Integral extension procedures in weakly σ -complete lattice-ordered groups, II

by

M. WILHELM (Wrocław)

Abstract. Interrelations between generalized MacNeille-Mikusiński, Stone and Daniell integral extension procedures are studied.

1. Introduction. Let G be a commutative l-group, L an l-subgroup of G and v a finite σ -subadditive l-seminorm on L. (For basic notation and terminology see Section 2.) In part I of this work ([7]) we defined and studied the generalized MacNeille-Mikusiński extension (L_M, v_M) of (L, v). Here, in Section 3, we prove that (L_M, v_M) is equal to Stone's extension (L_S, v_S) provided G is weakly σ -complete. (This order-completeness type notion was introduced and studied in [6] and [7].)

In Section 4 we define and investigate the generalized Daniell extension (L_D, ν_D) of (L, ν) under the assumption that ν has the Fatou property. In Section 5 we compare Stone's and Daniell's extensions. In particular, the two extensions are identical if ν has the Beppo Levi property, and "almost" identical if ν has the saturability property.

Some theorems are adaptations to this more abstract setting of the results known for function spaces: Theorem 1-cf. [4], p. 913; Theorems 2 and 6-cf. [2], part I, p. 163; Theorem 4-cf. [5], p. 238.

2. Notation and terminology. Let G be a commutative lattice-ordered group (= l-group). All joints (sup, \vee) and meets (inf, \wedge) are taken with respect to the whole of G. The notation $a \leq \sup_n a_n$ means that $\inf_n (a - a_n)^+ = 0$. (Here $b^+ = b \vee 0$.) For $a_n \in G^+$,

$$a \leqslant \sum_{n} a_n$$
 means that $a \leqslant \sup_{k} (\sum_{n \leqslant k} a_n)$.

Similarly,

$$\inf_{n} a_{n}' \leqslant a \text{ means that } \inf_{n} (a_{n} - a)^{+} = 0.$$

(The accents beside " \leq " mark that sup, \sum or inf need not exist in G.) We

write $a \sim \sum_{n} a_n$ if

$$\left|a-\sum_{n\leq k}a_n\right|\leq \sum_{n>k}\left|a_n\right|$$
 for $k=1, 2, ...$

This expansion was studied in Section 2 of [7]. We say that G is weakly σ complete if for every sequence $\{a_n\} \subset G$ there exists an element $a \in G$ such that $a \sim \sum_{n} a_n$. Such G need not be Archimedean; cf. [7], Section 3.

Let L be a subgroup-sublattice (= l-subgroup) of G and let v be an lseminorm on L, i.e. a function on L into $[0, \infty]$ such that v(0) = 0, v(a) $(a, b) \le v(a) + v(b)$, and $v(a) \le v(b)$ whenever $|a| \le |b|$ $(a, b \in L)$. Throughout this paper we assume that ν is finite $(\nu(a) < \infty$ for all $a \in G$) and σ subadditive, i.e.

$$v(a) \leqslant \sum_{n} v(a_n)$$
 whenever $a = \sum_{n} a_n$ $(a, a_n \in L^+)$.

We write $a \stackrel{\sigma}{\sim} \sum_{n} a_{n}$ if $a \sim \sum_{n} a_{n}$, $\{a_{n}\} \subset \text{dom } v = L$ and $\sum_{n} v(a_{n}) < \infty$; the set of all elements $a \in G$ possessing such an expansion is denoted by L_M . The equality

$$v_M(a) = \lim_k v \left(\sum_{n \le k} a_n \right)$$
 whenever $a \stackrel{\sigma}{\sim} \sum_n a_n$

defines (correctly) a finite σ -subadditive *l*-seminorm v_M on L_M which extends v; cf. [7], Section 4.

3. The seminorm v^* and the extension (L_S, v_S) . The generalized Stone extension (L_S, v_S) of (L, v) is defined as follows (cf. [3], [2], [4]). For each $a \in G$ we put

$$v^*(a) = \inf \left\{ \sum_{n=1}^{\infty} v(a_n) \colon \left\{ a_n \right\} \subset L^+ \text{ and } |a| \leqslant \sum_{n=1}^{\infty} a_n \right\},$$

where the convention inf $\phi = \infty$ is adopted; v^* is a σ -subadditive *l*-seminorm on G and $v^*(a) = v(a)$ for all $a \in L$ (cf. [6], Lemma 5). If G is weakly σ complete (in its ordering, see Section 2), then G (endowed with v^*) is metrically complete; cf. [6], Theorem 6. Let $L_{\rm S}$ denote the closure of L in G (endowed with the topology induced by v^*) and put $v_S = v^* \mid L_S$; L_S is an *l*-subgroup of G and v_S is a finite σ -subadditive *l*-seminorm on L_S ; L_S is metrically complete provided G is weakly σ -complete.

