compact subsets K of R’ such that
K nZ(R") is dense in K, of considerable importance for the construction of
suitable examples. This is the class of those compact spaces that result from
an adequate family of sets, according to the following

. 1.8. DeriviTioN ([Tal,). If T is a nonempty set, a family A of subsets of
T is called adequate if : '

(@) If Ac A, B < A then BeA.

(b) {t}ed for all teT

(0 If.A = T and every finite subset of A4 belongs to 4, then AeA.
If A4 is an adequate family of subsets of T, we set

K=K, = {3, ded} = {0, 1".

It is immediate that K is a closed subset of {0, 1}™ and hence compact.

We often ]dentlfy A Wlth Xd» and thus consider K as a space of K
0 de f certain

19. THeOREM. If T is an infinite cardinal and A an adequate family of
subsets of t, then there are a set I' and a one-to-one bounded linear operator

T: C _(K 2 — co(D) ‘that is also pointwise to pointwise continuous, and so C(K ,)
is strictly convexifiable.

Proof. It is clear that the family of fini ; i i
y of finite subsets of © belonging to A
a dense subset of K; so Theorem 1.4 implies the claim. s *

Remark. A more direct proof of Theorem 1.9 is as follows. For every
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A <1, the family {4 "B: Be A} is an adequate family of subsets of 4; and
moreover, this family is a subset of 4. So the mapping r,: K —r4(K) = K
defined by r,(xg) = x4~z for BeA is a continuous retraction.

For every & with o < & <1 we set 4, = [0, &), K, =r,(K), where r;: K
— K is defined by r¢(xs) = Yagrs for Be A. It is easily proved that the family
of retractions {r;: @ <& <t} has properties (1) to (5) of Lemma 13.

Now by using these properties we can proceed as in the proof of
Theorem 1.4. :

1.10. Remark. It is known that if a compact space K has a strictly
positive regular probability measure, then there exists a bounded linear one-
to-one operator T: C(K) — co(I) (see [C-NJ, p. 179).

By using Theorem 1.9, we can answer in the negative the following
question in [C-N] (p. 179): if K is a compact ccc space and C(K) is strictly
convexifiable, is then K necessarily the support of a strictly positive measure?

We prove that the known example of Gaifman (see Theorem 0.1(a)) of a
compact ccc space K without a strictly positive measure provides a negative
answer to this question.

1.11. TuroreM. There exists a compact ccc space K (moreover, with the
stronger property () without a strictly positive measure such that C(K) is
strictly convexifiable.

Proof. We briefly describe the structure of this example. Let {T,: n
< o} be a one-to-one enumeration of the set of nonempty open intervals of
real numbers with rational ends. For every n<w with 2<n<w we
consider a family {T,,: 1 <k <n?} of subintervals of 7, with rational ends
such that T, N T, =@ for 1<k <k’ <n? and we set

A={AcR: |k 1<k<n®, AnT, =0} <n, 2<n <o}

It is clear that A is an adequate family of (nowhere dense) subsets of R. The
compact space K = K, is Gaifman’s example.
The proof follows immediately from Theorem 1.9.

1.12. Remark. It follows from Theorem 1.11 that the existence of a one-
to-one bounded linear operator T: C(K)— co(I') does not imply, in general,
that K admits a strictly positive measure. With the next result we show that
for a large class of compact spaces the above implication holds.

1.13. TueorEM. Let K be an extremally disconnected compact space. Then
there exists a linear bounded one-to-one operator T: C(K) — co(I') if and only
if K admits a strictly positive measure.

Proof. The “if* part is well known. So we prove the “only if” part.
Assume that such an operator T: C(K)—co(I') exists. We denote by
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T#: I*(I') — M(K) the conjugate operator of T, which is w*-w* continuous
and T*(I*(I) is a w*-dense subset of M (K). We denote by S the closed unit
ball of I*(I') which is w*-sequentially compact. Hence T*(S) has a similar
property. On the other hand, C(K) is a Grothendieck space (i.e. the w*- and
w-sequential convergences in M (K) coincide).

Combining these with the w*-sequential compactness of T*(S) we see
that every sequence in T*(S) contains a weakly convergent subsequence,
which implies that T*(S) is a weakly compact subset of M (K). The desired
result follows from a result of Rosenthal [R].

We still do not know the answer to the following

1.14. QuestioN. Does K admit a strictly positive measure whenever
C(K) is strictly convexifiable and K is extremally disconnected?

Remark. As the referee pointed out to us, the following result, which is
somewhat related to Theorem 1.13, has been obtained by A. V. Arkhangel-
skii and V. V. Tkachuk ([Ark-T], Th. 10.8): For an extremally disconnected
compact space K, C(K) has a continuous linear injection into ¢q(I') (where
both spaces are considered with the pointwise topology) if and only if K is
separable.

2. Chain conditions in Corson-compact spaces. The content of this section
is the reproduction in the class of Corson-compact spaces, assuming CH, of
some of the known examples which separate several chain conditions, such
as the examples of Argyros, Gaifman, Laver-Galvin, etc. (see Theorem 0.1).

2.1. DerniTioN. Let Q be a topological space, « an infinite cardinal, and

5}’;{1@: ¢ <aj a subset of the family *(Q) of nonempty open subsets
of Q.

« VI\(Ie set A = {4 ca: {V: £ A4} has the finite intersection property} and
=K,
Then we have the following

2.2. ProrosiTioN. K is a compact space and K < Q x {0, 1}* (cf. Defini-
tion 0.2(a)).

Proof. It is clear that A4 is an adequate family of subsets of &, so K is a
compact subset of {0, 1}*

Now we observe that the sets of the form
— (a1
Va={ed}e, x{ea)e, x ... x {eehy x[T10, 1M AK,

where 4 =1{&;,..., &} ca and & =0 or 1, form a base # of open-and-
closed sets for the topology of K. We set B = {&;: ¢ = 1}, I'={&: & =0}
so that A =BUT, BnI'= (@, and l o

Vi={1}px {0} x]T{0, 1} nK.
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We define a mapping &: # < 7*(K)— I*(Q2 x {0, 1}%) by
(V) = ém Ve x[{1}p x {0} rxJT {0, 1}*]  if B# @,
eB

and in case B = @ we replace [ V; with the space Q.
" It is easily proved that & satisfies the properties of Definition 0.2(a). So
the proof of the proposition is complete.

2.3. THEOREM (“Pathological” Corson-compact spaces). We assume CH.
Then:

(a) There is a Corson-compact space K with property () and property
(K.,) for every n =2, but without any strictly positive measure.

(b) For every n > 2 there is a Corson-compact space K with property (%)
and property (K,) but without (K, ).

 (0) There is a Corson-compact space K with property (P) which does not

have property (K). :

(d) There is a Corson-compact space K with ccc such that K x K does not
have "ccc.

Proof. (a) We prove this claim with a variant of the example of
Gaifman.

We observe that if instead of R we have a second category subset L of
R, then the same construction gives us a compact space K, (resulting from
an adequate family A, of subsets of L) with properties of Gaifman’s example.
It is clear that if Ae A, then A4 is a nowhere dense subset of R.

