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Integral extension procedures in weakly
g-complete lattice-ordered groups, II

by
M. WILHELM (Wroclaw)

Abstract. Interrelations between generalized MacNeille-Mikusiriski, Stone and Daniell
integral extension procedures are studied.

1. Introduction. Let G be a commutative l-group, L an l-subgroup of G
and v a finite o-subadditive /-seminorm on L. (For basic notation and
terminology see Section 2.) In part I of this work ([7]) we defined and
studied the generalized MacNeille-Mikusinski extension (L, vy) of (L, v).
Here, in Section 3, we prove that (L, vy) is equal to Stone’s extension
(Lg, vs) provided G is weakly o-complete. (This order-completeness type
notion was introduced and studied in [6] and [7])

In Section 4 we define and investigate the generalized Daniell extension
(Lp, vp) of (L, v) under the assumption that v has the Fatou property. In
Section 5 we compare Stone’s and Daniell’s extensions. In particular, the two
extensions are identical if v has the Beppo Levi property, and “almost”
identical if v has the saturability property.

Some theorems are adaptations to this more abstract setting of the
results known for function spaces: Theorem 1—cf. [4], p. 913; Theorems 2
and 6—cf. [2], part I, p. 163; Theorem 4—cf. [5], p. 238.

2. Notation and terminology. Let G be a commutative lattice-ordered
group (= l-group). All joints (sup, v) and meets (inf, A) are taken with
respect to the whole of G. The notation a <'sup,a, means that inf,(a—a,)"
=0. (Here b* =b v 0. For a,eG*,

a<'Y a, means that a <'sup(}. a,).

n k  n<k
Similarly,

infa,’< a means that inf(a,~a)™ =0
n

n

(The accents beside “<” mark that sup, Y, or inf need not exist in G) We
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write a ~ ) a, if

la—Y a|<' Y lal for k=1,2,...

n<k n>k

This expansion was studied in Section 2 of [7]. We say that G'is weakly o-
complete if for every sequence {a,} < G there exists an element ae G such
that a ~Zn a,.-Such G need not be Archimedean; cf. [7], Section 3.

Let L be a subgroup-sublattice (= l-subgroup) of G and let v be an I-
seminorm on L, i.e. a function on L into [0, co] such that v(0) =0, v(a
+b) < v(a)+v(b), and v(a) < v(b) whenever |a| < |b| (a, be L). Throughout
this paper we assume that v is finite (v(@) <co for all aeG) and o-
subadditive, i.e. .

v(a) <Y v(a,) whenever a=3a, (a,a,eL")
We write ay a, if a~}, a, {a,} cdomv=L and } v(a,) < oo;
the set of all elements a G possessing such an expansion is denoted by Ly,.
The equality
V(@) =limv(Y a) whenever a% Y a,
k n<k n

defines (correctly) a finite o-subadditive [-seminorm v), on Ly which extends
v; cf. [7], Section 4.

3. The seminorm v* and the extension (Lg, v5). The generalized Stone
extension (Lg, vg) of (L, v) is defined as follows (cf. [3], [2], [4]). For each
acG we put

v*(@) =inf {) v(a): {a,} =L and |a| <’} a,},
n=1 n

where the convention inf @ = oo is adopted; v* is a o-subadditive l-seminorm
on G and v*(a) =v(a) for all aeL (cf. [6], Lemma 5). If G is weakly o-
complete (in its ordering, see Sectiod 2), then G (endowed with v*) is
metrically complete; cf. [6], Theorem 6. Let Lg denote the closure of L in G
"(endowed with the topology induced by v*) and put vg = v*| Lg; Lg is an
I-subgroup of G and vy is a finite g-subadditive [-seminorm on Lg; Lg is
metrically complete provided G is weakly o-complete,

According to the general definition of the expansion, as recalled in
Section 2, a™), 4, means that a~} g, {a,} cdomv*=G and
Z:’:-lv*(a,,)<oo. _

Levma 1. If afvv‘zna,,, then lim, v* (a—3 ., a,) = 0.