According to the general definition of the expansion, as recalled in Section 2, $a \stackrel{v^*}{\sim} \sum_n a_n$ means that $a \sim \sum_n a_n$, $\{a_n\} \subset \text{dom } v^* = G$ and $\sum_{n=1}^{\infty} v^*(a_n) < \infty$.

LEMMA 1. If
$$a \stackrel{v^*}{\sim} \sum_n a_n$$
, then $\lim_k v^* (a - \sum_{n \leq k} a_n) = 0$.

Proof.
$$v^*(a-\sum_{n\leq k}a_n)\leq \sum_{n>k}v^*(a_n)\to 0$$
 as $k\to\infty$.

Proposition 1. We have $L_M \subset L_S$ and $v_M(a) = v_S(a)$ for all $a \in L_M$.

Proof. Let $a \stackrel{>}{\sim} \sum_{n} a_{n}$. By Lemma 1, $a \in L_{S}$ and

$$v_{\mathbf{M}}(a) = \lim_{k} v\left(\sum_{n \leq k} a_{n}\right) = v^{*}(a).$$

Remark 1. In Theorem 5 of [7] we had to prove that the definition of v_M is correct and that v_M is a σ -subadditive *l*-seminorm; all this follows immediately from Proposition 1 and the properties of v^* .

LEMMA 2. If $v^*(a) = 0$, then $a \in L_M$.

Proof. Choose $a_{(m,n)} \in L^+$ so that

$$|a| \leq \sum_{n} a_{(m,n)}, \quad \sum_{n} v(a_{(m,n)}) < 2^{-m}, \quad m \in \mathbb{N}.$$

Let f be a one-to-one mapping of N onto $N \times N$ and define

$$b_1 = a_{f(1)}, \quad b_2 = -b_1, \quad b_3 = a_{f(2)}, \quad b_4 = -b_3, \quad \dots$$

Given $k \in \mathbb{N}$, there is an index m such that

$$\{(m, n): n \in \mathbb{N}\} \subset f(\{k+1, k+2, \ldots\}),$$

and consequently

$$|a| \leq \sum_{n>2k} |b_n|.$$

Hence

$$\left|a - \sum_{n \leq 2k} b_n\right| = |a| \leqslant \sum_{n > 2k} |b_n|,$$

$$\left| a - \sum_{n \le 2k-1} b_n \right| = |a - b_{2k-1}| \le |b_{2k-1}| + |a| = |b_{2k}| + |a| \le \sum_{n > 2k-1} |b_n|.$$

This shows that $a \stackrel{\vee}{\sim} \sum_{n} b_{n}$.

THEOREM 1. If G is weakly σ -complete, then the extensions (L_M, v_M) and (L_s, v_s) are identical.

Proof. Let $a \in L_s$. Choose $a_n \in L$ so that

$$\lim_{k} v^* \left(a - \sum_{n \leq k} a_n \right) = 0, \quad \sum_{n} v \left(a_n \right) < \infty.$$

Since G is weakly σ -complete, there exists $b \in G$ satisfying $b \stackrel{\vee}{\sim} \sum_{n} a_{n}$; we have $b \in L_M$ and Lemma 1 implies that $v^*(a-b) = 0$. By Theorem 4 of [7] and Lemma 2, $a = (a-b)+b \in L_M$.

In Section 2 of [7], L_{\sim} was defined as the set of all elements $a \in G$ possessing an expansion $a \sim \sum_{n} a_{n}$ with some $\{a_{n}\} \subset L$. Let us consider v = 0. For this v we have $L_M = L_{\sim}$, $v^*(G) \subset \{0, \infty\}$, $L_S = \{a \in G: v^*(a) = 0\}$, and Lemma 2 proves that $L_{\sim} = L_{\rm S}$. Thus we have obtained

COROLLARY 1. An element $a \in G$ belongs to L_{\sim} if and only if $|a| \leq \sum_{n} a_n$ for some sequence $\{a_n\} \subset L^+$ (or, equivalently, $|a| \leq \sup_n b_n$ for some sequence $\{b_n\} \subset L^+$).

