icm®

STUDIA MATHEMATICA, T. LXXXIX. (1988)

BMO and smooth truncation in Sobolev spaces
by
DA V;ID R. ADAMS (Lexington, Ken) and MICHAEL FRAZIER * (Albuquerque, N. M),

Abstract. Let [*7 be a Sobolev-potential space, F%¢ an inhomogeneous Triebel-Lizorkin
space, and BMO the space of functions of bounded mean oscillation. Let Ry, ..., R, be the
Riesz transforms on R". We show that for 1 <p <+, >0, and 1 £ ¢ < +00, Fi’ nBMO
=FnL® "'275, . Ry(F31 " L™). Using this, we show that if H is a smooth truncation operator,
@>0,and 1 <p < +0c0, then Hof e [*7if f eL*? nBMO. Examples of Dahlberg show that this
is not the case for all fel™” if 1 <p <n/m,

1. Smooth truncation operators. For 1< p <+ and meZ™, let
WwmP(R" be the usual Sobolev space of functions f: R" — R such that

WA ymp = 2, &Sl < 400,
Bl €m

where f8 is a multi-index of order || and &% is a (distributional) partial
derivative of f. If H: R*— R is Lipschitz and H(0) =0, then it is well
known that the composition operator Ty f = Hof, fe C§’(R"), extends as a
bounded operator to WP, The usual truncation operators may be obtained
by taking H semibounded ; for example, if H(z) =t for t <1 and H(f) = 1 for
t> 1, then Ty f = min(f, 1). However, to obtain Ty fe W™ for m > 2, it is
clear that additional smoothness on H must be assumed, since otherwise
H'(f)- &f /0x; may not be absolutely continuous on almost every line. There-
fore we define a smooth truncation operator (STO) as any Ty such that

(LY H is semibounded,
(L.2) H®(@) < L< 400 for k=1,...,m and all teR,
(1.3) H(0) = 0.

The smoothness of H (i.e, (1.2)) insures that Ty is a densely defined and
closed operator on W™?, However, Dahlberg has shown ([8]) that STOs are
unbounded on W™? if m=2 and 1 <p<n2orif m>3 and 1 <p < n/m.
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On the other hand, it follows from the Gagliardo-Nirenberg lemma (Lemma
3.2 below; see the discussion in § 3) that if H satisfies (1.2-3) then Ty is
bounded from W™? A L™ into W™? whenever 1 < p < +oc and me Z*. By
the Sobolev imbedding theorem, W™? < L™ if either p > n/m when p > 1 or
m>n when p = 1. Hence if we denote the domain of Ty in W™P by

D (T, =S WP Ty feWmr,
then for these p and m and any smooth truncation operator Ty,
(1.4 D (Ty)m,y = W™P.

The Sobolev imbedding theorem also implies that (1.4) holds if p = n/m > 1
In the remaining case m = 2, p = 1, (1.4) holds under the additional assump-
tion that H"e L!(R) since the identity

() 25 o

holds if feCZ(R" and i, je {1, ..., n} (see [13]). Thus the exceptional cases
noted by Dahlberg are the only cases in which D(Ty),, has not been
- adequately characterized.

The main results of this paper imply the inclusion

(1.5) W™ "nBMO < D(Ty),

whenever H satisfies (1.2-3), 1 <p < + 00, and m > 1. Here BMO (bounded
mean oscillation) is the set of all fe L. (R") such that

1/ llsmo = suplQ~* “f"fd < +co,
Q Q

where f, = |0| ™! Jo f and the sup is taken over all cubes Q with sides parallel
to the axes. In fact, our result holds more generally for the Bessel potential
spaces L*? = {G,+f: fel}, a >0, 1 <p< +oo, normed by [|G,*fllsp
=1l where G, is the usual Bessel potential; see e.g. [19], Ch. 53. By a
result of Calderén ([5]), L™? = W™, with equivalent norms, if meZ" and
1 <p < 4. We prove the following:

THEOREM 1. Suppose a > 0,1 <p < +oo, and H satisfies (1.2-3) for
meZ* such that « <m <a+1. Then

L*? nBMO < D(Ty),, p.
Furthermore, there exists ¢ = c(n, «, p, L) such that

[a]
(1.6) Hofll,, < ¢ ['[flla,p+kzz(|1fl|a,p+ I fllsmo)*]-

Here [x] is the greatest integer in x.
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To prove Theorem 1, we first prove an analogue for L*? nBMO of the
Fefferman--Stein reprcsentation of BMO ([9]). The Fefferman-Stein result is

“that BMO = L™~ |~Z =0 R L”, where the Riesz transforms R,, ..., R, are the

singular integral operdtors satisfying (R, f) ) (&) = iE;|et F@ ior fe (see
eg. [19], pp. 57-8), and “ A~ is the Fourier transform We prove that

L ABMO = [*7 A L*+ Y R,(L*? L)

if >0 and 1 <p < 400, The Gagliardo-Nirenberg lemma is used to
obtain the result corresponding to Theorem 1 for L*?nL*. Then the
representation of L*? ~nBMO allows us to deduce Theorem 1.

