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Analytic stochastic processes
by
K. URBANIK (Wroclaw)

Absteact, A concept of analytic stochastic process with respect to a given Brownian motion
is introduced. In terms ‘of the random Fourier transform a relationship between analytic
processes and some classes of entire functions is cstablished.

1. Preliminaries and notation. Throughout this paper R and C will
denote the real and the complex field respectively. A seminorm induced by a
Hermitian bilinear form on a linear space over € will be called a Hermitian
seminorm. Let T&(0, ou]. We shall be concerned with locally convex com-
plete topological linear spaces # with the topology defined by a separating
family {p,: te(0, T)} of Hermitian seminorms fulfilling the following condi-
tion: for every pair 1, ue(0, 7), t <u, there exists a positive number ¢
=c(t, u) such that p, < cp,. It is evident that cach countable system p, with
t,— T determines the same topology in #. Hence it follows that &4 is a By-
space ([6], p. 59). It is convenient to have a term for such a space 4 with a
fixed family {p,: 1€(0, 7). There is no standard term for this, but we shall
say in this paper that &' is a local Hilbert space. Two local Hilbert spaces &'
and 4" with the families of seminorms {p,: te(0, T)} and {p;: te(0, T}
respectively are said to be isomorphic if T'= T’ and there exists a linear map
Ffrom & onto %" such that P(x) = pi(1(x)) for all xe & and te(0, T).

Let &, (n=1,2,...) be a sequence of local Hilbert spaces with the
families {p,,: te(0, TV} of seminorms respectively. Moreover, we assume that
for every pair t, ue(0, T), 1 « u, there exists a positive number ¢ = c¢(t, u)
such that p,, < ep,,, for all n. The orthogonal sum w1 4, s defined as the
sel of all sequences x == {x,} where x,e& @, and ¥ 'pZ,(x,) < oo (t&(0, T))
with addition and scalar multiplication defined” coordinatewise and the
topology determined by the Hermitian seminorms

o

P = (3 PR (e, 1),

ns

It is clear that this orthogonal sum is also a local Hilbert space.
Given n 1 and >0 we put

A (@) = {(ty, oo, 1) 0K <ty <t

3~ Studin Mathematica 89,3
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The space L2, consists of all Borel complex-valued functions f on 4,(T)
with finite Hermitian seminorms

(11) qn,x(f) =(t«1 [ I.f(ll: EEE)

40

L2 dty...dt,)?  (te(0, T)).

It is evident that L2, is a local Hilbert space and for t <u
An,t < (u/t)l/z An,u (n = 1a 2a .. )

Let (22, By, P) be a probability space. Throughout this paper W
= W(t, 0) (e Q) will denote the standard Brownian motion on the half-line
[0, o). Let BY%(s) be the o-field generated by the random variables wit, w)
(0 < 1 < 5) and B, the o-field of Borel subsets of the interval [0, s]. The space
My consists of all complex-valued stochastic processes X = X (t, )
(t [0, T), w ef) such that for every s [0, T) the function of two variables
X (t, w) is B, x BY (s)-measurable on [0, s]xQ and the Hermitian seminorms

(1.2) Xy, =" i[ f1X (u, o)* P(dw)du)'?  (te(0, T))
00

are finite. Here we identify two stochastic processes X and Y whenever ‘

|X — Y|, = O for all t€(0, T). It is evident that My is a local Hilbert space.
In the sequel we shall use the notation

X, Y)1=t'1]'

0

[ X, 0) ¥, 0)Pdw)du  (te(0, T)).
o
It is known that for every Xe .#y the ItG integral
1
(IX)(t, ©) = [ X (@, 0)dW(u, )  (te[0, T))
0

is well defined and the function of two variables (1X)(t, w) is B, x BY (s)-
measurable on [0, s] x® for every se[0, T) ([4], Ch. 4.2). Moreover, for all
X, Ye A4y we have the equalities

(1.3) JUX)(u, ) Pdw) =0,
s ﬂ

u

[UIX) (, 0)(IY) (4, ©) P(dw) = | [ X (v, ©) Y (v, ©) P(do)dv

Q (U]

([5], p. 97). Hence it follows that ||1X], <t"*||X],, (te(0, T)) and, conse-
quently, the It integral I is a continuous linear operator on .#y. Put

(SX)(t, ) = tX(t, ©) (te[0, T), Xe .My).

It is evident that SX e .#; and ||SX}}, < t]|X]|; for t‘e(O, T). Thus S is also a
continuous linear operator on .#. '

(1.4)

icm
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The process identically equal to a ¢
¢ omplex number ¢ wi ief
denoted by ¢. Of course, ce.#,. Put ¢ vl be briefy
Gy (k) = §*1 (k=0,1,..)

and for nz 2 and every n-tuple (ky, ..., k,) of nonnegative integers

Gulkyy ooy k) = SIS =1y g*2 gkt
BEvidently G, (ky. ..., kye . #p,
(1.5) Gy, ooy k) = Gy (Kys ..o Ky, O),
(1.6) SGyky ooy k) = Gylkys .., kyey, k1)

and, by (1.4), for n < m

(17) (Gn(kl LR kn)~ Gm(’lv LR Im))f = l(SZ’ " ”‘;1-}.,1 . .l’,:"H"dtl ...dt,.