Now choose a Lusin set L in R (i.e. an uncountable subset L of R such
that every uncountable subset of L is of the second category in R). Since we
assume CH, a Lusin set in R exists (cf. [C-NJ).

If Ac Ay, then A is nowhere dense in R, and so (since L is a Lusin set) 4
is countable. It follows immediately that K = K, is a Corson-compact space.

(b) In [Ar] a compact space @ has been constructed for every n = 2 with
property (x) and without a strictly positive measure, and such that, assuming
CH, it has property (K,) but does not have (K,.,) (see Theorem 0.1(b)).

Let & ={V;: ¢< ®*} be a family of nonempty open subsets of @ that
witnesses the failure of property (K,.;)- Set

A={Aco™: (Vi £eA) has the finite intersection property}
(see Definition 2.1). It is clear that every AeA is at most countable so K
= K, is a Corson-compact.

From Proposition 2.2 (and preliminaries) K has properties (x) and (K,).
For ¢ <™ we set

% = (<[]0, o7 @K,

and we observe that the family {¥}: & <w*} = 77*(K) fails property (K, 1)
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(c) Let Q be the compact space (under CH) of Kunen (which has
property (P) but does not have (K); see Theorem 0.1(d)).

We consider a family & = {¥V;: ¢ <™} of nonempty open subsets of Q
that witnesses the failure of property (K). As in (b) we set A
= {4 cw™: {V;: e A} has the finite intersection property}, K = K, and we
observe that K is a Corson-compact space.

From Proposition 2.2 (and preliminaries) K has property (P).

It follows that the family {Vf: & <w™*} where V{ is as in (b) fails
property (K).

(d) If we assume CH, there is a compact ccc space € such that Q xQ is
not ccc (see Theorem 0.1(c)); this is the space of Laver-Galvin. Pick a family
Ve, Vasr: & <™, & limit ordinal} of nonempty open subsets of £ such that
the family {¥; x Vzyq: € <™, & limit} is pairwise disjoint and let 4 be as in
(b) and (c) and K = K. It is easy to see that K is a Corson-compact. It
follows from Proposition 2.2 (and preliminaries) that K is ccc.

We set ¥ = {1}, x {0, 1}“’+“§’(\K, ¢ <, and it is not difficult to see
that the family {V} xVii;: & <™, & limit} is an uncountable pairwise
disjoint family of nonempty open subsets of K x K.

24. Remarks. 1) Every compact space in Theorem 2.3 is (under CH) a
Corson-compact ccc space without a strictly positive measure, since if a
compact space K has a strictly positive measure then K satisfies (K,) for all
n <w and hence (P) (see preliminaries). We also note that as follows from
Theorem 1.7 (since K is a Corson-compact) or from Theorem 1.9 (since K
results from an adequate family of sets) C(K) is strictly convexifiable, so
every such K satisfies Theorem 1.11.

2) Since every Gul'ko-compact ccc space is metrizable (see preliminaries),
it follows that all compact spaces in Theorem 2.3 are (under CH) examples of
Corson-compact spaces which are not Gul'ko-compact.

3) Dashiell-Lindenstrauss obtain in [D-L] some significant examples of
Banach spaces of the form C(K) (where K is a compact space) which are
strictly convexifiable, though there is no bounded linear one-to-one operator
T C(K)— co(I) for any set I' (see also [M]; for some other examples of
this type). In [D-L] the problem is also posed of the characterization of
those compact spaces K for which C(K) is strictly convexifiable.

It follows from our results (in Theorem 2.3) that the answer (o this is

difficult and not related to refined chain conditions which K satisfies, at least
for ccc spaces.

2.5. CoroLLARY. We assume CH. Then:

(@) There is a topological space with a point countable base which has '

property (x) and property (K,) for every n =2, but Sails (xx).
(b) For every n= 2 there is a topological space with a point countable base

with property () and property (K,), but without (K, ,).
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(c) There is a topological space with a point countable base with property
(P), bur without (K).
(d) There is a topological space X with a point countable base which is ccc
while X xX is not ccc. i

Proof. We recall that a space X has a point countable base # if every
point x of X belongs to an at most countable number of members of #; it is
clear that every such space is first countable.

Shapirovskii has proved that every Corson-compact space has a dense
subset with a point countable base [S]. It follows that, since all chain
conditions in Theorem 2.3 pass to dense subsets, there are, assuming CH,
topological spaces with a point countable base which satisfy claims (a), (b),
(c) and (d).

2.6. Remark. It was known that some of the claims of Corollary 2.5
hold for first countable spaces.

So Eric van Douwen has proved that assuming CH, there is a first
countable cce space X such that X xX is not ccc ([Ga]).

A problem given by Eric van Douwen and Negrepontis is the following:
are there compact first countable spaces which satisfy some of the claims of
Corollary 2.5, under CH? 4

We notice that we can give a direct proof of Corollary 2.5 WlthOl.lt
recourse to Shapirovskii’s result. That means: if @ is any of the spaces in
Theorem 2.3 and X = {y,€Q: if 4 = B and y5eQ then A =B} = Q, then_ it
is not difficult to prove that the nonempty subspace X of .Q has a point
countable base and in any case it has the required propertwg.

2.7. DeFmITION (cf. [C-NJ). Let X be a space. An open subset U o'f X is
said to be regular open if it is equal to the interior of its closure, ie. U
= intycly U.

It is known that the set of regular open sets of a space X is a complete
Boolean aigebra with the following operations: U A V=Un vV, UvV
=intycly (U U V), U’ =inty(X\U).

The Stone space G(X) of this algebra is called the Gleason space of X.
Since the algebra of regular open sets is complete, G(X) is a (compact)
extremally disconnected space (cf. [C-NJ).

2.8. TueoreM ([C-N1). For every space X, X = G(X) (see Definition 0.2).
In other words, a space X satisfies a chain condition if and only if the space
G (X) satisfies the same chain condition. Therefore the space G().(). can be
considered the compact equivalent of X relative to the chain condition.

Let © denote the compact ccc space which was constructed in [Ar] (see
Theorem 0.1(b), case n=2). The space 2 not only is a space without a
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strictly positive measure, but moreover C(Q) is not strictly convexifiable and
it is the unique example that we know with these properties.

We shall construct, assuming CH, a Corson-compact ccc space K such
that the Gleason space of K is Q. So we can prove that, at least under CH,
the (geometrical) condition of strict convexity on Banach spaces of the form
C(K) is not—at least for ccc compact spaces K—a (combinatorial) chain
condition.

We shall need the following

2.9. TugoreM (cf. [C-N])(a) For every space X, G(X) = G(fX) where fX
is the Stone—Cech compactification of X.

(b) Let K be a compact space and Q a compact extremally disconnected
space. Then Q = G(K) if and only if there is an irreducible mapping f: Q - K.

2.10. DeFiniTION. (a) A partially ordered set (T, <) is a chain if for
x, ye T we have either x <y or y € x.

(b) A partially ordered set (7, <) is a tree if for every xe T the set
{yeT: y < x} is well ordered with the induced order. A subset B of a tree
(T, <) is called a branch of the tree if it is a chain and is not contained in
any other chain of (7, <).