The proof of the representation of L»” nBMO closely follows Uchiya-
ma’s constructive proof ([23]) of the Fefferman-Stein result. The representa-
tion in fact holds for the larger class of Triebel-Lizorkin spaces F3? nBMO
ifa>0,1<p<+oo,and 1 <q<-+o0 (see § 2 for the definition of F3! and
[22] for background). We have L*? = F%* if | <p < +oo and xe R (see e.g.
[22], p. 87.) We obtain

THEOREM 2. Suppose 1 <p <+, a>0, and 1<qg<+c0. If
SeFnBMO, then there exist functions go, gy, -.., g, Satisfying

Z (HGJ“Lw*"”(Ij”J""‘ c(Ilfllamo +l|f”F°“i)

such that f = ‘10+ij  Ryg;. (Here ¢ = c(a, p, 4, 1))

The proof of Theorem 2 uses the decomposition results for Fif, similar
to those for the homogeneous spaces F¢ in [11]. We show that the
conditions characterizing F}! carry through Uchiyama’s construction for
feFnBMO and imply that the resulting bounded functions also belong
to F.

Suppose H satisfies (1.1-3) and let M be the set of all fe W™” such that

sup PP j' |6"f|”<+oo,
xe R0 Bx,r)

for || =m, where B(x, r) = {yeR" |x—y| <r}. Then one consequence of
(15) is that M < D(Ty)y,p, since M & W™? ABMO. One can also obtain this
result from Theorem 3.2 of [1].

Notice that if p = n/m, (1.5) and the inclusion W™? S BMO, 1<p <
+00, give another proof of the fact that (1.4) holds if p=n/m>1. We
remark that Dahlberg’s examples show that W"™? L & D(Ty),,, if g <
+00. Since BMO < L%, if g < -+o00, we consider W™? nBMO to be a
natural subclass of W™ for considering smooth truncation,

However, for further perspective on (1.5), we should point out that there
are functions f&D(Ty)m, Which are not in BMO locally or at infinity. In
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fact, if L2, = {p eLP: ¢ > 0} and we set P = (G, x¢: p €Lf} = W™ (R"), then
P =D(T)n, for 1 <p < +oo if the derivatives of H satisfy the decay
condition

1.7 sup|t* " *H® (@) < +o0  for k=0,1,...,m
t>0

(This result is contained in [2]; the case m = 2 is due to Maz’ya [14]) Also,
it follows as in [2] that W2? = {f e W*?: f = 0} < D(Ty),,, if (1.7) holds for
m = 2. This can be extended to show that if He C2, H(0) = 0, and sup,» (1
+1)|H" (£)] < + o0, then feD(Ty),, whenever fe W»? and f is bounded
below. A similar result holds if f is bounded above. Note that the decay
condition (1.7) in a sense compensates for the growth of f, which may not be
BMO.

We prove Theorem 2 in § 2. We use this in § 3 to obtain Theorem 1. We
give the proof of Theorem 1 in detail for the case of the Sobolev spaces, and
sketch the proof of the more technical, but similar, case of nonintegral a
(which requires some interpolation-type estimates). We also make some
remarks more generally about Theorem 1 in the context of the F3' spaces.

Notation. The letter “c” refers to various constants depending on n and
possibly other parameters, with “c” varying at each occurrence. For a cube
Q SR", xy and [(Q) are the center and side length of Q, respectively. For
r >0, rQ is the cube concentric with Q, with side length r/(Q). For f(x)
=(fo(x), ..., f,(x)), let

Gl = (5 166932 1= 3 1)
j=0 =0

for any norm |[|-||. Let x, = max(x, 0). Also, ||‘|lx = ||'|ly means that there
exist constants ¢, >0 and ¢, > 0 such that ¢, {|*||lx < II'lly < ¢2 |I°llx-

Acknowledgement. The authors are grateful to Al Baernstein II for
allowing us to present his modifications, as described in § 2, of Uchiyama’s
construction. This material originally appeared in Professor Baernstein’s
unpublished notes prepared for his lecture given at the London Mathemati-
cal Society Symposium in Durham, 1983.

2. Decomposition of F3?"BMO. The proof of Theorem 2 is based on
Uchiyama’s constructive proof ([23]) of the Fefferman-Stein result that
BMO = L“”+Z"=1 R; L™ ([9]). Uchiyama’s proof begins with a decomposi-
tion of BMO (Lemmas 3.1 and 3.4 in [23], see also [6] and [7]) derived
from Calderén’s reproducing formula. This decomposition motivated the
corresponding decompositions of Besov spaces in [10] and F* spaces in
[11]. Here the important point is that the BMO and Fy decomposmons
hold simultaneously for feF%ABMO. We can then show that the F3f

condition carries through to the bounded functions in Uchiyama’s construc— .

tion, if >0, 1 <p <400, and 1 g < +o0.

{
!
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We adopt certain technical modifications of Uchiyama’s proof, introdu-
ced by Baernstein in [4]. (The key ideas are the same.) Following Baern-
stein’s modifications allows us to avoid adapting Uchiyama’s dilation techni-
ques (Lemmas 3.3-5 in [23]) to F}%. Also, these techniques and our assump-
tion that f e F}! allow us to drop the assumption in [23] that f has compact
support (without appealing to duality).

To define the inhomogeneous Triebel-Lizorkin spaces F3I(R), select
functions @ and ¢ belonging to & satisfying ‘

suppB(&) < {¢: ¢ <1}, 1B(©&=c> 0 if ¢ <5/6,
supp (&) < {&: 1/2<18 <2}, 16O = ¢ > 0if 3/5< (¢ < 5/3.

ForveZ,v=0, let ¢,(x) =2"¢(2"x). For aeR, 0 <p <+, and 0 <g <
+o0, F4? is the collection of all f €% (R") such that

11 leza = ||4>*fnu,+|| (2“' @y +fD9) 4|, < +c0.

