- [15] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162.
- [16] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130.
- [17] -, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Duke Univ., Durham, N.C. 1976.
- [18] J. Polking, A Leibniz formula for some differentiation operators of fractional order, Indiana Univ. Math. J. 21 (1972), 1019-1029.
- [19] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.
- [20] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971.
- [21] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.
- [22] H. Triebel, Theory of Function Spaces, Monographs in Math. 78, Birkhäuser, Basel 1983.
- [23] A. Uchiyama, A constructive proof of the Fefferman-Stein decomposition of BMO(R"). Acta Math. 148 (1982), 215-241.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY Lexington, Kentucky 40506, U.S.A. and

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NEW MEXICO Albuquerque, New Mexico 87131, U.S.A.

Received December 22, 1986

(2259)

Analytic stochastic processes

by

K. URBANIK (Wrocław)

Abstract. A concept of analytic stochastic process with respect to a given Brownian motion is introduced. In terms of the random Fourier transform a relationship between analytic processes and some classes of entire functions is established.

1. Preliminaries and notation. Throughout this paper R and C will denote the real and the complex field respectively. A seminorm induced by a Hermitian bilinear form on a linear space over C will be called a Hermitian seminorm. Let $T \in (0, \infty]$. We shall be concerned with locally convex complete topological linear spaces & with the topology defined by a separating family $\{p_i: t \in (0, T)\}\$ of Hermitian seminorms fulfilling the following condition: for every pair $t, u \in (0, T), t < u$, there exists a positive number c = c(t, u) such that $p_t \le cp_u$. It is evident that each countable system p_{t_u} with $t_n \to T$ determines the same topology in \mathscr{X} . Hence it follows that \mathscr{X} is a B_0 space ([6], p. 59). It is convenient to have a term for such a space ${\mathscr X}$ with a fixed family $\{p_t: t \in (0, T)\}$. There is no standard term for this, but we shall say in this paper that $\mathscr X$ is a local Hilbert space. Two local Hilbert spaces $\mathscr X$ and \mathscr{X}' with the families of seminorms $\{p_t: t \in (0, T)\}$ and $\{p'_t: t \in (0, T')\}$ respectively are said to be isomorphic if T = T' and there exists a linear map I from \mathscr{X} onto \mathscr{X}' such that $p_t(x) = p'_t(l(x))$ for all $x \in \mathscr{X}$ and $t \in (0, T)$.

Let \mathcal{X}_n (n = 1, 2, ...) be a sequence of local Hilbert spaces with the families $\{p_{n,t}: t \in (0, T)\}\$ of seminorms respectively. Moreover, we assume that for every pair $t, u \in (0, T)$, t < u, there exists a positive number c = c(t, u)such that $p_{n,i} \leq c p_{n,u}$ for all n. The orthogonal sum $\bigoplus_{n=1}^{\infty} \mathscr{X}_n$ is defined as the set of all sequences $x = \{x_n\}$ where $x_n \in \mathcal{X}_n$ and $\sum_{n=1}^{\infty} p_{n,t}^{2}(x_n) < \infty$ $(t \in (0, T))$ with addition and scalar multiplication defined coordinatewise and the topology determined by the Hermitian seminorms

$$p_t(x) = \left(\sum_{n=1}^{\infty} p_{n,t}^2(x_n)\right)^{1/2} \quad (t \in (0, T)).$$

It is clear that this orthogonal sum is also a local Hilbert space. Given $n \ge 1$ and t > 0 we put

$$A_n(t) = \{(t_1, \ldots, t_n): 0 \le t_1 \le \ldots \le t_n < t\}.$$

^{5 -} Studia Mathematica 89,3

The space $L_{n,T}^2$ consists of all Borel complex-valued functions f on $\Delta_n(T)$ with finite Hermitian seminorms

$$(1.1) q_{n,t}(f) = \left(t^{-1} \int_{A_{n}(t)} |f(t_{1}, \ldots, t_{n})|^{2} dt_{1} \ldots dt_{n}\right)^{1/2} (t \in (0, T)).$$

It is evident that $L_{n,T}^2$ is a local Hilbert space and for t < u

$$q_{n,t} \le (u/t)^{1/2} q_{n,u} \quad (n = 1, 2, \ldots).$$

Let (Ω, B_{Ω}, P) be a probability space. Throughout this paper $W = W(t, \omega)$ ($\omega \in \Omega$) will denote the standard Brownian motion on the half-line $[0, \infty)$. Let $B_{\Omega}^{W}(s)$ be the σ -field generated by the random variables $W(t, \omega)$ ($0 \le t \le s$) and B_s the σ -field of Borel subsets of the interval [0, s]. The space \mathcal{M}_T consists of all complex-valued stochastic processes $X = X(t, \omega)$ ($t \in [0, T), \omega \in \Omega$) such that for every $s \in [0, T)$ the function of two variables $X(t, \omega)$ is $B_s \times B_{\Omega}^{W}(s)$ -measurable on $[0, s] \times \Omega$ and the Hermitian seminorms

(1.2)
$$||X||_{t} = \left(t^{-1} \int_{0}^{t} \int_{\Omega} |X(u, \omega)|^{2} P(d\omega) du\right)^{1/2} \quad (t \in (0, T))$$

are finite. Here we identify two stochastic processes X and Y whenever $\|X-Y\|_t=0$ for all $t\in(0,\ T)$. It is evident that \mathcal{M}_T is a local Hilbert space. In the sequel we shall use the notation

$$(X, Y)_t = t^{-1} \int_0^t \int_0^t X(u, \omega) \, \overline{Y}(u, \omega) \, P(d\omega) \, du \qquad (t \in (0, T)).$$

It is known that for every $X \in \mathcal{M}_T$ the Itô integral

$$(IX)(t, \omega) = \int_{0}^{t} X(u, \omega) dW(u, \omega) \quad (t \in [0, T])$$

is well defined and the function of two variables $(IX)(t,\omega)$ is $B_s \times B_s^W(s)$ -measurable on $[0,s] \times \Omega$ for every $s \in [0,T)$ ([4], Ch. 4.2). Moreover, for all $X, Y \in \mathcal{M}_T$ we have the equalities

(1.3)
$$\int_{\Omega} (IX)(u, \omega) P(d\omega) = 0,$$

(1.4)
$$\int_{\Omega} (IX)(u, \omega)(\overline{IY})(u, \omega) P(d\omega) = \int_{0}^{u} \int_{\Omega} X(v, \omega) \overline{Y}(v, \omega) P(d\omega) dv$$

([5], p. 97). Hence it follows that $||IX||_t \le t^{1/2} ||X||_t$ ($t \in (0, T)$) and, consequently, the Itô integral I is a continuous linear operator on \mathcal{M}_T . Put

$$(SX)(t, \omega) = tX(t, \omega) \quad (t \in [0, T), X \in \mathcal{M}_T).$$

It is evident that $SX \in \mathcal{M}_T$ and $||SX||_t \le t ||X||_t$ for $t \in (0, T)$. Thus S is also a continuous linear operator on \mathcal{M}_T .