2.11. TueoreM. We assume CH. Then there exists a Corson-compact ccc
space K (so C(K) is strictly convexifiable) such that C(G(K)) is not strictly
convexifiable (where G(K) is the Gleason space of K).

For the proof of this theorem, we need a description of  (2.12) and two
lemmas (2.13, 2.14).

212. The space Q. We define a tree (T, <) with T = (J, <, T, = [0]%.

Let {S}: n <o, 1 <j< 3" be a family such that $)e[w]® and S/ N SJ
= (2)+if (n, ) # (', 7). We set T,=){[Si]* 1<j<3"} for n<w (s0 |T
=31, )

Let T, = {s;: 1 <j<3"*'} be an enumeration of T, and T=J, <, Ty

The order < in T is defined in such a way that the immediate successor
of every element of T, is in T,,,, as follows: for se T, and te T,,,, s <t if
and only if there exists j with 1 <;j < 3"*" such that s = s; and te[S},,]%

For s = (k, he T we set .

V= {O}k X {1}1 XH {0, l}w\‘qU {0}1 X {1}k Xn {0, 1}“’\” < {0’ l}m-

Let Z be the set of branches of the tree T;so if Z¢ £ then £ = {5, <...
<s,<...} with 5,& T, for n <w.

For every ZeX, we set Vy=\,.; V..

We notice that:

(@ If Scwo with |S|=3,

and there exists n<w with [S]?

e ©
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= {51, 52, 53} © T, then the family {V¥, , ¥, ¥,} has empty intersection,
while any two sets of this family have nonempty intersection.

(b) If Z;, Z,e X are two branches of the tree T, then V; N Vy, # Q.

Now we define the space (Y, 7). We set Y= {0, 1}*. The topology J is
defined via a subbase which contains:

(i) the open-and-closed subsets of {0, 1}, in the usual product topolo-
gy, and

(i1) the sets of the form Vi, for Ze Z.

It is clear that the base & of the topology 7 which is defined by this
subbase consists of sets of the form U N (N VEJ.), where U is open and
closed in the usual topology of {0, 1}* and {Z;: 1 <j < m} = X. We observe
that the elements of # are closed in the usual topology of {0, 1}®, therefore
also in the topology 7. So (Y, Z) has a base (namely the family %) of open-
and-closed sets and hence (Y, ) is a Hausdorff completely regular space.

We note that if Ve# and V=Un(NL, sz) then there is n < @ such
that V is separated at level n. Namely:

© @0 @ nh)nE,nT)= O for 1<jy<j<m

(i) If F denotes the (finite) set of coordinates on which U depends, then
FrA(m =0, where A(n) = {seT: s€lpcp<o Tp}-

It is easy to verify (c).

Let Q be the Gleason space of (Y, 7). It is proved in [Ar] that Q has
property (%) (and therefore it is ccc), that £ does not have a strictly positive
measure, and more precisely, if we assume CH, Q does not have (Kj).

2.13. LemMa. The Banach space C(Q) is not strictly convexifiable.

Proof. Let Y denote the Stone-Cech compactification of Y; so (by the
fundamental property of the Stone-Cech compactification) the Banach spaces
C(Y) and C(BY) are isometrically isomorphic.

By Theorem 29, G(Y)= G(BY) (so € =G(BY)) and there is a conti-
nuous irreducible surjective mapping f: G(8Y)— BY. Thus it is sufficient to
prove that C(BY) is not strictly convexifiable.

Suppose, by contradiction, that C(Y) admits an equivalent strictly
convex norm, say |||-||l; we denote by ||-|| the usual supremum norm of
C(BY).

v We set B, = B = the closed unit ball of C(8Y), a, = sup {|l|flil: feBi},
and we choose f; €B; with [||filll >3a;.

Let pu;e M(BY) be such that |l =1 and 4, (f)) =|llfill. Since the
norms are equivalent there exists § > 0 such that ||| < 6 for all pue M(BY)
with [[julll < 1.

We choose k; < such that 3" < a,/(49), so there exists s, € T, such
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that |u,| (V, ) <#%a,. This inequality follows from the fact that the caliber of
the family {V: seT,} is 2 while [%,| =3""" and [l < 6.

We set U, = ﬂs$s1 Vi, By = {f€By: f|ﬁY\(71 =f1|ﬁY\[71}', and we
notice that ’

| ‘[_ fxdﬂll =z | fldﬂl‘l_ f1d,u1,>%al—%a1 =%ay,
BYAT, By i,

so for feB,
WA= fdm| =] | fidd~| |7 du| > ar.
BY AY\D Uy

Let a; =sup{||lfll: fe Bs}, s0 a; > ay; also choose f,e B, with |||l
>%a; and pye M(BY) with Jllpalll = 1 and py (f3) = || £2lll. We choose k, <
such that (%—)k2 < 1a,. Since s, T, has 3*1 immediate successors in Ty kg
and the caliber of the corresponding family is 2k2, an immediate successor $,
of sy (in T, +x,) exists such that |u,|(¥,) <}a,.

We set U, = (gs, Vi since 5, < sy, it follows that U, < U, . It is clear
from the above that |u,(f2)| =>%a,—%ta,=2a,. Also if we set B,

= {feBy: fIBY\U, =f,] BY\U,}, then ||If]l| > }a, for every feB,.
So proceeding inductively, we construct sequences

B;oB;>...>B,>
fl:f2> "'afm v

S15 825 eey Spy veny

ey

for n <w, such that f,eB,,

na,
— < X == : )
"3 Al < a, = sup {[lIflll: feB,},

and if U, = (<, V> then feB,,; if and only if feB, and f|fY\U,
=f,,|ﬁY\U,,. It is clear that if fe ), <, B, then |||f|l| = infa,.

Since B, is convex, 50 is ()<, B,, and if f, ge (), <, B, With f s g, then
LA = gl = 1li(f+g)/2lll, a contradiction. So it suffices to prove that there
are f, ge (\p<o B, With f #g.

Indeed, the sequence s; <... <s, <... defines in a unique way a branch
Z of the tree T for which, by our construction, Vy = (), <, U, and V; is open
and closed.

We define continuous bounded functions f, g: ¥ —[~1, 1] in the follow-
ing way:
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fu(x) for xeU,-;\U,,
xyz(x) for xeVs,

fi (@) for xe Y\U,,
9(x) ={

fi(x) for xeY\U,,
f)= {

Ju(x) for xeU,-1\U,,
—qvy(x) for xeVs.

The functions f, g can clearly be extended to some functions i GeC(BY),
also belonging to the set (\,<, B,-
The proof of the lemma is now complete.

2.14, Lemma. We assume CH. Then Q has a pseudobase {V;: £ <w*} of‘
open-and-closed sets that witnesses the failure of property caliber o™ (namely,
for every A < @™ with |A] =% we have \geu ¥z = @).

Proof. We shall construct a pseudobase of open-and-closed sets which
satisfies the lemma for the space Y; since Q = G(Y), it follows that Q has
such a pseudobase.