Peetre’s methods show that F% is 1ndependent of the choice of @ and ¢ as
above; for background, see [16] [22], or [11].

We adopt the convention throughout that whenever Q appears as a
summation index, the sum runs only over dyadic cubes. For ve Z, ke Z", Qy
denotes the dyadic cube {xeR" k27" < x <(k,+1)27% i=1,..., n}. We
fix integers

Ko=([e]+1+, No=max([n[(1/min(p, @))-1]:+ —a], —1).
We also select fixed integers K, N, and M sufficiently large, so that
K >K, N>max(N,, Ko+ M—n+1), M > Ny+10nmax(1/p,1).

Lemma 2.1. Suppose a€R, 0<p<+4oo, and 0<g< If
f €F* nBMO, then there exist complex numbers {3 }ezn and {SQ}Qdy‘,d,c,,(Q)q
and complex-valued functions {b(x)) heegn @nd {ag (%)} gayadic,c@y< 1> SUCh that

(2.1) f = Z s;;bk+ Z SQ aQ,
keZ" g <1
22 suppb, S3Qok [P b(X)I <1 i 7 S K,
(23) suppag £3Q, |7 ap(x) <@~ if BI<K,
(24) [Xag(x)dx =0 <N
(235) (X Isd”) 1“’+|l IQI”"‘/"ISQ|XQ ”“HUJ < ¢ llpsas
keZ"
(2.6) sup IJI”L Y Isel?12 < ¢l fll3vo-
Jdyadic, I(J) € 1 QaJ

The convergence in (2.1) is in F% (quasinorm if ¢ < +oo and in &' if q =
+c0. If f is real-valued, the s, by, sg, and ay’s may all be taken real.

4 — Studin Mathematica 89.3
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Conversely, suppose f = zkel" SE M+ Y o<1 S Mg, Where

27 10 me (0] < (L+]x =KD ™M= if Jy] < Ko,

28 [T me(l SUQ) M (1+1Q) ™ [x—xgl) ™™= if Iy < Ko,

29) [¥my()dx =0 if b < No

Then

@100 Ufles<e( T I el X 0017 sl %)) -
keZ" <1

If {my(x)dx =0 (eg., if No =2 0), then

(2.11) 1 lsmo < ci:‘g;lSk'+c.ldyndsi:llg)51(|]|~1 QEEJ Isol* QN2

Proof. We only outline this proof, since it is essentially included in [10]
and [11] (see also [12]). We can select @ e & and fe & real-valued and
radial such that supp®, 6 < {x: |x| < 1}, 6 =c>0iflg <1, [x?0(x)dx
=0if |yl < N, and 8(&) = ¢ > 0 if 1/2 < |&] < 2. Then we can pick & and 10}
as in the definition of F}, also real-valued and radial, so that

()6 O+ §0¢(2‘“£)0'(2-V:) =1.

Hence f = (D*@*f+zv°'io(pv*0v*ﬁ where 6, (x) = 2""0(2"x). We let

se=Csup [@xf (), be=s" [ 0(x—y)P*f()dy,
yeQok Qok
for C sufficiently large. Then ¢+@ +f = Zk 25 b, and (2.2) follows. We

obtain (Zk [selP)? < c||@ x| ,» by the Planchercl——Pona Theorem (see e.g.
Lemma 24 in [10]). Similarly, let

Sp = Csugl(Pv *f(y)ln ag = salggv (X"y) Py *f(y)dya if I(Q) =277
ye
If C is sufficiently large, (2.3-4) follow from the assumptions on 0. Also (2.1)
follows from the identity for /' above. The techniques in the proof of
Theorem IT A in [11] and the estimate above for (ZkE nlSd?)P yield (2.5).
Finally, (2.6) follows from (4.4) in [10].
For the converse, the estimates

[P *my ()] < c(1+|x—k)~M,
| % mg (x)] < c27H MO (1 4 [ xpp ot LFmM
'—vl(o(1+}x__k|)N0+1+n-M

are obtained as in Lemma 3.3 of [10], noting that these cases do not require
vanishing moments for & and m,. Then computations exactly like those in

iflQ)=2""<1,

loyxmy (x)] < ¢ ifv20

icm

I

fies (2.3-4) and is real-valued, then there exists py(x)
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the proof of Theorem II B in [11] yield (2.10). We have the trivial estimates
“ 2 S bk”BMO < C“ 2 S bk”Luo S csuplsy.

ke 2" ke2" keZ"
This together with Theorem 4.1.6 of [10] (or [23], Lemma 34) yields
(211). m
Lemma 2.2. Suppose T is a singular integral operator with smooth kernel,
ie.
Tf (x) = pv. [R(x—~y) |x~yI"f (y) dy
where Qe C*(S"™Y), Q(rx) =RQ(x) if r >0, and js,,_,Q(y)da(y) 0. If ag
satisfies (2.3-4), then Tay, satisfies
12" Tag (0] < (@)™ (141(Q) x—xg) ™77 M il <k,

[X' Tag()dx =0 if |yl <N

Proof. The proof is as for Lemma 3.6 in [23]. To obtain the more
rapid decay of & Ta,(x), use (24) to subtract the Taylor polynomial of
degree N about y = x4 of &% (Q2(x—y)|x—y|™") regarded as a function of y,
in the convolution. m

For the special case of the Riesz transforms, the results in § 2 of [23]
reduce to the following lemma.