Remark 2. For v infinite, Stone's procedure works equally well, while MacNeille-Mikusiński's procedure must be slightly modified. Namely, in the definition of the expansion $a \stackrel{v}{\sim} \sum_n a_n$ the condition $\sum_{n=1}^{\infty} v(a_n) < \infty$ must be replaced with $\sum_{n=2}^{\infty} \nu(a_n) < \infty$. Then L_M contains L, and Theorems 4-6 of [7] as well as the results of this section remain valid.

4. The seminorm v^0 and the extension (L_D, v_D) . In this section we define a generalized Daniell extension of (L, v) (cf. [1], [2]). For each $a \in G$ we put

$$v^{0}(a) = \inf \{ \sup_{n} \uparrow v(a_{n}) : \{a_{n}\} \subset L^{+} \text{ and } |a| \leq \sup_{n} \uparrow a_{n} \},$$

where inf $\phi = \infty$. It is easy to verify that v^0 itself is an *l*-seminorm on G.

PROPOSITION 2. The l-seminorm v^0 extends v if and only if v has the Fatou property:

(F)
$$a = \sup_{n} \uparrow a_n \text{ implies } v(a) = \lim_{n} \uparrow v(a_n) \quad (a, a_n \in L^+).$$

Proof. Condition (F) is equivalent to

(F)'
$$a \leq \sup \uparrow a_n \text{ implies } \nu(a) \leq \sup \uparrow \nu(a_n) \quad (a, a_n \in L^+).$$

Remark 3. Every *l*-seminorm satisfying (F) is σ -subadditive.

From now on we assume that ν has the Fatou property.

THEOREM 2. The 1-seminorm v^0 is σ -subadditive.

Proof. Let $a, a_n \in G^+$, $a = \sum_n a_n$, $\sum_{n=1}^{\infty} v^0(a_n) < \infty$, $\varepsilon > 0$. $a_{m,n} \in L^+$ so that for each index n

$$a_n \leq \sup_{m} \uparrow a_{m,n}, \quad \lim_{m} \uparrow \nu(a_{m,n}) < \nu^0(a_n) + \varepsilon 2^{-n}.$$

Put $b_k = \sum_{n \le k} a_{k,n}$; we have $a \le \sup_{k} b_k$ (because $\sum_{n \le n} a_n \le \sup_{k} b_k$ for each p), and so

$$v^{0}(a) \leqslant \sup_{k} \uparrow v(b_{k}) \leqslant \sup_{k} \uparrow \left(\sum_{n \leqslant k} v(a_{k,n}) \right) \leqslant \sum_{n \leqslant k} \sup_{m} \uparrow v(a_{m,n})$$
$$\leqslant \sum_{n=1}^{\infty} \left[v^{0}(a_{n}) + \varepsilon 2^{-n} \right] = \sum_{n} v^{0}(a_{n}) + \varepsilon.$$

Since v^0 is σ -subadditive, Theorem 5 of [6] yields

THEOREM 3. If G is weakly σ -complete, then the seminormed space (G, v^0) is metrically complete.

Now L_D is defined as the closure of L in G (endowed with v^0) and v_D as the restriction of v^0 to L_D . Clearly, L_D is an *l*-subgroup of G and v_D is a finite σ -subadditive *l*-seminorm on L_D which extends ν ; L_D is metrically complete provided G is weakly σ -complete.

The classical Daniell extension of (L, ν) , constructed for additive ν , turns out to be identical with (L_p, v_p) . This follows from

Proposition 3. An element $a \in G$ belongs to L_D if and only if for each $\varepsilon > 0$ there are b_n , $c_n \in L$ such that $v(c_n - b_n) < \varepsilon$ for all n and

$$\lim_{n} \downarrow b_n \leqslant a \leqslant ' \lim_{n} \uparrow c_n.$$

In this case b_n , c_n can be chosen so that $b_n \leq c_n$, $v_D(a-b_n) < \varepsilon$ and $v_D(a-c_n)$ $< \varepsilon$ for all n.