an®) "
] Denote by . #% the subspace of .#; spanned by the processes
Gulkyy ooy ky) (fcj = 0.1,..5j=1,..., n). From (1.7) it follows that (X, Y),
= () for all te (0, T) whenever Xe 4P, Ye #8 and n £ m. The remarkable
theorem of Wiener on homogeneous chaos ([11], [8], p. 407) can be
formulated as follows:

w0
My D AP
ES
bl(lll(.b Gk, m‘) = (* we can deduce from (1.1), (1.2) and (1.7) that
Xe. 4P il and m}ly it X (1, w) = f(t) where feLj . Moreover, in this case
we llz}vc the equality [| X[l = ¢,,,(f) (te(0, T)). Thus 4 = L} ;. In order to
describe the subspaces &4 for n > 2 we must define the iterated Ité integral
0N, ey = f

Ay ()

(1.8)

S, oy, AW (uy, o). .. dW(u,.- ,, @)

for ‘all Jelip. First we define it on monomials g(ty, ..., ) = &0 by
setting 1" Vg Gyiky, ., k). Using (11), (1.2) and (1.7) we extend this
mapping by lincarity to an isomorphism from L7, onto .#%. The inverse
mapping and (1.8) define the projection I1, from .#y onto L, with the
following properties: ,

i

(1.9) XN = 3, an UL, X)) (1e(0, T),

e
I, #9100 i no#m, 11 is the identity operator on 4% and
(1.10) 0" f=f

it felz,

op and nz 2, In other words, the local Hilbert spaces .#; and
vy Lt

are isomorphic. Moreover, by (1.5) and (1.6), for X € # we have
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the equalities

(1.11) (I IX)(t) =0 ([0, T)

and for (ty, --., Lyed,(T)

(]12) (HnIX)(tlﬂ ""tn)z(nn—lX)(t‘la L] tn—l) (n>2)a
(113) (HnSX)(th"': tn)=tn(nnX)(t1! "-7[71) (ﬂ?l)

Suppose that a subspace % of .4y contains 1 and is invariant under the
operator S. Then @ contains all polynomials and, by the equality .
=12 ,, we have the inclusion %) = #. Assuming in addition that ¢/ is
invariant under the operator I we prove inductively, by virtue of (1.5) and
(1.6), that AP < ¥ (n=1, 2, ...), which, by (18), yields & = .#y. Thus we
have the following statement.

ProvositioN 1.1. A subspace of My containing 1 and invariant under both
operators I and S coincides with Mry.

The Hermite polynomials h,(¢, x) (n=0,1,...) of two variables are
uniquely determined by the generating function

(1.14) f

n=0

c"h,(t, X) = explcx—§c?t).

By standard calculation we get the following formulae:

" (n+m—2k\t*
(115) hn(ts x) hm(t; X) = ;,Zo< n—k )Ehrﬁm—Zk(t: x) (n < m)’
®© 2 n
(1.16) @rt)™ Y2 [ hy(t, %) hy(t, X)exp <—%>dx = 5;%.
- . ni

The stochastic processes defined by the formula
H,(t, o) =h,(t, W(t,w)) (n=0,1,..)
are called the Hermite processes. They play an important role in stochastic
analysis. By (1.16) we have the formula :

n

(1.17) [H,(t, ) H,(t, ) Pdw) = o,
o n!

which yields

"
1.18 H, H,), ="
( ) ( n» m)t 5m(n+1)!

Consequently, H,e .#; for every Te(0, co] and n=0, 1, ... Since Hy =1

(te(0, c0)).

icm
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and
(1.19) IH,=H,., (n=0,1,..)
([5], Ch. 2.7), we have H, =1I"1=G,,,(0, ..., 0). Consequently,
(1.20) | Hoe A0 (n=0,1,..)
and, by (L.11) and (1.12),
(1.21) (T H) (s ooy t) =8y (n=1,2,..5k=0,1,..)

for (g «..s t) & 4u(T). o

2. Processes synchronically connected with the Brownian motion. Let Ny
be the space of all Borel complex-valued functions f of two variables defined
in the strip [0, T) x R with finite Hermitian seminorms

w0 xz 1/2
@y alH= (15"'1‘[ § 1Sy * (2nu)~ % exp <~5&>dxdu> (te(0, T).
0 —ow
It is clear that Ny is a local Hilbert space. Moreover, it is easy to check
that the functions t*h,(t, x) (k,n=0,1,...) belong to Ny.
Lemma 2.1, The linear span of the functions t*h,(t, x) (k, n=10,1,...) is
dense in Ny.

Proofl. By (1.16) we have the formula

" +2k+ 1

() = kT

Hence it follows that for every ce C the series Z:;oc" t* h, (¢, x) is convergent

(te(0, T)).

~ in Ny. By (1.14) its sum t* exp (ex—4c*t) belongs to the closure of the linear

span of the functions t*h,(t, x) (n=0, 1, ...)