Ciam. If {x,: n<w} <Y and V is a nonempty basic open subset of ¥,
then there exists SeX with VyaV# @ and {x,: n<w}nVy=@.

Indeed, V is of the form V = U n((V., Vy), where U is an open-and-
closed subset in the usual topology of {0,1}®, and {Z;: 1<j<mjc X

Consider n < o such that V is separated at level n. According to 2.12(c),
for some fixed je {1, ..., m} let Z; be the branch {s{ <... <sl<..}of T

Let g be the index of the element sje T, NX; in the enumeration of T,
(recall that |T;'=3"*%). Then according to 2.12a) there exists s
=s,,€[88+1]% with s, <s; and x; ¢V;,.

So by induction (and the observation 2.12(a)) we can construct a
sequence {s; <...<s <...} = Twith s, €Ts and such that x, ¢V, k <o.
Ttis clear that £ = {s| < ... <sl <s, <... <s§ <...}is a branch of the tree T.

Set Vy= (s, it is easily proved by the above remarks that
VinVs @ and {x,: n <ew}nVy=0.
The proof of the claim is complete.

Let now {x;: ¢ <w*} and {U,: £ <w*} be one-to-one well-orderings
of {0,1}* and of the base # of Y, respectively. We can choose, using the
claim, for every & <w* a nonempty set V;'in # such that:

() Vic{x: E<l<o™}

(ii) ¥ = U, _ _

It follows immediately that the family {Vi: & <w*} is the desired
pseudobase for Y. :

2 — Studia Mathematica 89.3
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We are now ready to complete the

Proof of Theorem 211. Let 2=G(Y) and {V;: ¢ <w™} be a
pseudobase of Q as in Lemma 2.14.

Set A={Ac o NeeaV;# @} and L=K,; it is clear from the pro-
perties of {V;: ¢ <w™} that L is a Corson-compact space.

We define a mapping T: 2 — L as follows:

1, xeV,

T(x)(f)={0 el

It is easily seen that T is continuous, and so the space K = T() = L is a
Corson-compact ccc space, as a continuous image of a ccc space.

The mapping T: Q — K is irreducible. Indeed, if U is a nonempty open
subset of €, then since the family {V;: ¢ <®™} is a pseudobase for , there
exists £ <w™ such that ¥; = U, hence T(V;) = T(U). It follows easily that
T(U) has nonempty interior, so T is irreducible.

Now, Q is compact and extremally disconnected (since Q = G (Y)) and
T: Q—K is a continuous, irreducible and onto mapping, so by Theorem
295(b), Q = G(K). Thus Lemma 2.13 completes the proof of the theorem.

3. Corson-compact spaces and property (M). The principal results of this
section are: a characterization of Corson-compact spaces with property (M)
(see Definition 3.1(b)) given in Theorem 3.5, and an example, assuming CH,
of a Corson-compact space without (M) (Theorem 3.12).

3.1. DerFiNimiON. (a) A Banach space E has property (C) if every family of
closed convex subsets of E with countable intersection property (i.e. every
countable subfamily of the given family has nonempty intersection) has
nonempty intersection.

(b) A compact space K has property (M) if every positive regular Borel
measure on K has separable support.

3.2. Remarks. 1) Property (C), which is clearly a “convex analogue” of
the property for a Banach space to be Lindelsf in the weak topology, is
introduced by Corson in [Co],. In that paper Corson asked whether from
property (C) for a Banach space E it follows that E is Lindeldf in its weak
topology (clearly the converse is true). The answer is no, as Pol proved in
[P1,; moreover, Pol proved the following statements:

(a) If the closed unit ball of the dual of a Banach space E is an angelic
space in the weak* topology, then E has property (C).

(b) If K is a compact space such that C(K) has property (C) then K
has (M).

2) G. Godefroy proves in [Go] that every Rosenthal-compact (ie. a
pointwise compact subset of the space of Baire-1 real-valued functions on a
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Polish space) has property (M). Since every WCD Banach space is weakly
Lindelof ([Ta],), it follows by 1) that every Gul'’ko-compact has property
(M). The same result follows easily from the fact that every ccc Gulko-
compact space is metrizable (see preliminaries).

3) It is consistent with ZFC to assume that every Corson-compact has
property (M) (indeed, if we assume the negation of the continuum hypothesis
and Martin’s Axiom then every Corson-compact ccc space is metrizable (cf.
[Ar-M-N] and [C-N]). Since the support of a positive measure is ccc, the
conclusion follows.

3.3. LEMMA. Let I' be a set and K a pointwise compact convex subset of
Z(R"). Then K has property (M).

Proof. We assume without restriction of generality that K <
Z([~-1,119.

For every yel', m,: K —~[—1, 1] denotes the projection on the coordi-
nate y, ie. m,(x) = x(y) for xeK, so n,e C(K) for all yer.

Set L= {r,: yel},

L'=L...L{n times) = {f,...f,: fieL,i=1,...,n} =« C(K)

for n <w, W= {1} U(Uy<w L™, and let P(K) be the weak* compact convex
set of regular Borel probability measures on K.

We notice that L separates the points of K so W separates the points of
K. Therefore, since the linear hull of W in C(K) is an algebra that contains
the constant functions, it follows from the Stone-Weierstrass Theorem that
W is a total subset of C(K).

We define a2 mapping @: P(K) —[—1, 117 by &(y) = (k(f))rew- Since
4 is a probability measure and |[f]] < 1 for fe W, & is well defined, and since
W is a total subset of C(K), @ is 1-1. Moreover, @ is a continuous affine
mapping (i.e. @ preserves convex combinations) if P(K) has the weak* and
[—1, 177 the product topology. It follows that P(K) is affinely homeomor-
phic to a compact convex subset of [—1, 1]%.

The proof of the lemma will be complete if we prove that
@ (P(K)) = Z ([0, 1]%), since clearly in this case the support of every measure
u would be metrizable (and so separable).

Indeed, since K is a pointwise compact convex subset of X([—1, 117, &
an affine continuous 1-1 mapping and every measure pe P(K) is a weak*®
limit of convex combinations of Dirac measures, it follows easily that the
space 7 (®(P(K)) =P (P(K))|I R is identified with K, namely, if
ue P(K) then there exists xeK such that u(m,) = x(y) for all yerI.

Let now pe P(K). Suppose that there exists an uncountable subset 4 of
W with u(f)# O for all fe A. Then clearly there is B = L uncountable with
p(m,) # 0 for m,eB, in contradiction to the preceding remarks,
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34. Derintmion. Given a set I', I, (I') denotes the set of those fel®(I)
for which there exists an at most countable subset A4 of I" such that f(x) =0
for all xeI'\A (so 1%, (I)=1°(I) NZ(RD). It is clear that I%.(I) is a
Banach space, since it is a closed linear subspace of 1®(I).

Remark. If I' is uncountable then the Banach space 1%, (I) is not
strictly convexifiable, as M. Day proved in [Da].