The process identically equal to a complex number c will be briefly denoted by c. Of course, $c \in \mathcal{M}_T$. Put

$$G_1(k) = S^k 1$$
 $(k = 0, 1, ...)$

and for $n \ge 2$ and every n-tuple (k_1, \ldots, k_n) of nonnegative integers

$$G_n(k_1, \ldots, k_n) = S^{k_n} I S^{k_{n-1}} I \ldots S^{k_2} I S^{k_1} 1.$$

Evidently $G_n(k_1, \ldots, k_n) \in \mathcal{M}_T$,

$$(1.5) IG(k_1, \ldots, k_n) = G_{n+1}(k_1, \ldots, k_n, 0),$$

$$(1.6) SG_n(k_1, \ldots, k_n) = G_n(k_1, \ldots, k_{n-1}, k_n + 1)$$

and, by (1.4), for $n \leq m$

$$(1.7) \left(G_n(k_1,\ldots,k_n), G_m(l_1,\ldots,l_m)\right)_l = t^{-1} \delta_n^m \int_{A_n(l)} t_1^{k_1+l_1} \ldots t_n^{k_n+l_n} dt_1 \ldots dt_n.$$

Denote by $\mathscr{M}_T^{(n)}$ the subspace of \mathscr{M}_T spanned by the processes $G_n(k_1,\ldots,k_n)$ $(k_j=0,1,\ldots;j=1,\ldots,n)$. From (1.7) it follows that $(X,Y)_t=0$ for all $t\in(0,T)$ whenever $X\in\mathscr{M}_T^{(n)}$, $Y\in\mathscr{M}_T^{(n)}$ and $n\neq m$. The remarkable theorem of Wiener on homogeneous chaos ([11], [8], p. 407) can be formulated as follows:

$$\mathcal{M}_T = \bigoplus_{n=1}^{\infty} \mathcal{M}_T^{(n)}.$$

Since $G_1(k)(t, \omega) = t^k$ we can deduce from (1.1), (1.2) and (1.7) that $X \in \mathcal{M}_T^{(1)}$ if and only if $X(t, \omega) = f(t)$ where $f \in L^2_{1,T}$. Moreover, in this case we have the equality $||X||_t = q_{1,t}(f)$ ($t \in (0, T)$). Thus $\mathcal{M}_T^{(1)} = L^2_{1,T}$. In order to describe the subspaces $\mathcal{M}_T^{(n)}$ for $n \ge 2$ we must define the iterated Itô integral

$$(I^{(n-1)}f)(t,\omega) = \int_{A_{n-1}(t)} f(u_1,\ldots,u_{n-1},t) dW(u_1,\omega) \ldots dW(u_{n-1},\omega)$$

for all $f \in L^2_{n,T}$. First we define it on monomials $g(t_1, \ldots, t_n) = t_1^{k_1} \ldots t_n^{k_n}$ by setting $I^{(n-1)}g = G_n(k_1, \ldots, k_n)$. Using (1.1), (1.2) and (1.7) we extend this mapping by linearity to an isomorphism from $L^2_{n,T}$ onto $\mathcal{M}_T^{(n)}$. The inverse mapping and (1.8) define the projection H_n from \mathcal{M}_T onto $L^2_{n,T}$ with the following properties:

(1.9)
$$||X||_t^2 = \sum_{n=1}^\infty q_{n,t}^2(\Pi_n X) \quad (t \in (0, T)),$$

 $H_n \mathcal{M}_T^{(m)} = \{0\}$ if $n \neq m$, H_1 is the identity operator on $\mathcal{M}_T^{(1)}$ and

$$(1.10) II_n I^{(n-1)} f = f$$

if $f \in L^2_{n,T}$ and $n \ge 2$. In other words, the local Hilbert spaces \mathcal{M}_T and $\bigoplus_{n=1}^{\infty} L^2_{n,T}$ are isomorphic. Moreover, by (1.5) and (1.6), for $X \in \mathcal{M}_T$ we have

the equalities

(1.11)
$$(\Pi_1 IX)(t_1) = 0 \quad (t_1 \in [0, T))$$

and for $(t_1, \ldots, t_n) \in \Delta_n(T)$

$$(1.12) (\Pi_n IX)(t_1, \ldots, t_n) = (\Pi_{n-1} X)(t_1, \ldots, t_{n-1}) (n \ge 2),$$

$$(1.13) (\Pi_n SX)(t_1, \ldots, t_n) = t_n(\Pi_n X)(t_1, \ldots, t_n) (n \ge 1).$$

Suppose that a subspace $\tilde{\mathscr{Y}}$ of \mathscr{M}_T contains 1 and is invariant under the operator S. Then $\tilde{\mathscr{Y}}$ contains all polynomials and, by the equality $\mathscr{M}_T^{(1)} = L_{1,T}^2$, we have the inclusion $\mathscr{M}_T^{(1)} \subset \tilde{\mathscr{Y}}$. Assuming in addition that \mathscr{Y} is invariant under the operator I we prove inductively, by virtue of (1.5) and (1.6), that $\mathscr{M}_T^{(n)} \subset \tilde{\mathscr{Y}}$ $(n=1,2,\ldots)$, which, by (1.8), yields $\tilde{\mathscr{Y}} = \mathscr{M}_T$. Thus we have the following statement.

Proposition 1.1. A subspace of \mathcal{M}_T containing 1 and invariant under both operators I and S coincides with \mathcal{M}_T .

The Hermite polynomials $h_n(t, x)$ (n = 0, 1, ...) of two variables are uniquely determined by the generating function

(1.14)
$$\sum_{n=0}^{\infty} c^n h_n(t, x) = \exp(cx - \frac{1}{2}c^2 t).$$

By standard calculation we get the following formulae:

$$(1.15) h_n(t, x) h_m(t, x) = \sum_{k=0}^n \binom{n+m-2k}{n-k} \frac{t^k}{k!} h_{n+m-2k}(t, x) (n \leq m),$$

(1.16)
$$(2\pi t)^{-1/2} \int_{-\infty}^{\infty} h_n(t, x) h_m(t, x) \exp\left(-\frac{x^2}{2t}\right) dx = \delta_m^n \frac{t^n}{n!}.$$

The stochastic processes defined by the formula

$$H_n(t, \omega) = h_n(t, W(t, \omega)) \quad (n = 0, 1, \ldots)$$

are called the *Hermite processes*. They play an important role in stochastic analysis. By (1.16) we have the formula

(1.17)
$$\int_{\Omega} H_n(t, \omega) H_m(t, \omega) P(d\omega) = \delta_m^n \frac{t^n}{n!},$$

which yields

(1.18)
$$(H_n, H_m)_t = \delta_m^n \frac{t^n}{(n+1)!} (t \in (0, \infty)).$$

Consequently, $H_n \in \mathcal{M}_T$ for every $T \in (0, \infty]$ and n = 0, 1, ... Since $H_0 = 1$

and

$$(1.19) IH_n = H_{n+1} (n = 0, 1, ...)$$

([5], Ch. 2.7), we have $H_n = I^n 1 = G_{n+1}(0, ..., 0)$. Consequently,

(1.20)
$$H_n \in \mathcal{M}_T^{(n+1)} \quad (n = 0, 1, ...)$$

and, by (1.11) and (1.12),

(1.21)
$$(\Pi_n H_k)(t_1, \ldots, t_n) = \delta_{k+1}^n \quad (n = 1, 2, \ldots; k = 0, 1, \ldots)$$

for $(t_1, \ldots, t_n) \in A_n(T)$.

2. Processes synchronically connected with the Brownian motion. Let N_T be the space of all Borel complex-valued functions f of two variables defined in the strip $[0, T) \times R$ with finite Hermitian seminorms

$$(2.1) q_t(f) = \left(t^{-1} \int_0^t \int_{-\infty}^{\infty} |f(u, x)|^2 (2\pi u)^{-1/2} \exp\left(-\frac{x^2}{2u}\right) dx du\right)^{1/2} (t \in (0, T)).$$

It is clear that N_T is a local Hilbert space. Moreover, it is easy to check that the functions $t^k h_n(t, x)$ (k, n = 0, 1, ...) belong to N_T .

Lemma 2.1. The linear span of the functions $t^k h_n(t, x)$ (k, n = 0, 1, ...) is dense in N_T .