LeMMA 2.3. Suppose v = (vo, ..., v,)e R"*! satisfies | = 1. If ag(x) satis-

= (PQ,o(x), eey PQ.n(x))
with real-valued components such that

(2.12) R pg = po,0 +;Z‘1 R;pg,; = aq,
(2.13) Ve = ), VP () =0 for all xeR",
Jj=0
(2.14) 12 pg, () < el(@) M (1+1(@)™* x—xgl) ™Mo~
if <K and 0<j<n,
(2.15) [x"pg (x)dx =0 if )< N and 0<j<n

Proof (Uchiyama). Let

Po,0 = Z vi+v, Z ViR, aq,
=
and, for j=1,...,n,

2
Po,j = —V;vo—V5 R;aq.
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Then (2.12-13) follow from (R;f) (&) = i&|&~1f (&), and (2.14-15) follow
from Lemma 2.2. &

Theorem 2 follows by an easy iteration argument, as in [23], pp. 238-9,
from the following main lemma.

Lemma 24. Suppose 1 <p < +o0,a>0,and 1 <q <+ 0. There exists
A =A(n, «, p, g) > 0 such that if f: R" = R satisfies ”f”raq'l‘”f“BMo < 1, then

(go, ---» gn) satisfying
gl +igll o < 4, IIf—R'g!lp;ﬁllf—R'anMO <1/2.
4

Proof. Apply Lemma 2.1 to f to obtain (2.1-6) with all quantities real.
Pick R > O sufficiently large. For k = —1, 0, 1, 2, ..., we define h(x), g,,(x),
and ¢, (x) 1nduct1ve1y as follows. Let g_;(x)=(0, R, 0,...,0), h_ (x) =
and ¢_(x) = 0. Now suppose that h,_, g1, and ¢ have been dchncd
If Q is dyadic with [(Q) = 27% obtain. py(x) by Lemma 2.3 so that (2.12-15)
are satisfied for v= g,‘ﬂl(xQ)/|gk_1(xQ)|. Define

there exists g =

(219 be()= 3 SgPo(®)s
K@ =27k
(2.17) g(x) = —————~——R| éf - ‘(gﬁt’ii;»
(218) @ (X) =gi—1 () + () —g(x) =R (1 1 (%) + by ()| —R)g.(x).
Note that |sg| < ¢, by (2.6), so that by (2.14) and (2.16),
(2.19) b (x)) <c for all xeR"™
By (2.17),
(2.20) lge(x)l =R for all xeR"

By induction, (2.19-20) guarantee that (2.17) is defined for all k =1, 2, 3, ...,

if R is large enough.
From (2.2), (2.5), and (2.10), we obtain the simple estimate

221 (D> Skbk||Lw+|| Z skbk“F""
kel"
We will establish the following key estimates:
k

(2.22) Z h; converges in F% as k — + o0, HZ h,||raq
Jj= . j=
k ©

(2.23) Z converges in F%f as k— +o0, || Z (pj”F«a ¢/R,
ey <o

(229) I Z #ilawo < ¢/R.

icm
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Accepting (2.22-24) temporarily, we show how these estimates imply the
desired result. From (2.18), g,—g_; = ) 5o (b~ @;); hence (2.22-23) imply
that g,—g-, converges in F}? as k — + 0. Let

g-0+( X sbw 0,0,..., 0).
ke2!

By (212, R-he =3, . -4Spdp, s0 that

o0

o0
R-g=R- 2 =@+ 3 siby=f—R- Y ;-
keZ® i=0

Therefore by (2.23-24) and the boundedness of the Riesz transforms on
BMO and F§' for 1 <p < +o0 (see eg. §7 of [11]), we obtain
If—R-gll, aq+llf—R gllsmo < ¢/R < 1/2,
if -R 1is large enough. By (2.20-21), llgll o < 2R+c, while by (2.21-23),
llgll e < c.
'Hence only (2.22-24) remain. By (2.14-16) and (2.5), (2.22) follows from

Lemma 2.1 ((2.10)). To prove (2.23), we require the following estimates: There
exist B> 0 and D > 0 such that

(2.25) [0 by ()] < 24" B
(2.26) |0 g (x)| < 24D

For (2.25-26), we choose B, D, and R so that B/D and D/R are
sufficiently small. By (2.14), (2.16), and the fact that Isol < ¢, (2.25) holds.
We prove (2.26) by induction on k; it is obvious for k = — 1. Assuming
(2.26) for k—1, we obtain
10" gk (X)) < R () +hy (3)| 70 gy 1 () + O Iy ()]
+ngk—1(x)+hk(x)|Im(lgk—l(x)+hk(x)r1)l

+R ¢8| g1 (0 + & I ()] | (181 1 () + I ()] )]
+8] =
etz

=1+ 411

By (2.19-20), Rlgy-y (x)+hy(x)™! <
large. Therefore by (2.26) for k-1,

S(L+g Qe DM DBy <3 20D if 0 <y <K
if ¢ and B/D are sufficiently small. To estimate II and III, let

g= lim (g~
k—+ o0

it <K
ifo<ph<K

< 1+¢ with ¢ small if R is sufficiently

F(x) = lge-1 () +h () = R+ 2g, (%) by (x) -+ [y (X))

Then (2.26) for k—1 and (2.25) imply that |&"F| <¢, 2MRB 0 <y < K
From this one can obtain |#*(F~Y%) <c¢;R™ 2249 B if B <R and
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0 <|8] € K. It follows that
I<(1+gRc,RI2MB<E- 2D if 0<p<K
oI < cyRZ“lv‘DR“zB <3 2p i 0<ly <K

if B/D and B/R are sufficiently small. Hence (2.26) holds.
We assert that we can write