Now we state the characterization of Corson-compact spaces with (M).
First, we notice that property (M) for a Corson-compact K is equivalent to
the property that every measure on K has metrizable support (since every
separable Corson-compact is metrizable, according to a remark in 1.1).

3.5. TueoreM. For a Corson-compact K the following are equivalent:

(a) K has property (M).

(b) The Banach space C(K) is weakly Lindeldf.

(c) There exist a set I and a bounded linear one-to-one operator T: M (K)
— 1%, (I') which is also weak* to pointwise continuous.

(d) The closed unit ball By, of the dual space M (K) of C(K) is Corson-
compact in the weak* topology.

(€) By is angelic in the weak* topology.

(f) C(K) has property (C).

Proof. Suppose that K < £([—1, 1]7) and consider the sets L, W as in
Lemma 3.3. :

(a) = (c). Consider the operator T: M(K)— I®(W) given by T(u)
= (u(f))rew- Then T is clearly linear, weak* to pointwise continuous and
because W is a total subset of C(K) it is also one-to-one. Since the support
of every u is metrizable, it follows that the range of T is contained in
%, (W). (Cf. also the proof of Lemma 3.3)

We verify that T is bounded: indeed, since W is contained in the closed
unit ball B of C(K) we have for every peM(K)

1T = sup|u(f) < sup|p(f) = |-
SeW feB

) (c). = (d). It is clear that (B, w*) is (affinely) homeomorphic to the
pointwise compact (and convex) subset T(Buy) of 124 (I), and so it is a
Corson-compact.

.(d) = (e). Every Corson-compact is angelic as noted in the prelimi-
naries. :

(&) = (D and (f) = (d) follow by Remark 3.2.

So far we have established the equivalence of claims (), (), (d), (e
and (f).

(d) = (b). Consider the natural isometric embedding & of C(K) in
C(Bu) given by @(u)(f) = pu(f). Then clearly &: C(K)— &(C(K)) is also a
homeomorphism if C(K) is endowed with the weak topology and & (C(K))
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with the pointwise topology; moreover, ®(C(K)) is a pointwise closed linear
subspace of C(Byg,))-

Now the conclusion follows immediately from the fact that for every
Corson-compact K, C(K) is pointwise Lindelof, as proved by Alster—Pol
[A-P] and Gulko [Gul];.

(b) = (d) follows from the implication (b) = (f) (cf. Remark 3.2) and
(f) = (d) shown already.

The proof of the theorem is now complete.

The following corollary is essentially a “Krein-type” theorem for the
locally convex space X (R).

3.6. CorOLLARY. Let K be a compact subset of X (R"). Then the following
are equivalent: : .

(a) K has property (M).

(b) The (pointwise) closure of the convex hull of K in X(R") is compact.

Proof. (b) = (a) follows immediately from Lemma 3.3.

(a) = (b). It is easy to see that the closure of the convex hull of K is the
subset ®(P(K))|I" of Z([—1,1]") where &: P(K) »Z([—1,1]%) is the
mapping given in the proof of Lemma 3.3. Since @(P(K)) is pointwise
compact and convex and the projection mapping - R¥ — R is continuous
and affine, we have the proof of the claim.

It is known that if K is a Gulko-compact space, then the density
character of C(K) is equal to the weak* density character of the dual space
M(K) (cf. [Ta],, Th. 6.2, Prop. 6.3). The same result holds for the much
wider class of Corson-compact spaces with property (M).

3.7. CoroLLARY. Let K be a Corson-compact space with property (M).
Then the density character of the Banach space C(K) is equal to the weak*
density character of the space of measures M(K) on K.

Proof. Suppose that K = Z(R") and I = {supp(x): xe K}. Then
according to standard results and remarks in 1.1 we have

m [T = d(K) = w(K) = dim C(K) = w By W*)
2 d(Byx), W) = d(M(K), w*).

Let T: M(K)— 1%, (I') be the operator given in Theorem 3.5(c). Then
since T is weak* to. pointwise continuous, it follows that

@) I = d(T(M(K))) < d(M(K), w*)

(see also the proof of the implication (a) = (c) of Theorem 3.5). From (1)


GUEST


218 S. Argyros et al.

and (2) we have
I =dimC(K) = d(M(K), w*),
which is the desired conclusion.

3.8. ProrosiTiON. Let K be a Corson-compact space with property (M)
Then:

(a) Every Hausdorff continuous image of K is Corson-compact with (M).

(b) If 2 is a compact space and C(Q) is isomorphic to a closed linear
subspace of C(K), then Q is Corson-compact with (M).

() If {K,: n <o} is a sequence of Corson-compact spaces with (M), then
the space K = [],<, K, is Corson-compact with (M).

Proof. Let Q2 be a compact Hausdorff space.

(@ If p: K—Q is a continuous onto mapping, then (see [Gu], and
[Mi-R]) @ is a Corson-compact. Let pe P(2); by the Hahn-Banach Theo-
rem there exists ve P(K) such that u = ¢(v) (u is the image of v under ¢).
Since v has separable support and the support of u is the image of the
support of v under ¢, it follows immediately that y has separable support.

(b) By Theorem 3.5, the closed unit ball of M(K) is Corson-compact
(with property (M)). If T: C(Q) — C(K) is an isomorphic embedding, then
the dual operator T*: M(K) — M(Q) is a weak* to weak* onto mapping, so
Q has property (M) (use claim (a)).

(¢) We notice that K is Corson-compact. Let ue P(K), let m,: Tlr<o K
— K, be the projection onto the nth coordinate space, .and let g,
=m,(w)e P(K) be the image of u under =, for n < w.

Since the support of p is contained in the cartesian product of the

supports of u,, n <o, and the support of every p, is metrizable, the proof of
the claim follows.

3.9. Remark. From claim (b) of Proposition 3.8 it follows that if K, Q
are compact spaces such that C(K) and C(Q) are isomorphic Banach spaces,
and K is a Corson-compact space with property (M), then Q is a Corson-
compact with (M).

We do not know the answer to the following

ProsLem. If K is a Corson-compact space, 2 a compact space, and
C(K), C(Q) isomorphic Banach spaces, does it follow that € is Corson-
compact? (The answer is yes if we assume the negation of the continuum
hypothesis and Martin’s Axiom, because then every Corson-compact space
has property (M), according to Remark 3.2, 3))

If we assume CH, there exist Corson-compact spaces without property
(M); such an t?xample is the Kunen-Haydon-Talagrand space ([N], Th. 5.9).
We will give, also assuming CH, a simpler example of this type, by using
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the known example of ErdSs of a compact nonseparable space with a strictly
positive measure and (assuming CH) without caliber w* (see [C-NJ, Ths.
6.28, 6.21 and C6).

We describe the space of Erdds.

3.10. The space of Erdids. Let I = [0, 171 < R and let A be the Lebesgue
measure on I. Let Q denote the Stone space of the quotient algebra M,/N;,,
where M, is the algebra of A-measurable sets and N, the ideal of A-null sets.
Since M,/N, is complete, € is a compact extremally disconnected space (cf.
[C-N]). @ is the space of Erdés. '

On  there exists a unique strictly positive (regular Borel) normal measure
7 determined by the condition that (V)= A(U) for ¥ any open-and-
closed subset in 2, and U a measurable subset of I such that U+ N, =V.
Q, as Erdss proved assuming CH, does not have caliber w*. We shall prove
a stronger result.