Proof. v¥(a—Y _ @)<Y, ., v*(a) —0 as k —>co.
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ProposiTioN 1. We have Ly < Lg and vy (a) = vs(a) for all aeLy.

Proof. Let a* Y a,. By Lemma 1, aeLg and
vy (@) = limv(Y a,) =v*(a).
k

nsk

Remark 1. In Theorem 5 of [7] we had to prove that the definition of
vy is correct and that vy, is a o-subadditive l-seminorm; all this follows
immediately from Proposition 1 and the properties of v*.

LemMma 2. If v¥(a) =0, then ae L.

Proof. Choose g, ,eL* so that

lal <Y agmms S v(@mm) <27, meN.
n

Let f be a one-to-one mapping of N onto NxN and define
by =apyy, by=—by, bi=apy, bi= —bs,
Given ke N, there is an index m such that
{(m, n): neN} =f ({k+1,k+2,...}),

and consequently

lal <" Y Ibd.
n>2k,
Hence
la— Y b =ld <" ¥ Ibi,
n<2k n>2k
la— ¥ by =la—box—1| < lba—1l+lal = byl +lal <’ Y 1bl.
n<2k-1 n>2k—1

This shows that a * ), b,.

TueoreM 1. If G is weakly o-complete, then the extensions (Ly, vy) and
(Lg, vs) are identical.

Proof. Let aeLg. Choose a,eL so that
limv*(a— Y a,)=0, Y v(a,) <co.
k

n<k n
Since G is weakly o-complete, there exists be G satisfying b ~ Z” a,; we have
beL, and Lemma 1 implies that v*(a—b) = 0. By Theorem 4 of [7] and
Lemma 2, a=(a—b}+beLy.

In Section 2 of [7], L. was defined as the set of all elements aeG
possessing an expansion a~2na,, with some {a,} = L. Let us consider
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v =0. For this v we have Ly = L., v*(G) < {0, w}, Ly = {a €G: v*(a) = 0},
and Lemma 2 proves that, L. = Lg. Thus we have obtained

CoROLLARY 1. An element aeG belongs to L. if and only if |a| g’zn a,
Jor some sequence {a,} = L* (or, equivalently, |a| <'sup,b, for some sequence
{b,} = L*).

Remark 2. For v infinite, Stone’s procedure works equally well, while
MacNeille-Mikusinski’s procedure must be slightly modified. Namely, in the
definition of the expansion a ~ Y, 4, the condition Y"*  v(a,) < co must be
replaced with Z:;Z v(a,) < co. Then Ly contains L, and Theorems 4-6 of [7]
as well as the results of this section remain valid.

0

4. The seminorm v° and the extension (Lj, vp). In this section we define a
generalized Daniell extension of (L, v) (cf. [1], [2]). For each ac G we put

vO(a) = inf {sup Tv(a,): la,} = L* and |a <’'sup?a,},

where inf ¢ = co. It is easy to verify that v° itself is an l-seminorm on G.

PrOPOSITION 2. The l-seminorm v° extends v if and only if v has the Fatou
property:

(F) @ =sup 1a, implies v(a) =lim?tv(a,) (a, a,eL™).

Proof. Condition (F) is equivalent to

F)y a<'supta, implies v(a)<sup?lv(a) (a,a,eL").

Remark 3. Every l-seminorm satisfying (F) is o-subadditive.
From now on we assume that v has the Fatou property.
TraeoreM 2. The l-seminorm v° is o-subadditive.

Proof. Let a,a,6G*, a=} a, Z"m:lvo(an) < o0, ¢>0.
G ,€ LT so that for each index n

Choose

Ay <'sup T @y lim1v(ay,,) <v0(a)+e27"
m m

Put bk:zns;c“km; we have a <'sup, T by (becatlse2"<pa,,<’sukah,, for
each p), and so N

V(@) < 5‘-;)? Tviby) < SL’:P 12 via) < ¥ suptv(ay,.,)

n<k nsk m
=]
< Y DOa)+e27 =Y (a,) +e.
n=1 n

Since v° is o-subadditive, Theorem 5 of [6] yields
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TueoreM 3. If G is weakly o-complete, then the seminormed space (G, v°)
is metrically complete.