Proof. By (1.16) we have the formula

$$q_t^2(t^k h_n(t, x)) = \frac{t^{n+2k+1}}{n!(n+2k+1)} \quad (t \in (0, T)).$$

Hence it follows that for every $c \in C$ the series $\sum_{n=0}^{\infty} c^n t^k h_n(t, x)$ is convergent in N_T . By (1.14) its sum $t^k \exp(cx - \frac{1}{2}c^2t)$ belongs to the closure of the linear span of the functions $t^k h_n(t, x)$ (n = 0, 1, ...).

Suppose that a continuous linear functional L on N_T vanishes on the functions $t^k h_n(t, x)$ (k, n = 0, 1, ...). Introducing the notation $g_{k,a}(t, x) = t^k \exp(iax + \frac{1}{2}a^2t)$ $(k = 0, 1, ...; a \in \mathbb{R})$ we have the equality

(2.2)
$$L(g_{k,a}) = 0 \quad (k = 0, 1, ...; a \in \mathbb{R}).$$

Since N_T is a B_0 -space, we infer, by the Mazur-Orlicz Theorem ([6], p. 119), that the functional L is of the form

$$L(f) = \int_{0-\infty}^{v} \int_{0-\infty}^{\infty} l(u, x) f(u, x) (2\pi u)^{-1/2} \exp\left(-\frac{x^2}{2u}\right) dx du,$$

where $v \in (0, T)$, l is a Borel complex-valued function in the strip $[0, v] \times R$ and $q_v(l) < \infty$. Setting

$$g(t, x) = l(t, x) \exp\left(-\frac{x^2}{2t}\right)$$
 $(t \in [0, v], x \in \mathbb{R})$

we infer that $\int_{-\infty}^{\infty} |g(t, x)| dx < \infty$ for almost all $t \in [0, v]$ and

$$L(g_{k,a}) = \int_{0}^{v} u^{k} (2\pi u)^{-1/2} \exp(\frac{1}{2} a^{2} u) \int_{-\infty}^{\infty} e^{iax} g(u, x) dx du$$

which, by (2.2), yields q=0 almost everywhere in the strip $[0, v] \times R$. Consequently, L=0 on N_T , which completes the proof.

LEMMA 2.2. If
$$f \in N_T$$
 and $g(t, x) = \int_0^x f(t, y) dy$, then $g \in N_T$.

Proof. First we observe that the finiteness of the seminorms (2.1) yields the finiteness of the integral $\int_0^x |f(u, y)| dy$ for almost all $u \in [0, T)$ and all $x \in \mathbb{R}$. Thus the function g is well defined in the strip $[0, T) \times \mathbb{R}$. Applying the Schwarz inequality we get

$$|g(u, x)|^2 \le x \int_0^x |f(u, y)|^2 dy \quad (u \in [0, T), x \in R).$$

Consequently, for every positive number b we have the inequality

$$\int_{-b}^{b} |g(u, x)|^{2} \exp\left(-\frac{x^{2}}{2u}\right) dx \leqslant \int_{-b}^{b} x \int_{0}^{x} |f(u, y)|^{2} dy \exp\left(-\frac{x^{2}}{2u}\right) dx.$$

Integrating by parts we finally obtain

$$\int_{-b}^{b} |g(u, x)|^2 \exp\left(-\frac{x^2}{2u}\right) dx \leqslant u \int_{-b}^{b} |f(u, x)|^2 \exp\left(-\frac{x^2}{2u}\right) dx.$$

The above inequality yields

$$q_t^2(g) \le tq_t^2(f)$$
 $(t \in (0, T)),$

which completes the proof.

A stochastic process X from \mathcal{M}_T is said to be synchronically connected with the Brownian motion W if it is of the form $X(t, \omega) = f(t, W(t, \omega))$, where f is a Borel complex-valued function defined in the strip $[0, T) \times R$. The set of all processes synchronically connected with W will be denoted by \mathcal{N}_T .

Proposition 2.1. \mathcal{N}_T is a subspace of \mathcal{M}_T . The map $f \to f(t, W(t, \omega))$ is an isomorphism between local Hilbert spaces N_T and \mathcal{N}_T .

Proof. Suppose that $X(t, \omega) = f(t, W(t, \omega))$. Then, by (1.2) and (2.1), $||X||_t = q_t(f)$. Consequently, $X \in \mathcal{N}_T$ if and only if $f \in N_T$. Since N_T is a local Hilbert space, we conclude that \mathcal{N}_T is a subspace of \mathcal{M}_T and the map f $\rightarrow f(t, W(t, \omega))$ is an isomorphism from N_T onto \mathcal{N}_T .

THEOREM 2.1. The following conditions are equivalent:

(i)
$$X \in \mathcal{N}_T$$
.

- (ii) $(\Pi_n X)(t_1, \ldots, t_n) = g_n(t_n)$ $(n = 1, 2, \ldots)$. (iii) $X(t, \omega) = \sum_{n=0}^{\infty} f_n(t) H_n(t, \omega)$ where

$$||X||_t^2 = t^{-1} \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^t |f_n(u)|^2 u^n du < \infty \qquad (t \in (0, T)).$$

The functions f_n and g_n are connected by the relation $f_n = g_{n+1}$ (n = 0, 1, ...).

Proof. (i) \Rightarrow (ii). Put

$$X_{k,m}(t,\omega) = t^k H_m(t,\omega) = t^k h_m(t,W(t,\omega))$$
 $(k, m = 0, 1, ...).$

By Lemma 2.1 and Proposition 2.1 the linear span of $X_{k,m}$ (k, m = 0, 1, ...)is dense in \mathcal{N}_T . Consequently, it suffices to prove (ii) for the processes $X_{k,m}$ only. Using (1.13) and (1.21) we have

$$(\Pi_n X_{k,m})(t_1, \ldots, t_n) = \delta_{m+1}^n t_n^k \quad (n = 1, 2, \ldots; k, m = 0, 1, \ldots),$$

which completes the proof.

(ii) \Rightarrow (iii). Suppose that the projections $\Pi_n X$ are of the form (ii). Then, by the definition of the iterated Itô integral we have the formula $(I^{(n-1)}\Pi_n X)(t, \omega) = g_n(t)(I^{n-1}1)(t, \omega) = g_n(t)H_{n-1}(t, \omega) \quad (n = 1, 2, ...).$ Consequently, $g_n(t) H_{n-1}(t, \omega)$ is the projection of X onto $\mathcal{M}_T^{(n)}$. Thus, taking into account (1.8), we get a series representation

$$X(t, \omega) = \sum_{n=1}^{\infty} g_n(t) H_{n-1}(t, \omega).$$

Finally from (1.1) and (1.9) we get the formula

$$||X||_t^2 = t^{-1} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \int_0^t |g_n(u)|^2 u^{n-1} du \quad (t \in (0, T)),$$

which yields condition (iii).

(iii) \Rightarrow (i). Suppose now that X has a series representation (iii). Then, by Proposition 2.1, the series $f(t, x) = \sum_{n=0}^{\infty} f_n(t) h_n(t, x)$ is convergent in N_T and $X(t, \omega) = f(t, W(t, \omega))$. The theorem is thus proved.

We conclude this section with some comments concerning pointwise multiplication of stochastic processes. A subspace \mathscr{Y} of \mathscr{M}_T is said to be invariant under multiplication if $XY \in \tilde{\mathcal{Y}}$ provided $X, Y \in \tilde{\mathcal{Y}}$ and $XY \in \mathcal{M}_T$. It is evident that the space \mathcal{N}_T is invariant under multiplication. On the other hand, we have the following statement.

Proposition 2.2. A subspace of \mathcal{M}_T containing 1 and invariant under multiplication and Itô integration coincides with \mathcal{M}_T .