@27 e =R Y  spmg(x),
ug=2"*
where
228)  |9my(x) < el(@ M (1+UQ) " Hx—xgl) MM i hl < Ko

To see this, note that by (2.18),
A () =g ([A+2~11  for ¢ = R *(2ge- 1 (0 +hy (x)) - b ().
By (2.19-20), |t] < 1; expanding (1+1)'? in a Taylor series gives

o (%) = g.() Z ¢;af (x)R™2,
where a(x) = (2g- l(x)+h,‘(x))-h,‘(x) and |gf <1 for all jeZ". Since
g—1(xg) " Po(x) =0 by (2.13), we can write
& (x) = Z SQaj_1(x)[2(gk—1(x)"gk~x(xa))+ hk(x)] "Po (X)
ug=2"*
Then (2.27) holds if we define
my(x) = i ¢; R g (x) (a(x)/RY ™ [2(8k- 1 (X) — &k 1 (xg)) + e ()] - o (%)
=1

for 1(Q) = 27*. Then if |f| <K

|5li ([2 (8k-1 () —8k-1 (x@)+he (x)] - g (x))‘
< |2(gk— 1 (X)—ge-1 (XQ))+ by (x)| [0 po ()|

+|6|+% " cé.qlaé[z(gk—l(x)_gk—l(xQ))'i"hk(x)]lIaqu(x)I

< (2D |x— x|+ B) 2481 (14 2 [x — xp) M K071 IAl

+ Y gD (1425 |x—xg) M TROTHM
Inl <8l

< ¢y D2 (14 2% [x—xp) "M 7¥0,

icm
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by (2.14) and (2.25-26). Noting that [ a| <

¢, Z MM R i (e, BY 1D (14 2% |x — Xgl)TM %o

¢p 29#1 BR if || < K, we obtain
|6 mg () <

D 2 (1 4 2| — xpf) M-I

< K, and ¢, B < R. Hence (2.28) holds.
Note that for o > 0 and p, ¢ > 1, Ny = —1 and hence (2.9) is vacuous in
this case. Therefore (2.27-28) imply (2.23) by (2.5) and Lemma 2.1. We also

if 1yl

note that Ko 2 1 for o > 0, so that (2.27-28) imply in particular

(2.29) IV (x)] < c29R.

It remains only to prove (2.24). If [mg(x)dx = 0 for each Q, then (2.24)
would follow from (2.11) in Lemma 2.1. Unfortunately, this is not the case,
and sharper estimates involving g ({x)—g,-1(xg) are required. The remain-
der of the proof follows Baernstein’s notes ([4]) on Uchiyama’s work.

The key estimate (2.24) follows easily, as in [23], p. 238, from (2.29) and
the following estimate: if I is dyadic and [(I) = 27" < 1, then

(2.30) [ 2 1o < clI/R.
I k=1
To establish (2.30), define
=Y lsol(14+2%x—xg) "L, k=0,1,2,...

uQy=2"k
Uchiyama ([23]), p. 226) proves that if I is as in (2.30), then (2.6) and the
assumption || f|lgmo < 1 imply

(231) Iy nk <cll.
Tk=1
Set t = R™2(2g,1 b, +|h? as above; then since |f| is small, |(1+5)*2~1
~41 <t Hence by (2.18) and (2.20),
(2.32) lo = RI(1+0"?—1] < R™H (e 1 byl + 5 [y + By,
where E, < ¢|h|*/R, by (2.19-20). By (2.14) and (2.16), || < ¢n, s0 that by

(2.31), (2.30) will follow from

(233) IZBk Lyl < eld],
Tk=1

for I as in (2.30). Note that we have obtained, from (2.32) and (2.19-20),
(2.34) lod <

To prove (2.33), we require the following estimates:

|y < cny.
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k-1 k-1

(235 if1<

i=k-m i=k-m

+|gk*m—1(x)_gk-m-l (y)L
(2.36) if k>0, then |g—; (%) —g-1 ) < clog(1+2*|x~y)),

and, if xeQ, ye3Q, and 1(Q) =27% <27« 1, then
k-1
(237) c(3/4) e ), (3/4) if;fa -1 (2).
i=1 ze

8k-10)—gk-1 W) <

Writing
k=1 k=1

Y lgi(o)—gi- 1x)|+ Z 12 (%)~ 811 O]

i=k—m -m
+|gk—m—1(x)—gk—m-1(y)|:

(2.35) follows from g;—g;—; = h—¢; (ie. (2.18)) and (2.34). If |x—y| <27*

(2.36) follows from (2.26); while if 2" *"* < |x—y| < 2"7% re Z*, then app-

lying (2.35) with m=r if r <k and with m=k if r > k, and using |n| < ¢
(since |sg| < c), we obtain

gx—1(¥)—ge-1 I <

lgx-1 () —gi— 1 W) < ecm+c < er+e < clog(1+2¢|x—y)).