Suppose that a continuous linear functional L on Ny vanishes on the
functions *h,(t, x) (k,n=0,1,...) Introducing the notation gy .(t, X)
= trexp(iax+4a?t) (k =0, 1,...; acR) we have the equality

(2.2) Ligea =0 (k=0,1,...; aeR).
Since Ny is a By-space, we infer, by the Mazur-Orlicz Theorem ([6], p. 119),
that the functional L is of the form

v o

2
L(fy=[ | lw, x)f(u, x)(2nmm) "2 exp (—-g-;)dxdu,

0

where ve(0, T), [ is a Borel complex-valued function in the strip [0, v] xR
and ¢,() < oo, Setting

2
g(t, x) = I(t, x)exp (wzz) (te[0, v], xeR)
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we infer that [”_lg(t, x)|dx < o for almost all te[0, v] and

Ligys) = [u*(2m)~ 2 exp(3au) | €g(u, x)dxdu
0 ]

which, by (2.2), yields g =0 almost everywhere in the strip [0, v]xR.

Consequently, L =0 on Ny, which completes the proof.
Lemma 22. If fe Ny and g(t, x) = [, [ (¢, y)dy, then ge Ny.

Proof. First we observe that the finiteness of the seminorms (2.1) yields
the finiteness of the integral f; |f (u, y)ldy for almost all ue[0, T) and all
xeR. Thus the function g is well defined in the strip [0, T) x R. Applying
the Schwarz inequality we get

x

lg, ) < x[|f(u, y)I*dy (ue[0, T), xeR).

Consequently, for every positive number b we have the inequality

b ) x2d<bx 2y 2
‘LMW,MIMP(~ZJ-X\;LXHfWAM ymp(—zﬁdm

0
Integrating by parts we finally obtain

b R XZ b X , xz
{ g (u, x)*exp (—z—u)dx <u [ |f(u, x)*exp <~§;)dx.

—b

—b

The above inequality yields

a(9) <tg?(f)  (te(0, 7)),
which completes the proof.

A stochastic process X from .y is said to be synchronically connected
with the Brownian motion Wif it is of the form X (¢, ) = f(t, WAt, w)), where
[ is a Borel complex-valued function defined in the strip [0, T) x R. The set
of all processes synchronically connected with W will be denoted by 4/,~

PROPOSITION 2.1. Ay is a subspace of My. The map f —f(t, W(t, w)) is
an isomorphism between local Hilbert spaces Ny and A T

Proof. Suppose that X (t, w) = f(t, W(t, o). Then, by (1.2) and (2.1),
IX1l; = q.(f). Consequently, X e .4 if and only if fe Ny. Since Ny is a local
Hilbert space, we conclude that .4y is a subspace of .#, and the map f
—f(t, Wi, w)) is an isomorphism from N, onto Ap. .

TreoreM 2.1. The following conditions are equivalent:
i) XeA .
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(i) (I X) (g, - on t) = guty) (n=1,2,..).
(i) X(t, w) = Z";oj;,(t) H,(t, w) where

IX17 =01 % = [IL@Pu"de <o (te(0, T)).

n=0 "' 0
The functions f, and g, are connected by the relation f, =gn4y (n=0,1,...).
Proof. (i) = (ii). Put
Xpw(t, @) =1"H, (1, ®) =t*h,(t, W(t, w)) (k,m=0,1,..)).

By Lemma 2.1 and Proposition 2.1 the linear span of Xj k,m=0,1,...)
is dense in .4p. Consequently, it suffices to prove (i) for the processes X,
only. Using (1.13) and (1.21) we have

(LX) (ts o t) =ity (n=1,2,..5k,m=0,1,...),

which completes the proof.

(i) = (iii). Suppose that the projections IT, X are of the form (ii). Then,
by the definition of the iterated ItS integral we have the formula
g~V I, X)(t, @) =g, ()" 1(t, ©) = g, () Hy-i (1, @) (n=1,2,..). Con-
sequently, g, (t) H,-, (¢, ) is the projection of X onto AP, Thus, taking into
account (1.8), we get a series representation

X(t o) = Y galt) Hymo (8, ),

n=1
Finally from (1.1) and (1.9) we get the formula

¢} t
XU =7 Y, e flga P du (e <(0, T)
=1 (n=1lg
which yields condition (iii). o
(i) = (i). Suppose now that X has‘ a series represeptatlon (iig). Th.en, by
Proposition 2.1, the series f(t, x) “Z:,:o £, @) h,(t, x) is convergent in Ny
and X (t, w) =[(t, W(t, ®)). The theorem is thus proved.

We conclude this section with some comments concerning pointwise
multiplication of stochastic processes, A subspace @ of .My is said to be
invariant under multiplication if XY &% provided X, Ye % and XYe My It
is evident that the space 4"y is invariant under multiplication. On the other
hand, we have the following statement.

ProvosiTion 2.2. A subspace of My containing 1 and invariant under
multiplication and Ité integration coincides with y.

Proof. Suppose that a subspace W of My fulfils the above conditions.
Since H, = I"1, we infer that H,e# (n=0, 1,...). Further, from (L.15) we
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get the formula ¢ = H?(t, w)—2H, (¢, ). Thus :X(t, w)e ¥ whenever Xe¥.
In other words, the subspace % is invariant under the operator S and our
assertion is an immediate consequence of Proposition 1.1.