Proof. Suppose that a subspace $\check{\mathscr{Y}}$ of \mathscr{M}_T fulfils the above conditions. Since $H_n = I^n 1$, we infer that $H_n \in \mathcal{Y}$ (n = 0, 1, ...). Further, from (1.15) we

get the formula $t = H_1^2(t, \omega) - 2H_2(t, \omega)$. Thus $tX(t, \omega) \in \mathcal{Y}$ whenever $X \in \mathcal{Y}$. In other words, the subspace \mathcal{Y} is invariant under the operator S and our assertion is an immediate consequence of Proposition 1.1.

3. Analytic processes. We begin with a simple lemma.

LEMMA 3.1. Suppose that $X, Y \in \mathcal{M}_T$ and X = IY + c where $c \in C$. Then for every pair $t, u \in (0, T), t < u$

$$|c|^2 + u^{-1} t(u-t) ||Y||_t^2 \le ||X||_u^2$$

Proof. From (1.3) and (1.4) integrating by parts we get the equality

$$||X||_{u}^{2} = |c|^{2} + u^{-1} \int_{0}^{u} (u - v) \int_{\Omega} |Y(v, \omega)|^{2} P(d\omega) dv.$$

Since $\int_0^u (u-v) \int_{\Omega} |Y(v,\omega)|^2 P(d\omega) dv \ge t(u-t) ||Y||_t^2$, we obtain the assertion of the lemma.

In view of the above lemma we may conclude that the representation X = IY + c is unique provided it exists. If this is the case the process Y will be denoted by $D_t X$ and called the Itô derivative of X. The domain $\mathcal{D}_T(D_t)$ of the operator D_I in \mathcal{M}_T consists of all processes of the form IY+c with $Y \in \mathcal{M}_T$ and $c \in C$. By Lemma 3.1 the linear map D_I from $\mathcal{D}_T(D_I)$ into \mathcal{M}_T is continuous.

The k-th Itô derivative D_t^k (k = 1, 2, ...) is defined inductively: $X \in \mathcal{D}_T(D_I^k)$ whenever $D_I^{k-1} X \in \mathcal{D}_T(D_I)$ and then we put $D_I^k X = D_I(D_I^{k-1} X)$. It is evident that $H_n \in \mathcal{D}_T(D_I^k)$ (k = 1, 2, ...; n = 0, 1, ...) and, by (1.19), $D_I^k H_n = 0 \ (n = 0, 1, ..., k-1)$ and $D_I^k H_n = H_{n-k} \ (n = k, k+1, ...)$. Moreover, one can easily prove that the domain $\mathcal{D}_T(D_I^k)$ consists of all processes of the form $I^k Y + \sum_{j=0}^{k-1} c_j H_j$ where $Y \in \mathcal{M}_T$ and $c_0, c_1, \ldots, c_{k-1} \in C$.

A process \overline{X} from \mathcal{M}_T is called analytic if it is infinitely Itô differentiable, i.e. if $X \in \bigcap_{k=1}^{\infty} \mathscr{D}_T(D_I^k)$. The set of all analytic processes from \mathscr{M}_T will be denoted by \mathcal{A}_T . For two-parameter stochastic processes defined on the positive quadrant of the plane a concept of analyticity with respect to the Brownian sheet in terms of path independent integrals has been introduced and studied by R. Cairoli and J. B. Walsh in [2], [3], [9] and [10].

Various characterizations of analytic processes are given by the following theorem.

THEOREM 3.1. The following conditions are equivalent:

- (i) $X \in \mathcal{A}_T$.
- (ii) $(\Pi_n X)(t_1, \ldots, t_n) = c_n \in C \ (n = 1, 2, \ldots).$ (iii) $X = \sum_{n=0}^{\infty} a_n H_n \ and \ \limsup_{n \to \infty} n^{-1/2} |a_n|^{1/n} \le (eT)^{-1/2}.$
- (iv) $X(t, \omega) \in f(t, W(t, \omega))$ where $f \in N_T$,

$$\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0 \qquad (t \in [0, T), x \in \mathbb{R})$$

and f can be extended to an analytic function $f(z_1, z_2)$ of two complex variables in the strip $|z_1| < T$, $z_2 \in C$.

(v)
$$IX \in \mathcal{N}_T$$
.

(vi)
$$X \in \mathcal{N}_T \cap \mathcal{D}_T(D_I)$$
.

Proof. (i) \Rightarrow (ii). Given an arbitrary positive integer n we have $X \in \mathcal{D}_T(D_I^n)$. Consequently, $X = I^n Y_n + \sum_{j=0}^{n-1} c_j(n) H_j$ for some $Y_n \in \mathcal{M}_T$ and $c_0(n), c_1(n), \ldots, c_{n-1}(n) \in C$. Applying formulae (1.11), (1.12) and (1.21) we get the equality

$$(II_n X)(t_1, \ldots, t_n) = c_{n-1}(n),$$

which yields condition (ii).

(ii) \Rightarrow (iii). By Theorem 2.1 the process X has a series representation X $=\sum_{n=0}^{\infty}a_nH_n$ and

(3.1)
$$||X||_t^2 = \sum_{n=0}^{\infty} |a_n|^2 t^n / (n+1)! < \infty \quad (t \in (0, T)).$$

In other words, the radius of convergence of the power series

$$\sum_{n=0}^{\infty} |a_n|^2 z^n / (n+1)!$$

is at least T, which yields the inequality

$$\limsup_{n \to \infty} n^{-1/2} |a_n|^{1/n} \le (eT)^{-1/2}.$$

(iii) \Rightarrow (iv). Taking the series representation (iii) of X we conclude, by the Rosenbloom-Widder Theorems ([7], Theorems 5.3 and 5.5) that the series $f(z_1, z_2) = \sum_{n=0}^{\infty} a_n h_n(z_1, z_2)$ converges absolutely and uniformly on every compact subset of the strip $|z_1| < T$, $z_2 \in C$. Thus f is an analytic function in this strip. Moreover, $\partial f/\partial t + \frac{1}{2} \partial^2 f/\partial x^2 = 0$. Since $X(t, \omega)$ = $f(t, W(t, \omega))$, we obtain condition (iv).

(iv) \Rightarrow (v). Taking the representation (iv) of X we put

$$h(t) = -\frac{1}{2} \frac{\partial}{\partial x} f(t, x) \bigg|_{x=0}, \quad g(t, x) = \int_0^x f(t, y) dy + \int_0^t h(u) du.$$

Then, by Lemma 2.2, $g \in N_T$. Moreover,

$$\frac{\partial g}{\partial t} + \frac{1}{2} \frac{\partial^2 g}{\partial x^2} = 0, \quad \frac{\partial g}{\partial x} = f.$$

Now applying the Itô formula ([5], Ch. 2.6, [4], p. 118) and Proposition 2.1 we get the formula

$$(IX)(t, \omega) = g(t, W(t, \omega)) \in \mathcal{N}_T$$

 $(v) \Rightarrow (ii)$. If $IX \in \mathcal{N}_T$, then, by part (ii) of Theorem 2.1, we have

$$(\Pi_n IX)(t_1, \ldots, t_n) = g_n(t_n) \quad (n = 1, 2, \ldots).$$

On the other hand, by (1.12),

$$(\Pi_n IX)(t_1, \ldots, t_n) = (\Pi_{n-1} X)(t_1, \ldots, t_{n-1}) \quad (n = 2, 3, \ldots).$$

Comparing these equalities we infer that the functions $(\Pi_n X)(t_1, \ldots, t_n)$ (n = 1, 2, ...) are constant.