3.11, LeMMa. We assume CH. Then the Erdds space Q has a pseudobase
{Vi: & <™} that witnesses the failure of property caliber ™.

Proof. Let {xs: ¢ <w™} and {K;: { <©™} be one-to-one well-order-
ings of I and of the class of compact subsets of I with strictly positive
Lebesgue measure respectively.

For every ¢ <w* we choose a compact subset U, of I such that:

(@ U; = {xg: E < <o}

() U: cK,.

(© AUy >0.

It is clear, by the regularity of the Lebesgue measure and since A({x;: £ <{
<w*}) =1 for every £ <w®, that such a choice is possible.

The family {¥;: £ <w*} of open-and-closed subsets of @, where V;
=U,+N, (= the A-equivalence class of Up), is the desired pseudobase.

Indeed, let V be an open-and-closed subset of Q; then V = U+N, for
some measurable subset U of I. Since 1(V) = A(U) > 0, there exists £, <™
with K, < U, therefore Uy < U. It follows that V) = Ug+N; < U+N,
=V

Now if ey ¥ # @ for some uncountable subset A of w*, then the
family {U,: e} has the finite intersection property; but this family con-
sists of compact subsets of I, s0 (\zeq Ug # @, which is impossible according
to (a).

3.12. TuporeM. We assume CH. Then there is a Corson-compact ccc
nonmetrizable space L with the following properties:

(a) L is the support of a strictly positive (reqular Borel) normal measure of
countable type.

(b) The Gleason space G(L) of L is the space Q.
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Proof. Let 2 be the space of Erdss (defined in 3,10) and let {Ve: ¢
<@’} be a pseudobase of Q as in Lemma 3.11.

Set A= {4 cw™: Nea Ve # O} It is easily seen, by the properties of
the family {V;: & < @™}, that 4 is an adequate family of countable subsets of

w*, so K =K, is a Corson-compact space.

We define a continuous mapping T: Q — K by

1, xeV,
T(9() = {0’ iy
and set L=T(Q) =K.

We shall prove that L is the desired Corson-compact space.

Let U be a nonempty open-and-closed subset of Q. Then there exists ¢
<" such that ¥, < U, so T(¥;) < T(U); hence from the definition of T it
follows that T'(U) has nonempty interior; hence T is an irreducible mapping.
Since £ is extremally disconnected, it follows that the Gleason space G (L) of
L is the space Q (see Theorem 2.9(b)); so L is a nonmetrizable ccc space.

Now set u = T(%), the image of the measure 1 under T. It follows that g
is a strictly positive (regular Borel) probability measure of countable type on
L, since 2 on Q has the same properties.

Moreover, u is a normal measure. Indeed, if 4 is a closed nowhere dense
subset of L, then since T is irreducible, T7*(4) is a closed nowhere dense
subset of Q; therefore p(4) = 1(T~*(4)) = 0, because 1 on £ is normal; so u
is a normal measure on L.

The following theorem also indicates that the space C(K) for K Corson-
compact could have rich structure.

3.13. Tueorem. Let K be a Corson-compact space which is defined by an
adeguate family of sets. Then the following are equivalent:

(@) I*(w*) is isomorphically embedded into C(K).

(b) K does not have property (M).

Proof. (@) = (b). The usual base of I' (w™*) is a weakly closed, discrete
and uncountable subset of C(K), so C(K) is not weakly Lindelsf, hence
Theorem 3.5 implies the claim.

(b) = (a). Let 4 be the adequate family that defines the set K as a’

closed subset of {0, 1}* for-some cardinal . Consider a positive regular Borel
probability measure y on K without metrizable support. Hence there exists
an uncountable subset I of a such that, for all £/, u(V;) > 9 for some 3 > 0,
where V; =77 '({1})) nK and =z {0, 1}* > {0, 1} is the projection on the
coordinate ¢.

Cramv. For any finite nonempty disjoint subsets I, I, of 1 there exists a
positive regular Borel probability measure u, on K so that

mWVp 28 forall L, (W) =0 for all Lel,.
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Consider the projection ry,: {0, 1}*— {0, 1}'1. Then the set L= rr, (K)
x{0}*V1 is a retract of K; hence on L we have the image rr, () of the

measure 4. It is easy to see that this is the desired measure y,.

We now show that the family {x,,:' ¢el} is equivalent to the usual base

of I*(I). Indeed, we consider real numbers Aeys oos Ag, and we set I,
= {&: A, >0}, I, = {&: Ay, <0}. We may assume that

n

Z 1‘51 Z Mdi

&iely i=1
- Now we have

lIZ A vl = m Z Rotve) =m( 5 Aaive)

il

>8 3 4248 % -

&iely
This completes the proof of the theorem.

Remarks. 1) The above Theorem 3.13 does not hold if the Corson-
compact K does not result from an adequate family of sets, as the Kunen—
Haydon-Talagrand example ([N], Th. 5.9) shows.

2) If K is a Corson-compact then I*(w*) is not isometrically embedded
in C(K), since in that case the compact space [0, 1]‘” would be a conti-
nuous image of K.

The following proposition is a generalization of a result of Corson.

3.14. ProrosiTioN. Let K be a compact, convex and balanced subset of the
locally convex space X(RY). Then there exists a compact subset D of K with a
unique limit point (and so D is homeomorphic to the one-point compactification
of a discrete set) such that the cardinal of D is equal to the (topological) weight
of K.

Proof. Suppose that I'={J,gsupp(x) and |Il> w® (in the case
|l < o, such a set D exists: indeed, consider a convergent sequence X, — x in
K and set D =i{x, n<o}u{x}). It is easy to construct by transfinite
induction, using Lemma 1.2, a family {4,: w <a <|I'} of subsets of I' with
the following properties (cf. [B]):

(@ A4,n 4z =0 for w<a <ﬂ<|1"|

®) Uosa<inda=1T, |4, < o] < |} for w <o <|I.

(c) If w<a<|Ilthen K|{J{4,: f <o} =K and K|A4, =2-K where-

= {2-k: keK}.

For every o with o < a <|I'| we choose x,e K|A4, =2-K and we set y,
=3x,, 0 y, #yp if 0B
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It is easily seen that the set D = {y,: o <« <|I'} v {0} has the desired
properties.

The above proposition implies the following classical result of Corson
([L], Prop. 3.4).

3.15. CoroLrArY. (Theorem of Corson). Let K be a weakly compact,

convex and balanced subset of a Banach space E. Then K contains a weakly

compact set D with a unique weak limit point such that the cardinal of D is
equal to the weight of K.