Proof. Necessity. Let $a \in L_D$ and $\varepsilon > 0$. There exist $d \in L$ and $d_n \in L^+$ such that

$$|a-d| \leq \sup_{n} \uparrow d_n, \quad \lim_{n} \uparrow \nu(d_n) < \varepsilon/2.$$

Define $b_n = d - d_n$ and $c_n = d + d_n$. We have $v_D(a - b_n) \le v_D(a - d) + v(d_n) < \varepsilon$, and similarly for c_{*} .

Sufficiency. We have $|a-b_1| \leqslant \sup_n \uparrow (c_n-b_n)$, and so $v^0(a-b_1) \leqslant \varepsilon$. Thus $a \in L_{\mathbf{D}}$.

Let us consider the so-called Daniell property of v:

(D)
$$a_n \searrow 0 \text{ implies } v(a_n) \searrow 0 \quad (a_n \in L^+).$$

Here are equivalent forms of this property:

(D)'
$$a_n \nearrow a \text{ implies } v(a-a_n) \searrow 0 \quad (a, a_n \in L^+);$$

(D)"
$$a_n \setminus a \text{ implies } v(a-a_n) \setminus 0 \quad (a, a_n \in L^+);$$

(D)"
$$\inf \downarrow a_n \leqslant a \text{ implies } \lim_n \downarrow \nu(a_n) \leqslant \nu(a) \quad (a, a_n \in L^+).$$

The Daniell property (see (D)') implies the Fatou property.

LEMMA 3. Suppose ν has the Daniell property. If $a_n \in L^+$, $a \in G^+$ and $\inf_{n} \downarrow a_n \leqslant a$, then $\lim_{n} \downarrow v(a_n) \leqslant v^0(a)$.

Proof. Let $b_n \in L^+$ and $a \leq \sup_n \uparrow b_n$. Since $(a_n - b_n)^+ \leq 0$, we infer that $v((a_n - b_n)^+) \searrow 0$. The inequality

$$v(a_n) \leqslant v(b_n) + v((a_n - b_n)^+)$$

implies

$$\lim \downarrow v(a_n) \leqslant \lim \uparrow v(b_n).$$

This justifies the assertion.

Proposition 3 and Lemma 3 yield

Theorem 4. If v has the Daniell property, then for each element $a \in L_D$ we have the equality

$$v_D(a) = \sup \{ \lim_{n \to \infty} v(b_n) : \{b_n\} \subset L^+ \text{ and } \inf_{n \to \infty} b_n \leqslant |a| \}.$$

5. Comparison of (L_S, v_S) and (L_D, v_D) . In this section we continue to assume that v has the Fatou property.

Proposition 4. We have $v^0(a) \leq v^*(a)$ for all $a \in G$. Hence $L_S \subset L_D$ and $v_S(a) = v_D(a)$ for all $a \in L_S$.

Proof. Let $a_n \in L^+$ and $|a| \leq \sum_n a_n$. Then

$$v^{0}(a) \leqslant \sup_{k} \uparrow v \left(\sum_{n \leqslant k} a_{n} \right) \leqslant \sup_{k} \uparrow \sum_{n \leqslant k} v(a_{n}) = \sum_{n} v(a_{n}).$$

Theorem 5. Let G be weakly σ -complete. For each element $a \in L_D$ there exists $b \in L_S$ with $v^0(a-b)=0$. Hence the equality $L_S=L_D$ holds if and only if

(1)
$$v^0(c) = 0 \text{ implies } v^*(c) = 0 \quad (c \in G).$$

Proof. Given $a \in L_D$, there are $a_n \in L$ with $\lim_n v^0 (a - a_n) = 0$. Since $\{a_n\}$ is a Cauchy sequence in $L \subset L_S$ and (L_S, v_S) is complete, there exists an element $b \in L_S$ satisfying $\lim_n v^* (b - a_n) = 0$. Thus $\lim_n v^0 (b - a_n) = 0$ (Proposition 4), and so $v^0 (a - b) = 0$. The second assertion is a consequence of the first one and Proposition 4.

