e ©
icm STUDIA_MATHEMATICA, T. LXXXIX. (1988)

Quasi-uniform convergence
in compact dynamical systems

by

T. DOWNAROWICZ and A. IWANIK (Wroctaw)

Abstract. We study the notion of quasi-uniform convergence introduced by Jacobs and
Keane in their work on Toeplitz sequences. We prove that the number of minimal sets, number
of ergodic measures, and topological entropy of the orbit closure do not increase undet a
passage to the quasi-uniform limit. Moreover, the set of invariant measures varies continuously
with respect to the Hausdorff distance, and so does the topological entropy in symbolic
dynamics. We also present a group construction which allows us to generate all Toeplitz
sequences from a single group rotation and control their quasi-uniform distance by means of an
upper Riemann integral. This gives a continuous passage between any two Toeplitz sequences
on the same alphabet. Finally, we observe that the quasi-uniform limit of periodic 0-1 sequences
need not be a regular Toeplitz sequence.

1. Introduction. By a (compact) dynamical system we mean a pair (X, T)
where X is a compact metrizable space and T'is a homeomorphism of X
onto itself (see also Section 8 for the more general setting of continuous
maps T). A nonempty closed subset F of X is called invariant if TF = F. By
compactness, for every x in X the orbit closure

O0(x)={TVx: jeZ}~
contains a minimal invariant set. If O (x) carries a unique invariant (probabi-
lity) measure then the system (O (x), T) is said to be uniquely ergodic and x is
called strictly transitive. If X = A% where 2 < |4| < oo and (TX)(j) = x(j+1)
then we call (X, T) a symbolic dynamical system.

In [5], Jacobs and Keane developed a theory of quasi-uniform conve-
rgence in compact dynamics. They proved, among other things, that the
quasi-uniform limit of (trajectories of) strictly transitive points is also strictly
transitive and so obtained the strict transitivity of 0-1 regular Toeplitz
sequences ([5, § 3], see also [8, Theorem 2.6]). A class of dynamical systems
that can be gotten as quasi-uniform limits of equicontinuous (uniformly
almost periodic) trajectories has been investigated in [4].

In the present paper we study further dynamical properties of the quasi-
uniform convergence. The strict transitivity result of [5] is extended by
proving that the set of invariant measures for (O(x), T) varies continuously
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in x with respect to the quasi-uniform convergence in X and the Hausdorff
distance between weak-star closed subsets of probability measures. In parti-
cular, passing to the quasi-uniform limit cannot increase the number of
ergodic measures on an orbit closure (Section 4). Similar assertions hold
true for the number of minimal sets (Section 3) and topological entropy
(Section 5). Moreover, in symbolic dynamics the topological entropy of 0 (x)
turns out to be quasi-uniformly continuous in x (Proposition 3). Since any
shift system is proved to be quasi-uniformly pathwise connected, we have a
method for producing paths of continuously varying topological entropy in
symbolic dynamics (Section 6). A continuous passage is also obtained within
the class of Toeplitz sequences, which turn out to be all derived from a single
group rotation. Finally, we show that the class of quasi-uniform limits of
periodic 0-1 sequences essentially differs from the regular Toeplitz sequences
of [5] (Section 7).

2. Quasi-uniform convergence. Let (X, d) be a compact metric space.
The Weyl pseudometric in the space of all X-valued functions defined on the
group of integers Z is given by the formula

k+L-1

=h:ﬁs1;pL_1 Y d(f () g()-

=k

Dy (/. 9)

An equivalent pseudometric is defined by
Dy (f, g) =inf {6: BD* {j: d(f (), ¢ (1)) > 6} < 5}

where BD* (J) = lim, sup, {J N[k, k+ n)|/n is the upper Banach density of J in
Z (cf. [5, Theorem 2]). Note that any equivalent metric on X gives rise to an
equivalent Weyl pseudometric on X%

The trajectory of a point x in the dynamical system (X, T) is the
function X: Z — X defined by

()=
We will say that x, converge to x quasi-uniformly if the corresponding
trajectories converge in Dy, ie. Dy (%,, ¥)— 0. We note that the quasi-
uniform convergence of Jacobs and Keane [5] is slightly stronger since it
corresponds to the metric Dy (X, y)+d(x, y). It will be shown that the quasi-
uniform pseudometric is in general incomplete (Proposition 2).