(iii) \Rightarrow (i). Suppose that X has a series representation (iii). Put X_k $=\sum_{n=0}^{\infty} a_{n+k} H_n$ (k=1, 2, ...). Since

$$\limsup_{n \to \infty} n^{-1/2} |a_{n+k}|^{1/n} \le (eT)^{-1/2},$$

we infer, by (3.1), that $||X_k||_t < \infty$ for all $t \in (0, T)$. Consequently, $X_k \in \mathcal{M}_T$. Moreover, by (1.19),

$$X = I^k X_k + \sum_{j=0}^{k-1} a_j H_j$$
 $(k = 1, 2, ...),$

which yields $X \in \mathcal{D}_T(D_I^k)$ (k = 1, 2, ...).

We have thus proved that conditions (i)-(v) are equivalent. It remains to consider condition (vi). If $X \in \mathcal{A}_T$, then, by (ii) and Theorem 2.1, $X \in \mathcal{N}_T$. Since $\mathscr{A}_T \subset \mathscr{D}_T(D_I)$, we get condition (vi). Conversely, suppose that $X \in \mathcal{N}_T \cap \mathcal{D}_T(D_I)$. Then X = IY + c, where $Y \in \mathcal{M}_T$ and $c \in \mathbb{C}$. Hence it follows that $IY \in \mathcal{N}_T$ and, consequently, the process Y fulfils condition (ii). Using formulae (1.11) and (1.12) we conclude that the process X fulfils this condition too. The theorem is thus proved.

From part (ii) of the theorem just proved and from Theorem 2.1 it follows that \mathcal{A}_T is a subspace of \mathcal{N}_T and, consequently, it is also a local Hilbert space.

THEOREM 3.2. A subset \mathcal{B} of \mathcal{A}_T is conditionally compact if and only if

$$(3.2) \sup\{X|_t\colon X\in\mathscr{B}\}<\infty$$

for all $t \in (0, T)$.

Proof. The necessity of (3.2) is evident. To prove the sufficiency we introduce the notation

$$c_m(t) = \sup \left\{ \sum_{n=m}^{\infty} |a_n|^2 t^n / (n+1)! \colon X \in \mathcal{B} \right\} \quad (t \in (0, T))$$

where $X = \sum_{n=0}^{\infty} a_n H_n$. It is clear that

$$c_{m+1}(t) \le c_m(t)$$
 $(m = 0, 1, ...)$

and for $t, u \in (0, T), t < u$

$$c_m(t) t^{-m} u^m \le c_m(u) \quad (m = 0, 1, ...),$$

which vields

$$c_m(t) \le u^{-m} t^m c_0(u) \quad (m = 0, 1, ...).$$

Since, by (3.1) and (3.2), $c_0(u) < \infty$, we have

(3.3)
$$\lim_{m \to \infty} c_m(t) = 0 \quad (t \in (0, T)).$$

By (3.2), for any n the coefficients a_n are uniformly bounded for $X \in \mathcal{B}$. Let $X_k \in \mathcal{B}$ and $X_k = \sum_{n=0}^{\infty} a_{n,k} H_n$ (k = 1, 2, ...). Passing to a subsequence if necessary we may assume without loss of generality that the limits $\lim_{k\to\infty} a_{n,k} = b_n$ (n = 0, 1, ...) exist. Evidently,

$$\sum_{n=m}^{\infty} |b_n|^2 t^n / (n+1)! \le c_m(t) \qquad (m=0, 1, ...; t \in (0, T)).$$

Thus setting $Y = \sum_{n=0}^{\infty} b_n H_n$ we conclude, by (3.1), that $||Y||_t < \infty$ for all $t \in (0, T)$ and, consequently, $Y \in \mathcal{A}_T$. Given a positive integer m we have the inequality

$$||X_k - Y||_t^2 \le \sum_{n=0}^{m-1} \frac{|a_{n,k} - b_n|^2 t^n}{(n+1)!} + 4c_m(t) \quad (t \in (0, T)),$$

which, by (3.3), yields $||X_k - Y||_t \to 0$ as $k \to \infty$. This proves the conditional compactness of 38.

We note that, by (3.1), the equality $||X||_t = 0$ for an index $t \in (0, T)$ and $X \in \mathcal{A}_T$ yields X = 0. Consequently, if 0 < T < U, then the restriction of processes from \mathcal{A}_U to the interval [0, T) is an embedding of \mathcal{A}_U into \mathcal{A}_T .

A representation of analytic processes appearing in part (iv) of Theorem 3.1 will be called a continuous version of analytic processes. Of course, the continuous version has continuous paths with probability 1.

Theorem 3.3. Let Δ be an infinite subset of the interval (0, T) with at least one cluster point belonging to [0, T). Suppose that the continuous version X from \mathcal{A}_T fulfils the condition $P(\{\omega\colon X(t,\omega)=0\})>0$ for all $t\in\Delta$. Then X = 0.

Proof. Introducing the notation $X(t, \omega) = f(t, W(t, \omega))$ and Q(t)= $\{x: f(t, x) = 0\}$ where $f(z_1, z_2)$ is analytic in the strip $|z_1| < T$, $z_2 \in C$ we have the formula

$$P(\lbrace \omega \colon X(t, \omega) = 0 \rbrace) = (2\pi t)^{-1} \int_{Q(t)} \exp\left(-\frac{x^2}{2t}\right) dx.$$

Consequently, the sets Q(t) have positive Lebesgue measure for $t \in \Delta$. By the analyticity of f we conclude that $f(t, z_2) = 0$ for $t \in \Delta$ and $z_2 \in C$. Since Δ has at least one cluster point in [0, T), the function f vanishes identically in the strip $|z_1| < T$, $z_2 \in C$. Thus X = 0.

The following immediate consequence of formula (3.1) can be regarded as an analogue of the Liouville Theorem for entire functions.

THEOREM 3.4. Let $X \in \mathcal{A}_{\infty}$. If

$$\sup\{||X||_t\colon t\in(0,\,\infty)\}<\infty,$$

then X is a constant process.

We now proceed to the study of the multiplication of analytic processes.

Theorem 3.5. If $X, Y \in \mathcal{A}_T$ and $XY \in \mathcal{A}_T$, then at least one of the processes X, Y is constant.

Proof. Taking the continuous versions

$$X(t, \omega) = f(t, W(t, \omega)), \qquad Y(t, \omega) = g(t, W(t, \omega)),$$
$$(XY)(t, \omega) = h(t, W(t, \omega))$$

where f, g and h fulfil condition (iv) of Theorem 3.1 we infer that h = fg. Since

$$\frac{\partial h}{\partial t} + \frac{1}{2} \frac{\partial^2 h}{\partial x^2} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial x} + \left(\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}\right) g + \left(\frac{\partial g}{\partial t} + \frac{1}{2} \frac{\partial^2 g}{\partial x^2}\right) f,$$

we conclude that $(\partial f/\partial x)(\partial g/\partial x)=0$ in the strip $[0,\ T)\times R$. By the analyticity of f and g at least one of the functions $\partial f/\partial x$ and $\partial g/\partial x$ vanishes identically in this strip. Without loss of generality we may assume that $\partial f/\partial x=0$ in $[0,\ T)\times R$. Consequently, $\partial f/\partial t=-\frac{1}{2}\,\partial^2 f/\partial x^2=0$, which yields that f is constant in $[0,\ T)\times R$. The theorem is thus proved.

Theorem 3.6. \mathcal{N}_T is the least subspace of \mathcal{M}_T containing \mathcal{A}_T and invariant under multiplication.