Proof. Suppose that E is a WCG Banach space (if it is not WCG, then
we replace E with the closed linear hull of K in E). From the Amir-
Lindenstrauss Theorem [Am-L] there exists a bounded linear one-to-one
operator T: E — co(I') for some set I'; since the set 2 = T'(K) is a subset of
o (I affinely homeomorphic to K and ¢, (I) is clearly contained in X (RY),
the conclusion follows from Proposition 3.14. :

Remarks. 1) It is mecessary to assume that K is a balanced subset of

Z(R"). Indeed, there exists a nonmetrizable weakly compact convex subset of
¢o(I') ([L]) which is a first countable space. It is clear that such a space
cannot contain an uncountable compact subset with a unique weak limit
point.

2) In the following section we shall give an example of a non-Gul’ko-
compact Corson-compact space (Theorem 4.4) with property (M).

We conclude this section with some comments on smoothness and some
open questions. ‘

It is known that if E is a WCG Banach space then there exists on E an
equivalent smooth norm ||| (ie. for every xeE with [|x|| =1 there is only
one x*eE* with [|x*| =1 =x*(x)) whose dual porm is strictly convex
(TAm-L]). The same result is proved in [M], for the more general class of
WCD Banach spaces.

Since every WCD Banach space is weakly Lindelsf and in view of
Theorem 3.5, the following two questions seem natural.

Q1. Let K be a Corson-compact space and have property (M) (equiva-
lently, C(K) is weakly Lindel6f according to Theorem 3.5). Does C (K) admit
an equivalent smooth norm?

Q2. Suppose that K is a Corson-compact space and admits an equiva-

lent (necessarily smooth) norm having strictly convex dual. Does it follow
that K has property (M)?

We note that if the Corson-compact K results from an adequate family
of sets, then Q2 has an affirmative answer, by using Theorem 3.13 and the
fact that I'(w™) does not admit an equivalent smooth norm ([Da]).

e ©
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4. Corson-compact spaces of bounded order type. If K is a compact
subset of {0, 1}* for some infinite cardinal &, and supp(x) is finite for all
xe K, then K is Eberlein-compact since clearly K < cq (). .

On the other hand, there are examples of compact subsets K of {0, 1}*
such that

order type(supp(x)) S@+1  for all xeK

which are not Gulko-compact ([Ar-M-N1], [M];; see also Remark 6.59 of
[ND.
We have asked in [Ar-M-N] what happens if
ordertype(supp(x)) S w for all xeK.

We give an example below of a non-Gulko-compact that ‘satisfies this
“rareness” condition (and so is Corson-compact) and in addition has some
other interesting properties.

We need some preliminaries.

Notation (cf. [N]). We denote by Z the Baire space of infinite sequences
of natural numbers w® S denotes the set of finite sequences of natural
numbers. For se§ we denote by |s| the length (i.e. the domain) of s. If seZ
and n <, o|n denotes the finite sequence of the first n terms of o. IfseS
and 1 < o, then s, n denotes the finite sequence of length |s|+1 whose first |s|
terms are s and whose last term is n.

4.1. Lemma ([N]). Let X be a countably determined space, ie. a co.nti-
nuous image of a closed subset of a space of the form M x K, where K is a
compact space and M a separable metric space. Then there is a family
{A,: seS} of subsets of X such that

Ay =X, U Ay =4, for seSs,
k<o

and for every xeX there is o€ Z such that:
(i) xe mk< Aﬂlk' . I3 - -
Gi) If x,‘e,:lad,, for k < w, then the sequence (x) has a limit point in X.

If A is an adequate family of subsets of some set T (see Definition 1.8),
then we consider T* = TU {0} and define on T* a topology as fol}ows:
every element of T is isolated; a subbase for the neighborhoods of co is the
family .

{{o}u(T\A): deA}. |
We state without proof the following fact, due to Talagrand ([Ta];, Th. 4.2).

4.2. ProposiTioN, Let A be an adequate family of subsets of T. Then K 4 is
Gul’ko-compact if and only if T* is countably determined.
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A subset S of a cardinal « is called stationary if S intersects every closed
unbounded subset of o (in the order topology on o). We have the following
result of Fodor ([N], Th. 0.2) on stationary sets.

43. TuroreMm. Let S be a stationary subset of an uncountable regular
cardinal o, and let f: S — o be a function such that f(&) < & for eS8, & #0,
Then there is a stationary subset T of S, and { <u, such that f (&) = { for all
éeT

4.4. TueoreM. There is a Corson-compact totally disconnected space K
such that:

(a) K is not a Gul’ko-compact.

(b) K is a Rosenthal-compact and so has property (M).

(¢) K = {0, 1}"’+ and order type(supp(x)) < o for ‘all xeK.

Proof. We define a family {N,: £ < @™} of subsets of w as follows;: We
choose {N;: k <w} such that [N|=0w, NN, =@ for k <l <w. Let
w< ¢ <o', and suppose that {N,: { <&} have been defined, and are
infinite and almost disjoint. Let {{}: n < w} be a 1-1 well-ordering of £, We
choose

F§ @ Ngg\ U Ny
k<n

such that |Fi| = n for n <. We set N; = {J, <, F%. It is clear that {Na: &
<®*} is a family of infinite almost disjoint subsets of .

We define @: (0*)* — w (see preliminaries) by & (¢, {) = INe VN[, Let
T be a subset of the interval [0, 1] with |T| = w™. Also let {x,;: ¢ <"} be
a 1-1 well-ordering of T" A finite subset J = {&, <... <¢&,) = 0" is called @-
admissible if for all ¢, {eJ with & <{ we have: ‘

a) [{fnet: £ <n<{I< @, 0.

b) ]xgi—xqjl <1li for 1<i<jgn

We set 4= {4 co’: every finite subset of A is P-admissible}. It follows
immediately that 4 is an adequate family of subsets of w*. We set K = K 4
It is clear by using condition a) that if xeK, then x = X4 for Ae A, and
order type(4) < @: (So K is a Corson-compact) Also we note that every
Ae 4, by b), has a unique limit point in [0, 1], so 4 is a countable Gy subset
of [0, 1] and hence y,: [0, 1]~ R is a Baire-1 function, implying that K is a
Rosenthal-compact. Therefore according to Remark 3.2, K has property (M).

Finally, we prove that K is not Gulko-compact. By Proposition 4.2, it is
enough to prove that T* = T'U {o0} is not countably determined. If it is
then according to Lemma 4.1 there is a family {K,: seS} of subsets of ™
such that Ky = 0%, U<, K.x = K, for seS, and for every ¢ <co' there is
oeX such that {e (<, K, and if Sk Ky for k < o then {&,: k <) has a

limi/'; point in_T* (necessarily the point ), and so this set does not belong
to A.
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We set L= () {K,: K, not a stationary set in ®*}. Then ™ \L contains
a closed unbounded subset of ™, and thus if G is a stationary subset of ™
then |G\L| =w™.

For seS, |s|=k, with K;¢ L we define f*: K,— w0 by f5(&)
= max {{, ..., {8} < ¢ From Fodor's Theorem (Theorem 4.3), there is
L, © K, L, stationary, and & <™, such that f*(§) = &, for ¢elL,.