3. Analytic processes. We begin with a simple lemma.

Lemma 3.1. Suppose that X, Ye My and X = IY+c where ce C. Then for
every pair t, ue(0, T), t <u,

lel?+u™ e = | YII? < [1X11Z.
Proof. From (1.3) and (14) integrating by parts we get the equality
u
IXI2 = el +u~" f(u—0) [|Y (v, )| P(dw) do.
0 Q

Since f")(u-—v) J Y (@, o)|? P(dw)dv = t(u—1)||Y]|?, we obtain the assertion of
the lemma.

In view of the above lemma we may conclude that the representation X
= IY+c is unique provided it exists. If this is the case the process ¥ will be
denoted by D; X and called the It5 derivative of X. The domain 2r(Dj) of
the operator D; in .#y consists of all processes of the form [Y+c¢ with
Ye J#7 and ce C. By Lemma 3.1 the linear map D; from @y (Dy) into My is
continuous.

The k-th It6 derivative D% (k=1,2,...) is defined inductively:
X e (DY) whenever D1 X e %y (D)) and then we put Df X = D,(D}™' X).
It is evident that H,e @, (DY (k=1,2,..;, n=0,1,..) and, by (1.19),
DiH,=0 (n=0,1,...,k—1) and DfH,=H,, (n=k, k+1,...). Moreo-
ver, one can easil)k/ prove that the domain 97 (D¥) consists of all processes of
the form I* Y+ ];; ¢;H; where Ye My and ¢, ¢y, ..., ¢y € C.

A process X from g is called analytic if it is infinitely It6 differenti-
able, ie. if X N2 2r(D¥. The set of all analytic processes from .4 will be
denoted by /. For two-parameter stochastic processes defined on the
positive quadrant of the plane a concept of analyticity with respect to the
Brownian sheet in terms of path independent integrals has been introduced
and studied by R. Cairoli and J. B. Walsh in [2], [3], [9] and [10].

Various characterizations of analytic processes are given by the following
theorem.

THEOREM 3.1. The following conditions are equivalent:

() Xedr.

@) T, X)(ty, .-t =c,eC (n=1,2,...).

(i) X =Y " a,H, and imsup,.,on"*?[a,'" < (eT)" /2.

(iv) X(t, wef(t, W(t, ) where feNy,

¥ 18

im0

(te[0, T), xeR)

icm®
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and f can be extended to an analytic function f(zq,2;) of two complex
variables in the strip |z,| < T, z,eC.

) IXe Ny

Vi) Xe N0 Dr(Dy).

Proof. (i) = (ii). Given an arbitrarly positive integer n we have
X e 9p(DY). Consequently, X = I"Y,,+Z;';Ocj(n)Hj for some Y,e.#; and
co(), ¢ (n), ..., ¢y (W)€ C. Applying formulae (1.11), (1.12) and (1.21) we get
the equality

(HHX)(tla [

which yields condition (ii).

(ii) = (iii). By Theorem 2.1 the process X has a series representation X
=3 o4, H, and

o L) = Cymy (M),

o0

1?2

(.9 la? t"/(n+ 1)t <o (£€(0, T)).
[¢]

n=

In other words, the radius of convergence of the power series
o0
% la 2"/(n+1)!
n=0 '

is at least T, which yields the inequality

imsupn™ Y2 |a,|V" < (eT) 2.
n-ro

(iii) = (iv). Taking the series representation (iii) of X we conclude, by
the Rosenbloom-Widder Théorems ([7], Theorems 5.3 and 5.5) that the,
series f(zy, Z3) =}::’=oan h,(z;, z,) converges absolutely and uniformly on
every compact subset of the strip |zy| < T, z,eC. Thus f is an analytic
function in this strip. Moreover, &f/dt+%0*f/ox* =0. Since X(t, ®)
= f(t, W(t, w)), we obtain condition (iv). :

(iv) = (v). Taking the representation (iv) of X we put

(TR B S Py-+ [hio)ds.
0

(
M= =3 %

w2 ()
“Then, by Lemma 2.2, ge Np. Moreover,

Y 10

at2 e

, !

Now applying the 1t6 formula ([5], Ch. 2.6, [4], p. 118) and Proposition 2.1
we get the formula

UX)(t, @) = g(t, W(t, w))e 7.
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(V) = (ii). If IXe A7, then, by part (i) of Theorem 2.1, we have

(I AX)(ty, ot =gnlty) (m=1,2,..).
On the other hand, by (1.12),
(nnIX)(tla tets tn) =(Hn-l X)(f“ e zn—l) (l’l = 2, 31 )

Comparing these equalities we infer that the functions (IT,X)(ty, ..
(n=1,2,...) are constant.

(iii) = (i). Suppose that X has a series representation (iii). Put X,
=Y sanexH, (k=1,2,..)). Since

lim Sup n- yz |an+k[l/n S (ET)_ 1/25

n—re0

s ln)

we infer, by (3.1), that || X,]|, < o for all te(0, T). Consequently, X, & 4.
Moreover, by (1.19),
k-1

X=PFX+Y gH, (k=1,2,..),
=0

which yields Xe 2.(D% (k=1,2,...).