LEMMA 4. Suppose v has the Beppo Levi property:

(BL)
$$\sup_{k} \uparrow \nu \left(\sum_{n \leq k} a_n \right) < \infty \text{ implies } \lim_{n} \nu \left(a_n \right) = 0 \quad (a_n \in L^+).$$

Let $a_n \in L^+$ and $\sup_k \uparrow v(\sum_{n \leq k} a_n) = \alpha < \infty$. Then

(2) Given $\varepsilon > 0$, there are indices $n_1 < n_2 < \dots$ such that $\sum_{i=1}^{\infty} v(\bar{a}_i) < \alpha + \varepsilon$, where $\bar{a}_i = a_{n_{i-1}+1} + \dots + a_{n_i}$ for $i = 1, 2, \dots$ $(n_0 = 0)$.

Proof. Observe that the series $\sum_{n} a_n$ is ν -Cauchy (otherwise $\nu(\bar{a}_i) > \delta$ for some $\{n_i\}$ and $\delta > 0$, which contradicts (BL)). Hence there are indices $n_1 < n_2 < \dots$ such that $\nu(\bar{a}_i) < \varepsilon 2^{-i}$ for $i \ge 2$, and we have

$$\sum_{i} \nu(\overline{a}_{i}) < \nu(\overline{a}_{1}) + \sum_{i \geq 2} \varepsilon 2^{-i} < \nu(\overline{a}_{1}) + \varepsilon \leqslant \alpha + \varepsilon.$$

Theorem 6. If v has the Beppo Levi property, then $v^0 = v^*$.

Proof. Assume that $a \in G$, $a_n \in L^+$, $|a| \leq \sum_n a_n$,

$$\sup_{k} \uparrow v \left(\sum_{n \leq k} a_n \right) = \alpha < \infty,$$

 $\varepsilon > 0$. Let \bar{a}_i be as in Lemma 4; since $|a| \leq \sum_i \bar{a}_i$, we infer that

$$v^*(a) \leqslant \sum_i v(\bar{a}_i) < \alpha + \varepsilon.$$

This shows that $v^*(a) \le \alpha$, and consequently $v^*(a) \le v^0(a)$ whenever $v^0(a) < \infty$ (because $v^0(a)$ is the least upper bound of such numbers α).

An important special case is when v is additive, i.e.

(A)
$$v(a+b) = v(a) + v(b)$$
 $(a, b \in L^+);$

then

$$\sup_{k} v\left(\sum_{n \leq k} a_{n}\right) = \sum_{n=1}^{\infty} v\left(a_{n}\right) \quad \left(a_{n} \in L^{+}\right)$$

and so v has the Beppo Levi property.

Now let us consider the so-called saturability property of ν , which is weaker than the Beppo Levi property:

(S) If
$$\sum_{n \leq k} a_n \leq a$$
 for all k , then $\lim_{n} v(a_n) = 0$ $(a, a_n \in L^+)$.

We will write

$$\sum_{n} a_{n} \leq \sum_{p} c_{p}$$

if $\sum_{n \leq k} a_n \leq \sum_n c_p$ for all k $(a_n, c_p \in G^+)$

LEMMA 5. Suppose v has the saturability property, $a_n \in L^+$ and

$$\alpha = \sup_{k} \uparrow \nu \left(\sum_{n \le k} a_n \right).$$

If there exists a sequence $\{c_p\} \subset G^+$ such that

$$\sum_{n} a_{n} \leq \sum_{p} c_{p}, \quad \sum_{p} v^{*}(c_{p}) < \infty,$$

then $\lim_{n} v(a_n) = 0$ and condition (2) holds.

Proof. (Notice that $\alpha < \infty$.) We may additionally assume that $c_p \in L^+$ (otherwise choose elements $c_{jp} \in L^+$ with $c_p \leq \sum_j c_{jp}$ and $\sum_j \nu(c_{jp}) < \nu^*(c_p) + 2^{-p}$, and arrange them in a sequence). Let $\varepsilon > 0$. Fix p_0 so that

 $\sum_{p>p_0}\nu(c_p)<\varepsilon/2 \text{ and put } c=\sum_{p\leqslant p_0}c_p. \text{ Define inductively } b_n\in L^+ \text{ so that }$ $\sum_{n\leqslant k}b_n=c \ \wedge \sum_{n\leqslant k}a_n \quad \text{ for } k=1,\,2,\,\dots$

Clearly $b_n \leq a_n$ for all n and

$$c+\sum_{n\leq k}(a_n-b_n)=c+\sum_{n\leq k}a_n-c\wedge\sum_{n\leq k}a_n=c\vee\sum_{n\leq k}a_n\leq^{\prime}\sum_{p=1}^{\infty}c_p.$$

Hence

$$\sum_{n \leq k} (a_n - b_n) \leq \sum_{p > p_0} c_p,$$

which implies

$$v(a_n - b_n) \leqslant \sum_{p > p_0} v(c_p) < \varepsilon/2$$
 for all n .