Now L, is defined as the closure of L in G (endowed with v°) and vj, as
the restriction of v° to Ly,. Clearly, L, is an l-subgroup of G and vy, is a finite
o-subadditive /-seminorm on L, which extends v; L, is metrically complete
provided G is weakly g-complete.

The classical Daniell extension of (L, v), constructed for additive v, turns
out to be identical with (L, vp). This follows from

ProrosiTION 3. An element aeG belongs to Ly if and only if for each
&> 0 there are b,, c,eL such that v(c,—b,) <& for all n and
lim]b, < a <'limte,.
In this case b,, c, can be chosen so that b, < ¢,, vp(a—b,) <& and vp(a—c,)
< g for all n.

Proof Necessity. Let aeL, and & > 0. There exist de L and d,e L*
such that

la—d| <’ suptd,, lLim7Tv(d,)<zs/2.

Define b, = d—d, and ¢, = d+d,. We have vy(a—b,) < vpla—d)+v(d,) <s,
and similarly for c,.

Sufficiency. We have |a—b,| < sup,1(c,—b,), and so v*(a—b;) <e.
Thus aelLy. .

Let us consider the so-called Daniell property of v:

(D) a, w0 implies v(a,) N0 (a,eL*).

Here are equivalent forms of this property:

DY a, 7 a implies v(a—a,) ~0 (a, a,eL™);
(D)” a, ~a implies v(a—a,) ~0 (a, a,e L¥);
(D) infla, < a implies im [v(a,) <v(@) (a a,eL*).

The Daniell property (see (D)) implies the Fatou property.

LemMA 3. Suppose v has the Daniell property. If a,eL*, acG* and
inf, | a, < a, then lim, | v(a,) <v°(a).

Proof. Let b,e L* and a < sup, Tb,. Since (a,—b,)* 0, we infer that
v{(a,—by*) ~ 0. The inequality

V(an) < v(b,,)+v((a,,—-b,,)+)
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implies
lim | v(a,) < lim Tv(b,).

This justifies the assertion.
Proposition 3 and Lemma 3 yield

THEOREM 4. If v has the Daniell property, then for each element aec L, we
have the equality

vp(a) = sup {lim | v(b,): {b,} =L* and inf|b, < |a|}.

5. Comparison of (Lg, vs) and (Lp, vp). In this section we continue to
assume that v has the Fatou property.

ProposITION 4. We have v°(a) < v*(a) for all ae G. Hence Lg < Ly, and
vs(a) =vp(a) for all acLg.

Proof. Let a,eL* and |a <Y, a, Then
V(@) <sup (Y a)<supl T via) = ¥ v(a).
k K :

n<k n<k n
TaroREM 5. Let G be weakly o-complete. For each element ae Ly, there
exists be Lg with v°(a—b) = 0. Hence the equality Lg = Ly, holds if and only if

1) V() = 0 implies v*(c) =0 (ceG).

Proof. Given aeLp, there are a,e L with lim,v°(a—a,) = 0. Since {a,)
is a Cauchy sequence in L = Lg and (Lg, v) is complete, there exists an
element be Ly satisfying lim, v*(b—a,) = 0. Thus lim, v’(b—a,) = 0 (Proposi-
tion 4), and so v*(a—b) = 0. The second assertion is a consequence of the
first one and Proposition 4.

Lemma 4. Suppose v has the Beppd Levi property:

(BL) supTv(} a,) < oo implies limv(a) =0 (a,eL*).
k n

n<k

Let a,eL* and sup, tv(} _, a)=a <co. Then

n<k
(2  Given & >0, there are indices n, <n, <... such that
el — -
Vi, V(@) <ate, where G, =dy_s1t.ta, fori=1,2,...
(ng = 0).