To prove (2.37), note the elementary estimate that |a—b] < 3|a-+c—(b
+d)| if |]a| = b| =R, |¢| <R, |[d| €R, c]|a, and d||b. By (2.18-20) and (2.34),
we can apply this to a =g,_1(x), b=g,_ (), ¢ = @ (x), and d = @, (¥).
Using gu— 1+ @r-1 = g—2+h ((2.18)), we obtain

IZe— 1 (x) —8x-1 D < 2ge-2 () —Bem 2 W) +3 [y () =hy - )]-
Iteration of this result yields
k—1

lgk-1 () ~g-1 (M < (%)k—l|gl—1(x)“g1~1(y)|+ Z (%)ifhk—i(x)"hk—i(}’)[-
) i=1

Our assumptions on x and y give g, (x)—g;-, ()|

: < c2'x—y] < c2'7% by
(226). If 1 <i<k-Iand xeQ, ye3Q, and 1(Q) =

27k then by (2.16) and

(2.14),
b () ~he; ) Y I8, 1ps ()~ py )
n=2i—k
Selyl T Il sup (12 )
Wy=2i-k
<27t Y sy 1nf(1+2" Hz—x,f)~n1

n=2i=k  ze3

<27V inf n,_,(2).
ze3Q

<m<k; then g1 ()~ 10N <c L m+ec Y ny)

icm
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These estimates establish (2.37).
Returning to (2.33), use gy (xp) py =

<y 3

fz 18k~ 1 - Bl
Th=1 Ikmz,(w”—k

0 to write

fSQI 18k~ 1 (%) — 81 ()CQ)I |PQ|

“JZ z G )+§2 Y (.)=A+B.
lk"ll(%wz ~k Te=1 yoy= 2~k
Qi
By (2.36), (2.14), and |sg| < ¢
ey 5 (DT Hog(+1) < clil.
kel Jezt
VEFL

By (2.14) and (2.6),

<§Z 2

- [Sol 1k~ 1 () — 8yt (xg)! Ipgl
k=1 l(Q&‘(’_%l‘“" JeZMQ 4 JHQ) SI Q-+ JUQ)

o

<c y A+™rty x|

Jezh k=l yoye o=k Q+JHQ)
Bedr

<c Y A+TNE T

Jezh k=1 yoym gk Q+JHQ)
Qs31

[sol lgk~1 (X) =81 (o)l

|SQ'2)1/2

o

(2, X

k=1 “%;%;k Q-+ jHQ)

<c ¥ WHI) (T S

Pt k=i gy m g~k Q+INQ)
e Dl

|gk- 1 () — 81 (xQ)|2)1/2

|g1~ 1 () — g~ 1 (x0)l 2)1/2~

To estimate this last term, fix je Z" and define reZ, r > 0, by r =0 if
U< 1, while if |j] = 1, r is such that 2! <|j| < 2~ For r > 1, (2.36) gives

Ltpe1 2 j‘

(e 1 (%) =g 1 (Xo)|*
k= I(Q&Z%;k Q-+ JUQ)

Igpl

<c ¥ ¥

k=l yoysg—k
Bk

10l log? (1 +1j1) < e[| log® (1 +|j).

Now consider k 3= I-+r. With r > 1, still, let § be the unique dyadic cube of
side length 2"* containing Q. Note that since || < 2, @+j(Q) < 30. App-
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lying (2.35) with m =r and xeQ-+jl(Q), we obtain
k—1 k—1
g1 (=g (x> < ar Y nF(X)Fer Y nP (X +CZmrm 1 (%)

i=k-r i=k-r
“‘gk-r—l(xu)|2~
Applying (2.31) and noting that |jI(Q) <27 *< 27" if 1(Q) = 27k k= 1+,
we obtain

@ k—1 r o0
er Y X T @< [ ¥ 1

k=T+r ygy=2—k Q+JUQ) i=k~r i=1 51 k=1+r
031

8

<er? [ Y e <or?|SH < el log? (1+1)).
51 k=1

Similarly, noting that 7, (xg) < cf—; (%) for all xe @ if 1(Q) = 2% and i > 0,
we have

R )

k=I+r yg)= 2~k Q+JUQ) i=k~r
Q<35

,f"ll%-l(x)
-k 0
!

o0 r ’ ©

=ar Y Y Trapei<ey ¥ X
k=1+r l(Q):z'k i=1 (=1 k=T+r Q=1
Q€31 Aes

ey | Y nd-i(x) <clllog?(1-+}j).
i=1 31 k=l+r
It remains to consider |g ., (%) —g—,—1(xXg)% for k= I+r. If r=0,
this is the only term that appears. We apply (2.37) with k replaced by k—r, x
replaced by xQeQ, and y replaced by xeQ+jlI(Q) =3Q. (For r =0, set 0
= (.) Noting again that |jI(Q)| < 2" *<27!'=1I(]) for I(Q)=27% k=r+]

we obtain
o0

Z Z f ng—r—l(x)—"gk—r—l(x{z)!z

k=T+r ygy= 2=k Q+JUQD)
31

k—r—1

oo
<Yy X [ [e@* " 4e ¥ @ inf ie,-y(2)]
k=l+r yoy=2=-k Q+jl(Q) i=1 ze3Q
Qs3I

]

k

r—1
S [ e

o 0 -

<c ¥ @RI+ Y% |
=2~k i=1 Q+jUQ)

<3

k=l+r k=l+r yoy=2-
Q<3r
@ ) 0
Scll+ ¥ @ ¥ [firs
i=1  k=Ifr+i 81

<clll+ Y @151 < clll.

i=1
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Combining these estimates in our estimate for B above yields

B<elll 3, (1+1j)™"" log? (1+1j]) < e},

Jezn
which completes the proof of (2.33) and hence of the desired result. =

We make a few remarks about the result. First, the result holds with the
Riesz transforms replaced by any set of singular integral operators satisfying
Uchiyama’s condition (1.1) in [23], since that is all that is required for the
inversion problem in Lemma 2.3. (See § 2 of [23] for the proof of this)

. Second, the result holds with the Besov spaces B* in place of F’7 everywhere

(for the same «, p, and g), by the same proof, if, in (2.5) and (2.10), one
replaces
I, 0017 Isol 0]

by

o

(E ( Z (1sq) ,Q|1ln-a/n)p)q/p)1/q

vez () HQy=2"V
and uses the corresponding results from § 7 in [10] in place of Lemma 2.1.