Proof. Let $\hat{\mathscr{Y}}$ be the least subspace of \mathscr{M}_T containing \mathscr{A}_T and invariant under multiplication. We already know that $\mathscr{A}_T \subset \mathscr{N}_T$ and \mathscr{N}_T is invariant under multiplication. Consequently, $\mathscr{Y} \subset \mathscr{N}_T$. Using formula (1.15) we have $t = H_1^2(t, \omega) - 2H_2(t, \omega) \in \mathring{\mathscr{Y}}$, which yields $t^k H_m(t, \omega) \in \mathring{\mathscr{Y}}$ $(k, m = 0, 1, \ldots)$. By Lemma 2.1 and Proposition 2.1 the linear span of the processes $t^k H_m(t, \omega)$ $(k, m = 0, 1, \ldots)$ is dense in \mathscr{N}_T . Thus $\mathscr{N}_T \subset \mathring{\mathscr{Y}}$, which completes the proof.

We define an auxiliary function φ for $a, b \in (0, \infty)$ by setting

$$\varphi(a, b) = \frac{2ab}{a+b+((a+b)^2+12ab)^{1/2}}.$$

It is evident that φ is monotone nondecreasing.

$$\varphi(a, b) < \min(a, b), \quad 3\varphi^2(a, b) + (a+b)\varphi(a, b) - ab = 0,$$

which yields

(3.4)
$$3t^2 + (a+b)t - ab < 0 \quad \text{if } t \in (0, \varphi(a, b)).$$

Given $c \in (0, \infty)$ we put

(3.5)
$$V_c(t, \omega) = \sum_{n=0}^{\infty} (n+1)! c^{-n} H_n^2(t, \omega).$$

Lemma 3.2. For every pair $a,b\in(0,\infty)$ and $t\in(0,\varphi(a,b))$ the inequality $(V_a,V_b)_t<\infty$ holds.

Proof. Applying formula (1.15) we get, by a standard calculation,

$$V_c(u, \omega) = (1 - c^{-1} u)^{-2} \sum_{k=0}^{\infty} {2k \choose k} (k+1)! (c-u)^{-k} H_{2k}(u, \omega).$$

Consequently, by (1.17), for $u \in (0, \min(a, b))$

 $\int_{\Omega} V_a(u, \, \omega) \, V_b(u, \, \omega) \, P(d\omega)$

$$= (1 - a^{-1}u)^{-2} (1 - b^{-1}u)^{-2} \sum_{k=0}^{\infty} {2k \choose k} (k+1)^2 \left(\frac{u^2}{(a-u)(b-u)}\right)^k.$$

Taking $t \in (0, \varphi(a, b))$ and setting $y = t^2/((a-t)(b-t))$ we have, by (3.4), $0 < y < \frac{1}{4}$ and for $u \in [0, t]$

$$(V_a, V_b)_t \le (1 - a^{-1} t)^{-2} (1 - b^{-1} t)^{-2} \sum_{k=0}^{\infty} {2k \choose k} (k+1)^2 y^k.$$

Since the radius of convergence of the power series

$$\sum_{k=0}^{\infty} {2k \choose k} (k+1)^2 z^k$$

is equal to $\frac{1}{4}$ we get the assertion of the lemma.

We extend the definition of the function φ by setting $\varphi(a, \infty) = \varphi(\infty, a) = \lim_{b \to \infty} \varphi(a, b) = a$ and $\varphi(\infty, \infty) = \infty$.

Theorem 3.7. Let $T, U \in (0, \infty]$. The mapping $(X, Y) \to XY$ from $\mathcal{A}_T \times \mathcal{A}_U$ into $\mathcal{N}_{\varphi(T,U)}$ is continuous.

Proof. Suppose that $X = \sum_{n=0}^{\infty} a_n H_n \in \mathcal{A}_T$ and $Y = \sum_{n=0}^{\infty} b_n H_n \in \mathcal{A}_U$. Given $t \in (0, \varphi(T, U))$ we can find a pair of positive numbers a and b satisfying the conditions a < T, b < U and $t < \varphi(a, b)$. Using the Schwarz

inequality and formulae (3.1) and (3.5) we have for $u \in [0, t]$

$$||X(u,\omega)|^2 = \left| \sum_{n=0}^{\infty} \frac{a_n a^{n/2}}{((n+1)!)^{1/2}} ((n+1)!)^{1/2} a^{-n/2} H_n(u,\omega) \right|^2$$

$$\leq ||X||_a^2 V_n(u,\omega).$$

The same calculation leads to the inequality

$$|Y(u, \omega)|^2 \leq ||Y||_b^2 V_b(u, \omega).$$

Hence we get the inequality

$$||XY||_t^2 \leq ||X||_a^2 ||Y||_b^2 (V_a, V_b)_t$$

which, by Lemma 3.2, yields the assertion of the theorem.

Remark. The function φ appearing in the above theorem is the best possible. This can be shown by the following example. For any $T \in (0, \infty)$, $|z_1| < T$ and $z_2 \in C$ we put

$$f_T(z_1, z_2) = \left(\frac{T}{T+z_1}\right)^{1/2} \exp\left(\frac{1}{2}\frac{z_2^2}{T+z_1}\right)$$

where $z^{1/2}$ denotes the principal branch of the square root. One can easily check that f_T is analytic in the strip $|z_1| < T$, $z_2 \in C$, belongs to N_T and fulfils the equation

$$\frac{\partial}{\partial t} f_T + \frac{1}{2} \frac{\partial^2}{\partial x^2} f_T = 0.$$

Consequently, by part (iv) of Theorem 3.1 the process $X_T(t, \omega) = f_T(t, W(t, \omega))$ belongs to \mathscr{A}_T . Given $t > \varphi(T, U)$ we get, by a standard calculation, the inequality

$$f_T(v, x) f_{U_i}(v, x) \ge (1 + T^{-1} t)^{-1/2} (1 + U^{-1} t)^{-1/2} \exp \frac{x^2}{4v}$$

whenever $\varphi(T,U) \leq v \leq t$. Hence and from (2.1) it follows immediately that $q_t(f_T f_U) = \infty$, which shows that $f_T f_U \notin N_V$ for any $V > \varphi(T,U)$. Applying Proposition 2.1 we conclude that $X_T X_U \notin \mathcal{N}_V$ for any $V > \varphi(T,U)$.

4. Random Fourier transform. We define a family of Borel probability measures λ_t $(t \in (0, \infty))$ on the complex plane by setting

$$\lambda_{t}(B) = -(\pi t)^{-1} \int_{0}^{2\pi} \int_{0}^{\infty} 1_{B}(re^{i\theta}) \operatorname{Ei}\left(-\frac{r^{2}}{t}\right) r \, dr \, d\theta$$

where 1_B denotes the indicator of the set B and Ei is the integral exponential

function

$$\operatorname{Ei}(x) = -\int_{-x}^{\infty} \frac{e^{-y}}{y} dy \quad (x < 0).$$

Given $T \in (0, \infty]$ by A_T we shall denote the set of all entire functions f with finite Hermitian seminorms

$$s_t(f) = (\int_C |f(z)|^2 \lambda_t(dz))^{1/2} \quad (t \in (0, T)).$$

If $f(z) = \sum_{n=0}^{\infty} b_n z^n$, then, by a standard calculation, we get the formula

(4.1)
$$s_t^2(f) = \sum_{n=0}^{\infty} n! |b_n|^2 (n+1)^{-1} t^n.$$

Hence it follows that $f \in A_T$ if and only if the radius of convergence of the power series $\sum_{n=0}^{\infty} n! |b_n|^2 (n+1)^{-1} z^n$ is at least T. Using Stirling's formula we can calculate this radius to obtain the following statement.

PROPOSITION 4.1. An entire function $\sum_{n=0}^{\infty} b_n z^n$ belongs to A_T if and only if $\limsup n^{1/2} |b_n|^{1/n} \leq (T^{-1}e)^{1/2}$.