~ We have thus proved that conditions (i)—(v) are equivalent. It remains to
consider condition (vi). If X e.«/;, then, by (ii) and Theorem 2.1, Xe.47.
Since & = 9 (D;), we get condition (vi). Conversely, suppose that
XeN Dy (D)). Then X = IY+c, where Ye My and ceC. Hence it fol-
lows that IYe.#"; and, consequently, the process Y fulfils condition (ii).
Using formulae (1.11) and (1.12) we conclude that the process X fulfils this
condition too. The theorem is thus proved.

From part €i) of the theorem just proved and from Theorem 2.1 it

follows that &/, is a subspace of .4 and, consequently, it is also a local
Hilbert space.

THEOREM 3.2. A subset B of </ is conditionally compact if and only if
(32
Jor all te(0, T).

Proof. The necessity of (3.2) is evident. To prove the sufficiency we
introduce the notation

sup {X|l: Xed#} <o

@ =sup { Y la?t"/(n+1)1: Xed) (te(0, T))
n=m
where X = Z:;oa,, H,. It is clear that
Cnrr () Seu) (m=0,1,...)

and for ¢, ue(0, T), t <u,

icm
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c)tTmMum < ew) (m=0,1,..),
which yields
e Su™"t"cow) (m=0,1,...).

Since, by (3.1) and (3.2), ¢o(u) < co0, we have

(3.3) lim ¢n(®) =0  (t€(0, T)).

m=ron

By (3.2), for any n the coefficients a, are uniformly bounded for Xe#4.
Let X,e# and X, = Z:_'__Oa,,,k H, (k=1,2,...). Passing to a subsequence if
necessary we may assume without loss of generality that the limits

iy vop Gix = by (n =10, 1, ...) exist. Evidently,
b+ D S cu(t)  (m=0,1,...; te(0, T)).

Thus setting ¥ =¥~ b, H, we conclude, by (3.1), that [[Y]l, <0 for all
te(0, T) and, consequently, Ye o/7. Given a positive integer m we have the
inequality
m-1 |a —-b I2 "
. 2 < 1%,k n
1= YIF < 8
which, by (3.3), yields ||X,— Y]}, —0 as k— co. This proves the conditional
compactness of #.

We note that, by (3.1), the equality ||X], =0 for an index te(0, T) and
Xesly yields X = 0. Consequently, if 0 <T<U, then the restriction of
processes from &7y to the interval [0, T) is an embedding of /y into /r.

A representation of analytic processes appearing in part (iv) of Theorem
31 will be called a continuous version of analytic processes. Of course, the
continuous version has continuous paths with probability 1.

+4c, () (te(0, T),

THEOREM 3.3. Let A be an infinite subset of the interval (0, T) with at
least one cluster point belonging to [0, T). Suppose that the comirwous version
X from sy fulfils the condition P({w: X(t, w)=0})>0 for all ted.
Then X = 0.

Proof. Introducing the notation X(t, w) = f(t, W(, w)) and Q(t)
= {x: f(t, x) = 0} where f(z, z,) is analytic in the strip |z;| < T, z;e C we
have the formula

‘ X x?
P({w: X (1, @) =0})=Qnrt)"" | exp % dx.
gl !

Consequently, the sets Q (f) have positive Lebesgue measure for te d. Ey the
analyticity of f we conclude that f(t, z5) =0 for ted and z,e C. Since 4
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has at least one cluster point in [0, T), the function f vanishes identically in
the strip |z,| < T, z,eC. Thus X =0.

The following immediate consequence of formula (3.1) can be regarded
as an analogue of the Liouville Theorem for entire functions.

THEOREM 34. Let Xe st . If
sup {[| X]},: te(0, o0)} < o0,
then X is a constant process.
We now proceed to the study of the multiplication of analytic processes.

Tueorem 3.5. If X, Yesly and XYe oy, then at least one of the
processes X, Y is constant.

Proof. Taking the continuous versions
Xt,0)=f(t, Wt,0), Y, o) =g W(, o),
(XY)(t, ®) = h(t, W(t, o))

where f, g and h fulfil condition (iv) of Theorem 3.1 we infer that h = f.
Since

a2 T xax \a 202 \a 2o

oh 18*h o &g <6f 1 c?’f) <6g 1alg>
===+ + ,
we conclude that (&f/0x)(dg/dx) = 0 in the strip [0, T) x R. By the analyticity
of f and g at least one of the functions &f/dx and dg/dx vanishes identically
in this strip. Without loss of generality we may assume that dffox =0 in
[0, T)xR. Consequently, df/dt= —%*f/0x* =0, which yields that f is
_ constant in [0, T) xR. The theorem is thus proved.

THEOREM 3.6. A'r is the least subspace of My containing fy and
invariant under multiplication.

Proof. Let % be the least subspace of .y containing .«/; and invariant
under multiplication. We already know that &y < 4 and .4’y is invariant
under multiplication. Consequently, % < 4";.. Using formula (1.15) we have
t=Hi(t, w)—2H,(t, w)e ¥, which yields tH (L, o) (k,m=0,1,...)
By Lemma 2.1 and Proposition 2.1 the linear span _of the processes
tH,(t, ) (k, m =0, 1, ...) is dense in .4y Thus 4"y = %, which completes
the proof.

We define an auxiliary function ¢ for a, be(0, o) by setting

2ab
a+b+((a+b)*+12ab)?" ¢

o(a, b) =

icm
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It is evident that ¢ is monotone nondecreasing,

@(a, b) <min(a, b}, 3¢*(a, b)+(a+b)p(a, by—ab =0,
which yields
(34)

3t +(a+byt—ab <0 if te(0, ¢(a, b)).