We choose & <ot with ¢¢L and & >sup{;: seS, K, ¢ L}. By the
above property of the family {K,: seS} there is e X such that e (<, Koy
and if ek, for k<o then {£: k <w} is not in A We choose
{1 > ¢, {1e Ly, and inductively, { > {1, {x€Loy. We claim that {{,: &
< @} satisfies a). In fact, if k <n then &({,, {,) > n, since in the enumeration
of ¢, ={G" k < w}, {, appears after the nth position; hence

Ny "N | =@, Ly 2 nz{{: k <l<n} =n—(k+1).

It is clear that there exists a subsequence A4 of the sequence {xgk: k <} that
satisfies condition b), therefore since condition a) is hereditary for subsets, 4
belongs to A.

This contradiction proves that K is not Gulko-compact.

4.5. Remarks. 1) By Theorem 3.5, the Banach space C(K) provides still
another example of a weakly Lindeldf space which is not a WCG (neither a
WCD) Banach space. R. Pol in [P}, was the first to construct such an
example.

2) Alster and Pol [A-P] were the first to construct a non-Talagrand-
compact Corson-compact space. Moreover, it can be proved that this space
is not a Gul'ko-compact, and that it is a Rosenthal-compact.

3) In [N] (Th. 6.55) an example is given of a Talagrand-compact whose
each element has support of order type at most w, and which is not an
Eberlein-compact.

4) In [M], (Ch. 4) are produced, using the examples of Galvin—Hajnal,
Kunen, and Laver—Galvin [C-N], some other examples of non-Gulko-
compact Corson-compact spaces with property (M). Some new chain condi-
tions are also defined.

6) In connection with Theorem 4.4, we note that all the examples of
Corson-compact spaces given in the present paper are pointwise compact
subsets of the space of Baire-2 real-valued functions on [0, 1] (i.e. the space
of pointwise limits of sequences of Baire-1 real-valued functions on [0, 1]).
We briefly indicate how to see this: if feX(R’) then it is clear that f is a
pointwise limit of a sequence of functions f,: I' = R, n <, with finite
support. Since in our examples |I'| < 2%, the space Z (R’) is naturally embed-
ded in the space of Baire-2 real-valued functions on [0, 1].

The remarks at the beginning of this section and the above example lead
naturally to the following:
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4.6. DerinitioN. Let K be a Corson-compact space. Then:

(a) K is said to be of type & where ¢ is a countable ordinal, if K is a
compact subset of X ({0, 1}%) for some infinite cardinal o such that if 4 c«
and y,eK then ordertype(d) <¢.

(b) K is said to be of bounded order type if it is of type £ for some
countable ordinal £.

Remarks. 1) According to the above definition, the Corson-compact
space given in Theorem 4.4 is of type w.

2) It is easy to prove that a Corson-compact K is totally disconnected if
and only if K is homeomorphically embedded in X ({0, 1}’) for some set
I ([Mi-R]).

We shall prove that a considerable proper subclass of Corson-compact
spaces is of type .

4.7. ProprosrTiON. Every scattered Corson-compact space K is of type w.

Proof. K. Alster proved in [A] that every such space K is homeomor-
phically embedded in ¢, (I') (and so it is an Eberlein-compact) in such a way
that if xeK then x is the characteristic function of some (necessarily) finite
subset of I'; therefore K is of type w.

4.8. Remark. The preceding proposition does not imply that a scattered
Eberlein-compact is of finite order type n < . Indeed, it is easy to see that
every such space is a uniform Eberlein-compact (i.e. homeomorphic to a
weakly compact subset of a Hilbert space). But there is an example of a
scattered nonuniform Eberlein-compact ([B-S]; see also [N], 6.52), so this
space is not of finite order type.

2) We do not know if an Eberlein-compact totally disconnected space is
of type o, neither if a Gulko-compact totally disconnected space is of
bounded order type.

A Corson-compact totally disconnected space is not necessarily of
bounded order type. Indeed, we have the following result similar to a result
in [Ar-N] for Gul'’ko-compact spaces (see also preliminaries).

4.9. ProrosiTioN. If K is a Corson-compact of bounded order type, then
S(K) =w(K)*. In particular, a ccc Corson-compact of bounded order type is
metrizable.

Proof. According to Definition 4.6, we identify K with a compact
subset of X ({0, 1} for some infinite cardinal a such that if 4 — a and xa€K
then ordertype(A4) < ¢ for some fixed countable ordinal ¢&.

Suppose that {J,.xsupp(x) = o (whenever w(K) =«) and S(K) < w(K).
For { <a set ¥ =m; *({1}) " K every such set is open and closed in K. Now
consider a countable ordinal ¢, < w* with £ <¢&,. Then by Theorem 7.2 of
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[C-N] there exists A co with ordertype(d) =¢ and (.., ¥ # @; but if
X €(\eea Ve then clearly order type (supp(x)) = &;, which is absurd.

It follows immediately from the above proposition that every space
described in Theorem 2.3 is (under CH) a Corson-compact totally disconnect-
ed space which is not of bounded order type.

We note that property (M) of the compact space K of Theorem 4.4 also
follows from the fact that K is of bounded order type, as the following result
proves.

4.10. CoroLLARY. Every Corson-compact of bounded order type has pro-
perty (M).

Proof. Since the support of a positive measure on a compact space is
cce, the conclusion follows from the above proposition.

We finish this section by noting that we cannot extend the result of
Proposition 4.9 to the class of Corson-compact spaces with property (M).

4.11. ProProsITION, Assume CH. There are nonmetrizable ccc Corson-
compact spaces with property (M).

Proof. Consider a family & = {¥;: { <w*} of nonempty open subsets
of a topological space X and let K be the compact space generated by the
family & as in Definition 2.1.

CLaM. If K does not have property (M) then & is a witness to the failure
of property (K,) for no n < w.

Proof of the claim. Indeed, let ueP(K) be such that supp(y) is not
metrizable. Then it follows that the set L= {¢ <o™¥: p(W,) > 0} is uncount-
able where W; = {1}, x {0, 1}*"\& nK.

Therefore for each n < w there exists an uncountable subset L, of L so
that any n elements of the family {W;: éeL,} have nonempty intersection
([C-N]). It is easy to see that the family {V;: £eL,} has the same property
and hence the proof of the claim is complete.

The claim implies that each of the “pathological” Corson compact
spaces of Theorem 2.3(b), (c), (d) is an example of a nonmetrizable ccc space
with property (M).
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Added in proof (January 1988). It can be proved that the example of Corson-compact K
given in Th. 2.3(a) has also property (M). Indeed, suppose there exist u eP(K), an uncountable
subset § of L and & > 0 such that u(V,) = ¢ for all x €S, where V, = 77 ({1} K (cf. Th. 3.13).
Then k({V,: xeS}) > 8 (1) (see preliminaries and Lemma 6.1 of [C-N]). Let T be an open
interval of R contained in clRS and let n, < @ be such that T,,O < T and 1/ny < & (cf. the proofs
of Ths. 1.11 and 2.3 (a)). For every k €{1, ..., n} pick x, €T, x NS Then writing ¥; =V, we have
cal{Vi, ..., V,‘(z)}/nﬁ < ng/n? < 8, which contradicts (1).
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