Put $m_r(f) = \max\{|f(z)|: |z| \le r\}$. The order $\varrho(f)$ of an entire function f is defined by the formula

$$\varrho(f) = \limsup_{r \to \infty} \frac{\log \log m_r(f)}{\log r}.$$

A constant function has order 0, by convention. If $0 < \varrho(f) < \infty$, then the type $\tau(f)$ is defined by the formula

$$\tau(f) = \limsup_{r \to \infty} r^{-\varrho(f)} \log m_r(f).$$

The order and type of an entire function can be expressed in terms of the coefficients of its power series representation $f(z) = \sum_{n=0}^{\infty} b_n z^n$. Namely,

$$\varrho(f) = \limsup_{n \to \infty} \frac{n \log n}{\log (1/|b_n|)},$$

$$\tau(f) = e^{-1} \varrho(f)^{-1} \limsup_{n \to \infty} n |b_n|^{\varrho(f)/n}$$

([1], Theorems 2.2.2 and 2.2.10). Using the above formulae and Proposition 4.1 we get, by a simple calculation, the following criterion.

Proposition 4.2. An entire function f belongs to A_T if and only if either $\varrho(f) < 2$, or $\varrho(f) = 2$ and $\tau(f) \leqslant (2T)^{-1}$. Equivalently, $f \in A_T$ if and only if

$$\limsup_{r \to \infty} r^{-2} \log m_r(f) \leqslant (2T)^{-1}.$$

Given $f(z) = \sum_{n=0}^{\infty} b_n z^n$, for any pair r, t of positive numbers we have, by (4.1) and the Schwarz inequality,

$$\begin{split} m_r^2(f) &\leq \Big(\sum_{n=0}^{\infty} |b_n| \, r^n\Big)^2 \\ &= \Big(\sum_{n=0}^{\infty} |b_n| \, (n!)^{1/2} \, (n+1)^{-1/2} \, t^{n/2} \cdot (n+1)^{1/2} \, (n!)^{-1/2} \big(r^2 \, t^{-1}\big)^{n/2}\Big)^2 \\ &\leq s^2(f) \, (1+t^{-1} \, r^2) \exp(t^{-1} \, r^2). \end{split}$$

Consequently, the convergence in A_T implies the uniform convergence on every compact subset of the complex plane. Hence, in particular, it follows that the space A_T is complete. Since, by (4.1), the family s_t $(t \in (0, T))$ is monotone nondecreasing, A_T is a local Hilbert space.

From Proposition 4.2 it follows immediately that the exponential functions $e_c(z) = \exp(cz)$ ($c \in C$) belong to every space A_T .

Proposition 4.3. Let $\{c_k\}$ be a sequence of distinct nonzero complex numbers and $\sum_{k=1}^{\infty}|c_k|^{-p}=\infty$ for an exponent p>2. Then the linear span of the exponential functions e_{c_k} $(k=1,2,\ldots)$ is dense in A_T .

Proof. Let l be a continuous linear functional on A_T vanishing on all functions e_{c_k} (k = 1, 2, ...). Since A_T is a B_0 -space, we infer, by the Mazur-Orlicz Theorem ([6], p. 119), that the functional l is of the form

(4.2)
$$l(f) = \int_{C} f(z) \overline{h(z)} \, \lambda_{v}(dz)$$

where $v \in (0, T)$, h is an entire function and $s_v(h) < \infty$. Of course, $h \in A_v$ and, by Proposition 4.2, $\varrho(h) \leq 2$. Put

$$h(z) = \sum_{n=0}^{\infty} a_n z^n, \quad g(z) = \sum_{n=0}^{\infty} \bar{a}_n (n+1)^{-1} z^n.$$

Evidently, $\varrho(g) \leq 2$ and, by (4.2), $l(e_c) = g(cv)$ ($c \in C$). Hence it follows that $c_k v$ (k = 1, 2, ...) are zeros of the entire function g.

Suppose that g does not vanish identically. Then taking into account the relation between the order $\varrho(g)$ and the convergence exponent of the zeros of g ([1], Theorem 2.5.18) we have the inequality $\sum_{k=1}^{\infty} |c_k|^{-q} < \infty$ for every q > 2. But this contradicts the assumption. Consequently, g = 0, which yields h = 0 on C. Thus, by (4.2), the functional l vanishes on A_T , which completes the proof.

Remark. The assumption p > 2 in the above proposition is essential. In fact, taking $T > 2\pi$, $v \in (2\pi, T)$ and setting

$$h(z) = \sin(\pi v^{-2} z^2) + 2\pi v^{-2} z^2 \cos(\pi v^{-2} z^2)$$

we have $s_v(h) < \infty$. Evidently, the functional l determined by h in (4.2) does not vanish identically on A_T . On the other hand, setting $c_k = k^{1/2}$ (k = 1, 2, ...) we have the equality

$$l(e_{c_k}) = \sum_{n=1}^{\infty} (-1)^n ((2n+1)!)^{-1} (\pi k)^{2n+1} = \sin \pi k = 0 \qquad (k=1, 2, \ldots),$$

which shows that the linear span of e_{c_k} (k = 1, 2, ...) is not dense in A_T .

Given T, $U \in (0, \infty]$ we denote by $\psi(T, U)$ the harmonic mean of T and U, i.e.

$$\psi(T, U)^{-1} = T^{-1} + U^{-1}$$
.

Proposition 4.4. Let $T,\ U\in(0,\ \infty]$. The mapping $(f,\ g)\to fg$ from $A_T\times A_U$ into $A_{\psi(T,U)}$ is continuous.

Proof. Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n \in A_T$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n \in A_U$. Given $t \in (0, \psi(T, U))$ we can find a pair a, b of positive numbers fulfilling the conditions a < T, b < U and $t < \psi(a, b)$. From (4.1) we get the inequalities

$$|b_n|^2 \le (n!)(n+1)b^{-n}s_b^2(g)$$
 $(n=0, 1, ...),$

which yield

(4.3)
$$\sum_{k=0}^{n} (k!)^{-1} (k+1) |b_{n-k}|^2 a^{-k} \leq s_b^2(g) (n!)^{-1} (n+1)^2 \psi(a, b)^{-n}$$

$$(n = 0, 1, ...).$$

Setting $(fg)(z) = \sum_{n=0}^{\infty} c_n z^n$, we have, by (4.1), (4.3) and the Schwarz inequality,

$$|c_n|^2 = \left| \sum_{k=0}^n a_k (k+1)^{-1/2} (k!)^{1/2} a^{k/2} \cdot b_{n-k} (k+1)^{1/2} (k!)^{-1/2} a^{-k/2} \right|^2$$

$$\leq S_n^2 (f) S_k^2 (a) (n!)^{-1} (n+1)^2 \psi(a,b)^{-n} \qquad (n=0,1,\ldots).$$

Applying now formula (4.1) we get the inequality

$$s_t(fg) \leqslant cs_a(f) s_b(g)$$

where $c^2 = \sum_{n=0}^{\infty} (n+1) (\psi(a, b)^{-1} t)^n < \infty$, which completes the proof.

Remark. Let $T \in (0, \infty)$. Put $f_T(z) = \exp(z^2/2T)$. It is easy to check using Proposition 4.2 that $f_T \in A_T$ and $f_T \notin A_V$ for any V > T. Since $f_T f_U = f_{\psi(T,U)}$ we conclude that the function ψ appearing in Proposition 4.4 is the best possible.

Given $c \in C$ the exponential process E(c) is defined as the unique solution

X in \mathscr{A}_{∞} of the equation X=cIX+1. For a continuous version of X this equation can be written in the differential form $D_IX=cX$ with the initial condition $X(0,\omega)=1$. It is well known that

$$E(c)(t, \omega) = \exp(cW(t, \omega) - \frac{1}{2}c^2t) = \sum_{n=0}^{\infty} c^n H_n(t, \omega)$$

([5], Ch. 2.7). Moreover, the mapping $c \to E(c)$ from C into \mathscr{A}_{∞} is continuous.