When ¢ <1 and a > n(l/q~1).., the proof works with minor modifica-

tions, coming from the fact that |f~||F:q is only a quasi-norm for g < 1.
However, the restriction 1 < p < <400 may be essential because the Riesz
transforms are not bounded on F§ if p < 1. Our proof requires « > 0 so that
(2.9) is vacuous for our my’s. However, we do not have any reason to suspect
that the result is false for o < 0. Of particular interest would be the case of
[P=F% 1 <p< +oo. Perhaps sharper estimates like those leading to
(2.24) could also yield (2.23), and hence the result, if a = 0.

3. Smooth truncation in L*? "BMO. For simplicity, we first give the
proof of Theorem 1 for the case where « is an integer, i.e. in the case where
I is a Sobolev space. We require the following lemmas.

Lemma 3.1 (Calderdn, [5]). If 1 <p < 4o, meZ*, and pe CP(R"), then
[@limp = lollpt 3 18 @l -
1gt=m
Lemma 3.2 (Gagliardo-Nirenberg, see [15]). Suppose 1 <p < +co,

JymeZ", and j<m. Then there exists c¢=c(j, m, p) such that for all
e C§ (R,

G.1) 10 @l gy < €Nl Nl 2
holds for all multi-indices n with |n) = j.

Proof of Theorem 1 foraeZ™. By density, we may assume f €C§ (R").
Our assumptions (1.2~3) clearly imply the estimate ||H of llp S IH N oo IS Nl Lo
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By Lemma 3.1, then, it suffices to obtain

(G2 e Hofll,, < e[Ilflap+ iz(llfllu,ﬁllflimo)"],
k=

for |5} = a. But if || = a, then

(3.3) FHof = Z HY ()Y e e o,
k=1

where the second sum in (3.3) is over all sets of multi-indices in*, s n*}
such that |g!|+ ... +|7* = |yl = «. For such a set of multi-indices, letting p;
=afjy} and applying Holder’s inequality yields

k . k X
G4 ITL & 7les < TL1Zlyony

By Theorem 2, we can write f = go+y,_, Rig; With

Zn: (gl oo +11gille,) < € (1S lamo +11.f N, p)-
i=0

Using the boundedness of the Riesz transforms on L™/ and Lemma 3.2, and
setting 6, = |#'l/a, we obtain

n n
j J [} 1-8;
” allfllLPPj < c igo ”a’ gi“Lppj S 4 .'=Zo ”gi”u',’p ”gi”Lcc

< (1S lla, o+ 1A Nlpmto)-
Therefore
k

19”111 p; < €1 M 11 N
1

i=

if k=2 If k=1, then |4'| =|y| =, so that for this case
k
TTHESN oy = 12F 115 < €1 f -
=1 L

Thus (3.2) follows by using these estimates and (1.2) in (3.3). =
Remark 3.3. From (3.3), it is easy to see that the domain of any STO

on a Sobolev space can be characterized by

D(T)m,, = |f eW™P:

IS BH9G) %

k=2 B+t gk =m

Ct. gt Ff . F S, < +ool.
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For m= 2, we have the particularly simple form
D(Ti,, = {f € W™ P2 | H"(f)|7f 2], < + o0},
where Vf de:no\leg the gradient of f. Thus, any f& W™? for which the right
side of (3.4) is finite belongs to D(Ty),»- By the Sobolev imbedding theorem
this is always the case if p=n/m> 1. ’
Proof (.wf Thc}orem L fora¢Z" (sketch). Following the techniques of
Adams-Polking ([3]), we can adapt the proof above for aeZ* to the

" nonintegral case. We first require a fractional version of Lemma 3.2

Lemma 34. Suppose 1 <p<+ow, 0<0<1, a>0, and ‘peC(RY.
Then there exists ¢ = c¢(«, o, 0) such that
(35 plag, 0 < clilla,p 1ol 0

, Proof. We use the fact that the complex intermediate spaces between
Ly land the Hardy space H' are more Lebesgue spaces. More precisely,
[LF, H']p = L if r = p/1~0), 0 <0 < 1; see [9]. Hence for hel given,
there exists H: S~ L”+H', where § is the strip {ze C: 0 < Rez < 1}, such
that H is continuous and bounded on S, H is a B-valued analytic function
on the interior of S, and H(z) = H e L’ + H' satisfies Hy = h. Also,

Ml =~ inf me } .
liAll,, ”:;;})MmAX(igglszcllw > SUDIIH 4l ).
For feC§ (R™, let
g(z) = ezsz‘"f- H,dx,
where (J£)" (&) = (1+]¢]2) 21 (¢).