Given ce(0, o) we put

V.(t, ) = f: (n+ Ve "Hi(t, w).

n=0

(3.5

Lemmn 3.2. For every pair a, be(0, o) and tE(()’ o(a, b)) the inequality
Vo, W) < 00 holds.

Proof. Applying formula (1.15) we get, by a standard calculation,

Vi, @) =(1—c i Y

2k
(k >(k+ Dc—u)™* Hy(u, w).
Consequently, by (1.17), for ue(0, min(a, b))

[ Valu, 0) Vi (u, ) P(dw)

a1~ 2(1 — =12 T 2k)k 2<_L—>k
=(l—a ') *(1—b""u) k§0<k (k+1) Tk

Taking 1 €(0, @(a, b)) and setting y =t*/((a—1)(b—1)) we have, by (3.4),
0<y<#%and for uel0, ]

-1.4-2 12 v (2K 2k
(Voo W <(=a™1072(1=b71)72 § (7 U175~
k=0
Since the radius of convergence of the power series
Y <2k>(k+1)22’°
k=0 k
is equal to 4 we get the assertion of the lemma.
We extend the definition of the function ¢ by setting ¢(a, )
= (00, a) = limy ., ¢(d¢, b) = a and @ (o0, 0) = c0.
TuvoreM 3.7. Let T, Ue(0, ©o]. The mapping (X, Y)— XY from oy
x oy into Ny, is continuous.

Proof. Suppose that X=Z:;Oa,,H,,e,;z¢T and Y=Z:1ob,,H,,en9/U;
Given te(0, ¢(T, U)) we can find a pair of positive numbers a and b
satisfying the conditions a < T, b <U and t < ¢ (a, b). Using the Schwarz
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inequality and formulae (3.1) and (3.5) we have for ue[0, ]

nf2 2

: ©  a,ad”
X (u, ) = EOW

< |1X1Z Valu, @)

(n-+ 1)1 @™ Hy(u, )

The same calculation leads to the inequality
Y (u, 0)* Y15V (4, @)
Hence we get the inequality
IXYNZ < IXNZNYUZ(Var Voo
which, by Lemma 3.2, yields the assertion of the theorem.

Remark. The function ¢ appearing in the above theorem is the best
possible. This can be shown by the following example. For any Te(0, o),
lzi] < T and z,e C we put

T\ (13
AL WES

where z'/? denotes the principal branch of the square root. One can easily
check that fyp is analytic in the strip |z4] <T, z,€C, belongs to Ny and
fulfils the equation

0 1 0

— = fr=0.

a2zl

Consequently, by part (iv) of Theorem 3.1 the process Xr(t, )
= fr(t, W(t, »)) belongs to o/r. Given ¢ > (T, U) we get, by a standard
calculation, the ineguality

2
Fo0, D fo(v, ) = A+T ) 2 A+U™ t)"l/zexp%}

whenever ¢ (7, U) < v < t. Hence and from (2.1) it follows immediately that
. (fr fu) = o0, which shows that fr fy ¢ Ny for any V > ¢(T, U). Applying
Proposition 2.1 we conclude that X Xy¢ .4y for any V> (T, U).

4. Random Fourier transform. We define a family of Borel probability
measures 4, (t€(0, ©)) on the complex plane by setting

2n

© ) 2
W(B) = =)~ | “B(rele)Ei(__)rdrd()
00 t

where 1, denotes the indicator of the set B and Ei is the integral exponential

icm®
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w -

Ei() = — | ery (x<0).

Givc.m Te(0, co] by Ay we shall denote the set of all entire functions f
with finite Hermitian seminorms

s(f) = (ilf(Z)IZ/L(dZ))”2 (te(0, T)).

If f(z) =Y. bu2", then, by a standard calculation, we get the formula

o0

4.1 sE(N) =Y nlbA(n+1)"1em

n=0
Hence it follow:: that fe Ay if and only if the radius of convergence of the
power series . _ nl|b,>(n+1)"" 2" is at least T Using Stirling’s formula we
can calculate this radius to obtain the following statement.

ProrosiTioN 4.1. An entire function Z:; o bn2" belongs to Ar if and only if

limsup n*/2|b,| 1" < (T~ ' g)t/2

i oo

Put m,(f) = max {|f(z)|: |z| < r}. The order ¢(f) of an entire function f
is defined by the formula

N log! i
o(f) = limsup oglogm,(f)
reaw logr
A constant function has order 0, by convention. If 0 < ¢(f) < o0, then the
type ©(f) is defined by the formula
1(f) = limsup r~ log m,(f).

The order and type of an entire function can be expressed in terms of
the coefficients of its power series representation f(z) =) b,z". Namely,
. A nlogn
e(f) = limsupr—-rmen,

v Tog (1/1b,)
t(f) ="' o(/)" " limsupn|b, /<"
nerol
([1], Theorems 2.2.2 and 2.2.10). Using the above formulae and Proposition
4.1 we get, by a simple calculation, the following criterion.