We define a Borel probability measure λ on C by setting

$$\lambda(B) = \pi^{-1} \int_{0}^{2\pi} \int_{0}^{\infty} 1_{B} (re^{i\theta}) e^{-r^{2}} r dr d\theta.$$

In what follows K_r will denote the closed disk $\{z: |z| \le r\}$. It is clear that for every complex-valued continuous function f on K_r the Bochner integral $\int_{K_r} \overline{E(z)} f(z) \lambda(dz)$ exists in \mathscr{A}_{∞} . Moreover, by a simple calculation, we get the formula

(4.4)
$$\int_{K_r} \overline{E(z)} f(z) \lambda(dz) = \sum_{n=0}^{\infty} c_n(f, r) H_n$$

where $c_n(f, r) = \int_{K_n} \overline{z}^n f(z) \lambda(dz)$ (n = 0, 1, ...). In particular,

(4.5)
$$c_n(z^m,r) = \delta_n^m \int_0^{r^2} e^{-y} y^n dy \qquad (m, n = 0, 1, ...).$$

LEMMA 4.1. For every entire function f from A_T the limit

$$\hat{f} = \lim_{r \to \infty} \int_{K_r} \overline{E(z)} f(z) \lambda(dz)$$

exists in \mathcal{A}_T . If $f(z) = \sum_{n=0}^{\infty} b_n z^n$, then

$$\hat{f} = \sum_{n=0}^{\infty} n! \, b_n H_n.$$

Proof. Let $f(z) = \sum_{n=0}^{\infty} b_n z^n \in A_T$. From (4.4) and (4.5) we get the formula

(4.6)
$$Z_{r} = \int_{K_{r}} \overline{E(z)} f(z) \lambda(dz) = \sum_{n=0}^{\infty} b_{n} \int_{0}^{r^{2}} e^{-y} y^{n} dy H_{n}.$$

Given $t \in (0, T)$ we have, by (3.1) and (4.1), the inequality

$$||Z_r||_t^2 = \sum_{n=0}^{\infty} ((n+1)!)^{-1} |b_n|^2 \left(\int_0^{r^2} e^{-y} y^n dy \right)^2 t^n \le s_t^2(f) \quad (r \in (0, \infty)).$$

Consequently, by Theorem 3.2 the family Z_r ($r \in (0, \infty)$) is conditionally compact in \mathcal{A}_T . Moreover, by formula (4.6) we conclude that the family Z_r

has exactly one cluster point $\sum_{n=0}^{\infty} n! b_n H_n$ as $r \to \infty$. This completes the proof.

The mapping $f \to \hat{f}$ from A_T into \mathscr{A}_T is called the random Fourier transform.

Theorem 4.1. The random Fourier transform is an isomorphism from A_T onto \mathcal{A}_T .

Proof. By (3.1), (4.1) and the second part of Lemma 4.1 for every $f \in A_T$ we have the formula $s_t(f) = ||\hat{f}||_t$ $(t \in (0, T))$. Consequently, to prove that the random Fourier transform is an isomorphism it suffices to show that \mathscr{A}_T is its range. By Theorem 3.1 each process from \mathscr{A}_T has a series representation $X = \sum_{n=0}^{\infty} a_n H_n$ where

$$\limsup_{n \to \infty} n^{-1/2} |a_n|^{1/n} \le (eT)^{-1/2}.$$

Setting $b_n = (n!)^{-1} a_n \ (n = 0, 1, ...)$ we have

$$\limsup_{n\to\infty} n^{1/2} |b_n|^{1/n} \leqslant (T^{-1} e)^{-1/2}.$$

Consequently, by Proposition 4.1, the function $f(z) = \sum_{n=0}^{\infty} b_n z^n$ belongs to A_T and, by Lemma 4.1, $\hat{f} = X$, which completes the proof.

Using the second part of Lemma 4.1 we get the following simple formulae: $\hat{z} = W, (z^n)^2 = n! H_n, (e_c)^2 = E(c)$ and

$$\left(\frac{d}{dz}f\right)^{\hat{}} = D_I\hat{f}.$$

Further, as an immediate consequence of Proposition 4.3 and Theorem 4.1 we get the following statement.

THEOREM 4.2. Let $\{c_k\}$ be a sequence of distinct nonzero complex numbers and $\sum_{k=1}^{\infty} |c_k|^{-p} = \infty$ for an exponent p > 2. Then the linear span of the exponential processes $E(c_k)$ (k = 1, 2, ...) is dense in \mathcal{A}_T .

We note that using the random Fourier transform one can define a convolution of stochastic processes. Namely, if $X \in \mathscr{A}_T$, $Y \in \mathscr{A}_U$, $X = \widehat{f}$ and $Y = \widehat{g}$ where $f \in A_T$ and $g \in A_U$ then we put $X * Y = (fg)^{\widehat{}} \in \mathscr{A}_V$ provided $fg \in A_V$. As an immediate consequence of Proposition 4.4 and Theorem 4.1 we get the following result.

THEOREM 4.3. Let $T, U \in (0, \infty]$. The mapping $(X, Y) \to X * Y$ from $\mathscr{A}_T \times \mathscr{A}_U$ into $\mathscr{A}_{\psi(T,U)}$ is continuous.

Hence in particular it follows that \mathscr{A}_{∞} is an algebra under convolution. Moreover, if $X \in \mathscr{A}_{\infty}$ and $Y \in \mathscr{A}_{T}$, then $X * Y \in \mathscr{A}_{T}$. By (4.7) we have the

formulae

280

$$D_I(X * Y) = (D_I X) * Y + X * (D_I Y)$$

and $H_n*H_m=\binom{n+m}{n}H_{n+m}$ (m,n=0,1,...). The last formula yields $H_n=(n!)^{-1}W^{*n}$ where W^{*n} is the nth power of the Brownian motion W under *. Thus $E(c)=\sum_{n=0}^{\infty}(c^n/n!)W^{*n}$ and, consequently, E(a)*E(b)=E(a+b). Criterion (iii) from Theorem 3.1 can be rewritten in the following form.

Theorem 4.4. $X\in\mathcal{A}_T$ if and only if $X=\sum_{n=0}^\infty c_n\,W^{*n}$ where $\limsup_{n\to\infty} n^{1/2}|c_n|^{1/n}\leqslant (T^{-1}\,e)^{1/2}$.

References

- [1] R. P. Boas, Entire Functions, Academic Press, New York 1954.
- [2] R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111-
- [3] -, -, Martingale representations and holomorphic processes, Ann. Probab. 5 (1977), 511-521.
- [4] R. S. Liptser and A. N. Shiryayev, Statistics of Random Processes I. General Theory, Springer, New York-Heidelberg-Berlin 1977.
- [5] H. P. McKean, Stochastic Integrals, Academic Press, New York-London 1969.
- [6] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa 1972.
- [7] P. C. Rosenbloom and D. V. Widder, Expansions in terms of heat polynomials and associated functions, Trans. Amer. Math. Soc. 92 (1959), 220-266.
- [8] D. W. Stroock, The Malliavin calculus and its applications, in: Lecture Notes in Math. 851, Springer, 1981, 394-432.
- [9] J. B. Walsh, Stochastic integrals in the plane, in: Proc. Internat. Congress Math. Vancouver, vol. 2, 1975, 189-194.
- [10] -, Martingales with a multidimensional parameter and stochastic integrals in the plane, in: Lecture Notes in Math. 1215, Springer, 1986, 329-491.
- [11] N. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1938), 897-936.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCŁAWSKIEGO INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY Pł. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received March 2, 1987

(2282)