Proof. Observe that the series Z" a, is v-Cauchy (otherwise v(a@) > & for
some {n;} and § >0, which contradicts (BL)). Hence there are indices n,
<np <... such that v(@) <&2~ for i > 2, and we have

Pv(@) <v@)+ Y 27 <v(@)+e <ate.

i iz2
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TueoreM 6. If v has the Beppo Levi property, then v° = v*.

Proof. Assume that a€G, a,eL*, |d <’} a,,
- supTv(Y a,)=a <0,
k n<k

e>0. Let @; be as in Lemma 4; since |a <’ Zi @;, we infer that

V¥ (a) < Zv(&,-) <a+te.

i

This shows that v*(d) < o, and consequently v*(a) < v°(a) whenever v°(a)
< oo (because v°(a) is the least upper bound of such numbers ).

An important special case is when v is additive, i.e.

(A) v(a+b) =v(@+v(®) (a, beL™);

then . .
sipv(Y a) = 3 v(a)  (@el?)
k n<k n=1

and so v has the Beppo Levi property.

Now let us consider the so-called saturability property of v, which is
weaker than the Beppo Levi property:

S) I Y a,<a for all k, then limv(a)=0 (a, a,e L*).

n<k

We will write

Zan‘sich
n P
ity o< chp for all k (a,, c,eG").

LemMA 5. Suppose v has the saturability property, a,€ L* and

a=suptv(} &)

n<k
: +
If there exists a sequence {c,} = G* such that

T4, < S NvHe) <o,
n P

P
then lim,v(a,) = 0 and condition (2) holds.

Proof. (Notice that « < c0) We may additionally assume that c,e L*

. ‘ ! €
(otherwise choose elements cj,eL* with ¢, < }:jcj,, and Zjv(cjp) <v*(c,)
+27?2 and arrange them in a sequence). Lef &> 0. Fix po. so that


GUEST


238 M. Wilhelm

Zp>pov(cp) <¢g/2 and put ¢ = ZpSpo ¢, Define inductively b,e L* so that

S by=cnya, fork=12,..
n<k n<k
Clearly b, < a, for all n and
oo
c+ Y (@—b)=c+ Y g,—cA Y a,=cv ) a, < Y ¢
n<k n<k n<k n<k =1

Hence
Z (a,,—-b,,) S-/ Z Cp»
n<k P>po

which implies

v(a,~b) < Y v(c) <¢/2  for all n.
p>po
Since )" _ b, <ceL? for all k, we infer that lim,v(b,) =0, and so v(a,) <&

for n sufficiently large. Property (2) can be deduced as in the previous lemma.

THEOREM 7. Let v have the saturability property. Then for every ac G with
v¥(a) < o we have:

@) v°(a) = v*(a).

@) aeLg if and only if acLy.
Hence the equality v° = v* holds if and only if
3) vo(a) < oo implies v*(a) < 0 (acG).

Proof. (i) There are ¢,e L™ with |a| <"} ¢, and ) v(c,) <oo. Let
b,eL*, |a] <’ sup,1h,. Define a; =b, A ¢, and "

n=b, A Y ca—boy A Y ¢, forn=2,3,..;
i<n i<n
we have
Ya,=b Y c, forallk, | <' Y a,
n<k n<k n

We are in a position to apply Lemma 5: given ¢ > 0, there are indices n
< ny <...such that

V(@ <Tv(@) <ote < suptv(by+e.
i k
Thus v*(a) < v°(a).
(i) Assume that ael, and & > 0. There exists be L such that v (a—b)

<. Since v*(a—b) < v*(a)+v(b) < co, part (i) shows that v*(a—b) = v°
~b). Thus ae L. part O S tharashy =
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CoroLLARY 2. Let G be weakly g-complete and let v have the saturability
property. The equality Lg = Ly, holds if and only if
(aeG).
Proof. Condition (4) and Theorem 7 yield condition (1) of Theorem 5.

@) v (a) = O implies v*(a) < oo

Finally, we notice that the saturability property implies the Daniell
property; this can be proved as in [5], pp. 239-240 (cf. also [6], Theorem 2).
Thus (A) = (BL) = (S) = (D) = (F); counterexamples to the converse
implications are given in [5].
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