‘ ProposiTioN 4.2. An entire function f belongs to Ay if and only if either
o(f) <2, or o(f) =2 and =(f) < (2T)"*. Equivalently, { €Az if and only if

limsupr~2logm,(f) < 2T~ 1.

rr oo
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Given f(z) = Z:J:ob,,z", for any pair r, t of positive numbers we have,
by (4.1) and the Schwarz inequality,

m? () < ( )iolbﬂi ry

=(§ b (A2 (1)~ M2 212 (4 )2 (1) V2 (P2 1 1Y)

n=0

< SN A+t Y expe™r?).

Consequently, the convergence in Ap implies the uniform convergence on
every compact subset of the complex plane. Hence, in particular, it follows
that the space Ap is complete. Since, by (4.1), the family s, (te(0, T)) is
monotone nondecreasing, Ar is a local Hilbert space.

From Proposition 4.2 it follows immediately that the exponential func-
tions e,(z) = exp(cz) (ceC) belong to every space Ar.

ProposiTioN 4.3. Let {¢} be a sequence of distinct nonzero complex
numbers and 2::1 lcl " = oo for an exponent p > 2. Then the linear span of
the exponential functions e, (k=1,2, ...) is dense in Ar.

Proof. Let I be a continuous linear functional on Ay vanishing on all
functions e, (k=1,2,...). Since Ar is a By-space, we infer, by the Mazur—

Orlicz Theorem ([6], p. 119), that the functional ! is of the form

@2) I(f) = [f@h(@ A (dz)
(4
where ve(0, T), h is an entire function and s, (k) < co. Of course, he A, and,
by Proposition 4.2, ¢(h) < 2. Put
o0
Y an+1)"1 2"

n=0

hiz) = io a,z", glz) =

Evidently, g(g) < 2 and, by (4.2), I(e,) = g(cv) (ce C). Hence it follows that
¢v (k=1,2,...) are zeros of the entire function g.

Suppose that g does not vanish identically. Then taking into account the
relation between the order o(g) and the convergence exponent of the zeros of
g ([1], Theorem 2.5.18) we have the inequality Y, [c]™* < oo for every
g > 2. But this contradicts the assumption. Consequently, g = 0, which yields
h =0 on C. Thus, by (4.2), the functional | vanishes on Ay, which completes
the proof.

Remark. The assumption p > 2 in the above proposition is essential. In
fact, taking T > 2m, ve(2n, T) and setting

h(z) = sin (™2 z%)+ 20~ 2 2% cos (mv ™ * 22)

icm
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we have .s,,(h)’< o. Evidently, the functional I determined by & in (4.2) does
not vanish identically on Ay. On the other hand, setting c, = k'/?
(k=1,2,...) we have the equality

)

which shows that the linear span of €, (k=1,2,...) is not dense in Ay.

Hew = T (=17 (@ 1) et = sinmk =0 (k=1,2,.

v .Given T, Ue(0, co] we denote by (T, U) the harmonic mean of T and
, Le.

V(LU =T '+U

ProrosimioN 44. Let T, Ue(0, co). The mapping (f, g) — fg from Ay x Ay
into Ayr,u) is continuous. ‘

Proof. Suppose that f(z) =YY" a,z"€Ar and =V "

. n=0n T g(Z)—Z"= bnz €Ay.
Given t G(O, W(T, U)) we can find a pair a, b of positive numbers fulﬁllilgg
the conditions @ < T, b < U and t <i(a, b). From (4.1) we get the inequali-
ties

> < () (n+1)b7"sE(g) (n=0,1,...),
which yield

5 (k)™ (ot 1)yl ™ < s2(g) ()™ (n+ )2y (a, )"

k=0

“4.3)

(n=0,1,..).
tSetting (f9)(2) = X  caz", We have, by (4.1), (4.3) and the Schwarz inequali-
Y,
lea® =13, ax(k+1)7 Y2 (k)2 M2 b, (k+ 1)M2 (k)= V2 a2
k=0

<s3(N)sp @)™ (n+1) Y (a, )"
Applying now formula (4.1) we get the inequality b
5 (/9) < 54 (/)% (9)
where ¢ =3 (n+1)(y(a, )~ 't} < 0, which completes the proof.

~ Remark. Let Te(0, co). Put fr(2) = exp(z%/2T). It is easy to check
using Proposition 4.2 that fre Ay and frédy for any V > T Since frfy
= fyr,uy we conclude that the function  appearing in Proposition 4.4 is the
best possible.

n=0,1,..).

Given ce C the exponential process E(c) is defined as the unique solution

6 - Studia Mathematicn 89.3
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X in &, of the equation X = cIX+1. For a continuous version of X this
equation can be written in the differential form D; X = ¢X with the initial
condition X (0, w) = 1. It is well known that

4]

Y ¢"H,(t, @)

n=0

E(©)(t, 0) = exp(cW(t, w)—5c*t) =

([5}, Ch. 2.7). Moreover, the mapping ¢ — E(c) from C into &/, is conti-

nuous.
We define a Borel probability measure A on C by setting
m oo
AB) ="t [ [1y(re®e " rdrdo.
00