Since $\sum_{n \le k} b_n \le c \in L^+$ for all k, we infer that $\lim_n v(b_n) = 0$, and so $v(a_n) < \varepsilon$ for n sufficiently large. Property (2) can be deduced as in the previous lemma.

Theorem 7. Let v have the saturability property. Then for every $a \in G$ with $v^*(a) < \infty$ we have:

- (i) $v^0(a) = v^*(a)$.
- (ii) $a \in L_{\Sigma}$ if and only if $a \in L_{D}$.

Hence the equality $v^0 = v^*$ holds if and only if

$$v^{0}(a) < \infty \text{ implies } v^{*}(a) < \infty \quad (a \in G).$$

Proof. (i) There are $c_n \in L^+$ with $|a| \le \sum_n c_n$ and $\sum_n v(c_n) < \infty$. Let $b_n \in L^+$, $|a| \le \sup_n \uparrow b_n$. Define $a_1 = b_1 \land c_1$ and

$$a_n = b_n \wedge \sum_{i \le n} c_n - b_{n-1} \wedge \sum_{i \le n} c_n$$
 for $n = 2, 3, ...;$

we have

$$\sum_{n \le k} a_n = b_k \wedge \sum_{n \le k} c_n \quad \text{for all } k, \quad |a| \le \sum_n' a_n.$$

We are in a position to apply Lemma 5: given $\varepsilon > 0$, there are indices $n_1 < n_2 < \dots$ such that

$$v^*(a) \leq \sum_i v(\bar{a}_i) < \alpha + \varepsilon \leq \sup_k \uparrow v(b_k) + \varepsilon.$$

Thus $v^*(a) \leq v^0(a)$.

(ii) Assume that $a \in L_b$ and $\varepsilon > 0$. There exists $b \in L$ such that $v^0(a-b) < \varepsilon$. Since $v^*(a-b) \le v^*(a) + v(b) < \infty$, part (i) shows that $v^*(a-b) = v^0(a-b)$. Thus $a \in L_{\varepsilon}$.

COROLLARY 2. Let G be weakly σ -complete and let v have the saturability property. The equality $L_S = L_D$ holds if and only if

$$(4) v^0(a) = 0 implies v^*(a) < \infty (a \in G).$$

Proof. Condition (4) and Theorem 7 yield condition (1) of Theorem 5.

Finally, we notice that the saturability property implies the Daniell property; this can be proved as in [5], pp. 239–240 (cf. also [6], Theorem 2). Thus $(A) \Rightarrow (BL) \Rightarrow (S) \Rightarrow (D) \Rightarrow (F)$; counterexamples to the converse implications are given in [5].

References

- [1] P. J. Daniell, A general form of integral, Ann. of Math. 19 (1917), 279-294.
- [2] F. W. Schäfke, Integrationstheorie I-II, J. Reine Angew. Math. 244 (1970), 154-176, and 248 (1971), 147-171.
- [3] M. H. Stone, Notes on integration I-IV, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 336-342, 447-455, 483-490, and 35 (1949), 50-58.
- [4] M. Wilhelm, Integration of functions with values in a normed group, Bull. Acad. Polon. Sci. 20 (1972), 911-916.
- [5] -, Real integrable spaces, Colloq. Math. 32 (1975), 233-248.
- [6] -, Completeness of l-groups and of l-seminorms, Comment. Math. 21 (1979), 271-281.
- [7] –, Integral extension procedures in weakly σ-complete lattice-ordered groups, I, Studia Math. 77 (1984), 423-435.

INSTYTUT MATEMATYKI POLITECHNIKI WROCŁAWSKIEJ INSTITUTE OF MATHEMATICS, WROCŁAW TECHNICAL UNIVERSITY Wybrzeże Wysniańskiego 27, 50-370 Wrocław, Poland

Received December 1, 1986 (2250)