We nfaed the following Fourier multiplier estimates which follow from
the Mikhlin multiplier theorem (see [19], p. 232 for the H* case): for {eR,

(3.6) V5 Ny < Cap (TS s 1 <p < +00,
G IS gyt < e (LI -

Nott? that (3.7) implies that J%f][ue < ¢a(1 +IE NS N> by the H-BMO
duality ([97). Thus

Suplg (0 < ¢l il
sup lg (L+300 < e VS Moo 1 H il s -
The three lines theorem ([20]), p. 180) implies

Ig(ﬁ)l < el IS o 1] e
which yields (3.5).
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Remark 35 If 1<p,g<+ow, O<a<+ow, 0<O<1, and
@eCZ(R", a similar argument, using results from [22] on complex interpo-
lation and Fourier multipliers, yields

338 llpllgat,e < CIprllf,;qH(pHi;"-

We recover (3.5) when g = 2.

Another result needed for the fractional case is a simpler version of a
result of Polking ([8]). We state this for the F}? spaces, since that is the
context in which the proof is the most clear. We require the following results
which follow from the characterization of the F3! spaces by “ball means of
differences”; see Triebel [22], Ch. 2.5.11. These results go back to Strichartz
([21]) in the Bessel potential case. Let

D5 (9)(x) = (Z[

for peC§ (RY.
Lemma 3.6. (a) If O0<a <1, 1 <p,q < 400, and peC§ (R"), then

| lo(x+ey)—oX)dy]¥ o=t = dg)'

Iyl <1

19llpza 10l 5 11074 ()] -

O If1<r<p,g=s/r>1,0<a<1,and peCF(R"), then there exists
c=cla, p,r,s,n) such that t

D% (@Ml < clielipzs.

Finally, we need the two following, more elementary facts ([22], [18]): if
1 <p< 4o and e CF(R"), then

(39) 9llpes = 3 118 @l a~tara +1ip gata1as
‘ PoolE=m o P
Cand, if 0'< 2, p<1 and ¢, yeCP(R", then

G100 DRy < o] Dy s () + 11 D75 (@) + D3 o1 (@) DT 2 1 -y ().

With these facts, the proof follows as in [3]. We use Theorem 2 above
to obtain the following estimate: for 0 <o <a—[a], (¢] < [a], 7 = a/(a+]&)),
and t = apf(oc+|&)), we have

D720 (@l < NS lloe S € 3 1 Gillo-
j=0
Then by Lemma 3.4,
D22 (BN < € 3 Ngille o llgilh =’ < e U Nlep + 11 f ano)s
=0

where now 0 =(o+|&)/x. w
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Remark 3.7. We have written the lemmas for the case a¢Z in the
contexl: of the F! spaces to make a point about the possible validity of the
result in general for feF3. In fact, the above arguments can be carried
through to obtain

[2]
(3.11) [I1H Of”pa;,’l < ‘—'[”f”,;;q*‘kz, (”f||p;q+”f||amo)k]

ifO<a¢Z, | <p< o0, and 1 <g <2 Itisnot known if (3.11) is valid for
other values of ¢. However, the difficulty involved for the case aesZ can be
illustrated by considering the case o = 1. We wish to show that if fe Fl4,
then HofeF and H' () ¥ /0x,e F38. Certainly of /0%, F%, but it is not
clear that H'(f) is a pointwise multiplier for F%. If 4 = 2 this is obvious
since F9* = LP and H'(f)e L™, but L* does not in general multiply F% if
q # 2 (see [12]). However, if H'(f) is Holder continuous of any order, then it
is a pointwise multiplier on F (see [217, p. 1043). Thus the result for o = 1
holds if p > n since H'(f) is Holder continuous if f is (when H" is bounded),
and Ff functions are Holder continuous when o > n/p.
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Analytic stochastic processes
by
K. URBANIK (Wroclaw)

Absteact, A concept of analytic stochastic process with respect to a given Brownian motion
is introduced. In terms ‘of the random Fourier transform a relationship between analytic
processes and some classes of entire functions is cstablished.

1. Preliminaries and notation. Throughout this paper R and C will
denote the real and the complex field respectively. A seminorm induced by a
Hermitian bilinear form on a linear space over € will be called a Hermitian
seminorm. Let T&(0, ou]. We shall be concerned with locally convex com-
plete topological linear spaces # with the topology defined by a separating
family {p,: te(0, T)} of Hermitian seminorms fulfilling the following condi-
tion: for every pair 1, ue(0, 7), t <u, there exists a positive number ¢
=c(t, u) such that p, < cp,. It is evident that cach countable system p, with
t,— T determines the same topology in #. Hence it follows that &4 is a By-
space ([6], p. 59). It is convenient to have a term for such a space 4 with a
fixed family {p,: 1€(0, 7). There is no standard term for this, but we shall
say in this paper that &' is a local Hilbert space. Two local Hilbert spaces &'
and 4" with the families of seminorms {p,: te(0, T)} and {p;: te(0, T}
respectively are said to be isomorphic if T'= T’ and there exists a linear map
Ffrom & onto %" such that P(x) = pi(1(x)) for all xe & and te(0, T).

Let &, (n=1,2,...) be a sequence of local Hilbert spaces with the
families {p,,: te(0, TV} of seminorms respectively. Moreover, we assume that
for every pair t, ue(0, T), 1 « u, there exists a positive number ¢ = c¢(t, u)
such that p,, < ep,,, for all n. The orthogonal sum w1 4, s defined as the
sel of all sequences x == {x,} where x,e& @, and ¥ 'pZ,(x,) < oo (t&(0, T))
with addition and scalar multiplication defined” coordinatewise and the
topology determined by the Hermitian seminorms

o

P = (3 PR (e, 1),

ns

It is clear that this orthogonal sum is also a local Hilbert space.
Given n 1 and >0 we put

A (@) = {(ty, oo, 1) 0K <ty <t

3~ Studin Mathematica 89,3
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