In what follows K, will denote the closed disk {z: |z] <r}. It is clear
that for every ¢ complex-valued continuous function f on K, the Bochner
integral jKr z) f(@)A(dz) exists in & ,,. Moreover, by a simple calculation,

we get the formula
Qo

449 jE(z)f (2)A(dz) = Z (f,nH,

where ¢, (f, 1) = jx, f(z),l(dz) (n=0,1,...). In particular,
r2 ;

(45) c"(zm’ r) = 5’,:‘ j‘ e—yy" dy (m'- n= 07 1! )

0

LemMA 4.1. For every entire function f from Ay the limit

f=1lim [ E@) f(2)A(dz)

r—roo Kr
«©
Yo obaz", then

exists in sAy. If f(2) =

7= nlb,H,
n=0

Proof. Let f(z)=2:°=ob,,z"eAT. From (4.4) and (4.5) we get the

formula
4.6) fE(z)j (2) A( dz) 2 b e “Yy'dyH,.
Given te(0, T) we have, by (3.1) and (4.1), the inequality

r2

IZF = Z ((n+1)1)7" by (fe‘yy dyyt' <

n=0

st(f) (re(0, ).

Consequently, by Theorem 3.2 the family Z, (re(0, o)) is conditionally
compact in &/y. Moreover, by formula (4.6) we conclude that the family Z,

icm
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3 - b - 0 .

has cfaxact]y one cluster point Z":on!b"H,, as r— oo. This completes the

proof.

The mapping f —f from A, into Ay is called the random Fourier
transform.

TueoreM 4.1. The random Fourier transform is an isomorphism from Ay
onto Ay,

Proof. By (3.1), (4.1) and Ehe second part of Lemma 4.1 for every fe Ay
we have the formula 5,(f) = ||/, (¢t€(0, T)). Consequently, to prove that the
random Fourier transform is an isomorphism it suffices to show that .oy is

its range. By Theorem 3.1 each process from &/, has a series representation
X = Z o H, Where

limsupn™ 12|, < (eT)™ Y2,
o0

Setting b, = (n!)"*a, (n =0, 1, ...) -we have

limsupn/2|b,|V/" < (T 1)~ Y2,

n-roo

Consequently, by Proposmon 4.1, the function f(z) = Z
Ar and, by Lemma 4.1, / = X, which completes the proof

Using the second part of Lemma 41 we get the following simple
formulae: z = W, (z") = n!H,, (¢, = E(¢) and

d .\ "
(ng) =D1f-

Further, as an immediate consequence of Proposition 4.3 and Theorem
4.1 we get the following statement.

obn2" belongs to

@7

THEOREM 4.2. Let lc,‘ } be a sequence of distinct nonzero complex numbers
and Zk=1|ck| P =0 for an exponent p >2. Then the linear span of the
exponential processes E(c¢) (k=1,2,...) is dense in .

We note that using the random Fourier transform one can define a
convolution of stochastic processes. Namely, if Xe o/, Yesly, X = f and
Y =§ where feAd, and gedy then we put XY =(fg) e, provided
JfgeAy. As an immediate consequence of Proposition 44 and Theorem 4.1
we get the following result.

Turorem 4.3. Let T, Ue(0, ov]. The mapping (X, ¥Y)— X *Y from sy
Xy into o yry is continuous.

Hence in particular it follows that &, is an algebra under convolution.
Moreover, if Xes/, and Ye oy, then X« Yeofy. By (47) we have the
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formulae
Dy(X*Y) =(Dy X)» Y+ X (D, Y)

and H,*H,=(""H,, (m,n=0,1,..). The last formula yields H,
= (n!)”! W*" where W*" is the nth power of the Brownian motion W under
x. Thus E(c):Z:io(c"/n!) W*" and, consequently, E(a)*E(b)= E(a-+b).
Criterion (iii) from Theorem 3.1 can be rewritten in the following form.

Tueorem 44. Xedly if and only if X =Y " c,W*" where
lim sup, .o 112 |c,| " < (T~ L )2,

References

[1] R. P. Boas, Entire Functions, Academic Press, New York 1954.
[2] R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111~
183.
[3] —~, —, Martingale representations and holomorphic processes, Ann. Probab. 5 (1977), 511~
521.
[4] R. S. Liptser and A. N. Shiryayev, Statistics of Random Processes I. General Theory,
Springer, New York-Heidelberg-Berlin 1977.
[51 H. P. McKean, Stochastic Integrals, Academic Press, New York-London 1969,
[6]1 S. Rolewicz, Metric Linear Spaces, PWN, Warszawa 1972,
- [7] P. C. Rosenbloom and D. V. Widder, Expansions in terms of heat polynomials and
associated functions, Trans. Amer. Math. Soc. 92 (1959), 220-266.
[8] D. W. Stroock, The Malliavin calculus and its applications, in: Lecturc Notes in Math.
851, Springer, 1981, 394-432.
[9] J. B. Walsh, Stochastic integrals in the plane, in: Proc. Internat. Congress Math.
Vancouver, vol. 2, 1975, 189-194.
[10] —, Martingales with a multidi ional parameter and stochastic integrals in the plane, in:
Lecture Notes in Math. 1215, Springer, 1986, 329-491,
[11] N. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1938), 897-936.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCLAWSKIEGO
INSTITUTE OF MATHEMATICS, WROCLAW UNIVERSITY
Pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland

Received March 2, 1987 (2282)


GUEST