For any function f on X and xe X we set f*(j) = f(Tx), so that f*
= foX.

Prorosimion 1. Let (X, T) be a dynamical system and let F be a family of
continuous real-valued functions on X such that the family {foT!: feF, je Z)

separates the points of X. Then x,— x quasi-uniformly in X iff Dy ( fxn I
— 0 for every feF.
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Proof. For the necessity use the equivalent pseudometric D’W_\To prove

- the sufficiency first note that the Weyl pseudometric is invariant under

translations in Z so we may assume that F itself separates points. Moreover,

.there is no loss of generality in assuming |f| < 1 for feF. Now define an

equivalent metric in X by
dy (x,y) = L&l i —£0),

where fy, fa, ... is a separating sequence in F, 0 <a; <1, and Zai < o0. For
any ¢ > 0 choose m large enough to ensure Yioma < &/4. The distance in the
Weyl pseudometric between X, and X evaluated with respect to d, equals
k+L—1
hmsupL Y 4y (Tix,, TVx)
=k
k+L—1

hmsup(s/2+L ! Z N ]f(TJx,,)—-f(T’x)l)

=k ism

<82+ E Dy, (f.x",fx)

ism

for all n large enough. This implies x, — x qua51-unfforn11y

By taking F = \no} where 74 (x) = x(0) we obtain the following charac-
terization of quasi-uniform convergence in symbolic dynamics.

COROLLARY 1. In every symbolic dynamical system, x,— x quasi-uniformly
iff BD* {j: x,(j) # x(j)} — 0.

It follows that the pseudometric

- Dy(%, 7) = BD* {j: x(j) # y()}
is equivalent to Dy (X, 7) in 4%

The following example shows that the quasi-uniform limit of periodic
points need not have a minimal orbit closure, which settles a question in [5],
p. 126 (see, however, Theorem 1 below).

ExampLE 1. Let x,(j) =1 if n}j, x,(j) = 0 otherwise, and let x(0) =1,
x(j) = 0 for j # 0. We have D{y(X,, X) — 0 as well as x, — x coordinatewise in

{0, 1}% On the other hand, the x, are periodic, while the orbit closure of x is
not a minimal invariant set.

3. Minimal sets. Define m(x) to be the number of minimal invariant
subsets of (X, T) (and let m(x) = oo if the number is infinite). In this section
we prove that m(x) is lower semicontinuous (1sc) for the quasi-uniform
convergence in X.

For any E = X we let E° be the open ¢-neighborhood of E. For a fixed
xin X we put J(E) = {jeZ: TxeE}. If m <n are integers then we shall
frequently write [m, n) instead of [m, n)nZ. A subset S of Z is said to be
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syndetic (or relatively dense) provided there exists a natural number L such
that S N[k, k+L) # @ for every ke Z. It is well known that O (x) is minimal
iff for every ¢ >0 the set J({x}?) is syndetic (see e.g. [2], Ch. 1, §4). We
prove a similar criterion for the value, of m(x).

LemMMA 1. Let xe X and meN. Then m(x) < m iff there exists a set K
=1z, ..., z,,} such that for every & >0 the set J(K? is syndetic.

Proof. We first prove the necessity. Suppose m(x)<m and let
24, ..., Zn be representatives of all minimal subsets in O (x). Suppose J (K?) is
not syndetic for some ¢>0. Then for any neN there exist intervals
T "X, ..., T""x of the orbit of x entirely contained in X\ K*. Now the
orbit closure O(y) of any limit point y of T""x is also contained in X \K®,
and so is any minimal subset of O(y). This is a contradiction, because K
intersects all minimal sets in O (x).

To prove the sufficiency suppose m(x) > m. We fix m+1 distinct mini-
mal subsets Fy, ..., F,,..; of O(x) and let 4¢ = min {d(F,, F}): i # j}. The set
K* is now disjoint from at least one F{. On the other hand, it is easy to see
that J(F}) contains arbitrarily long intervals-so J(K®) cannot be syndetic.

Tueorem 1. The function m(x) is Ls.c. with respect to the quasi-uniform
convergence.

Proof Let m(x)>meN. We show that m(y) >m in some quasi-
uniform neighborhood of x. Let Fy, ..., F,,.; be distinct minimal subsets of
O(x) and choose 0 < ¢ < 3 such that & < min {d(F,, F)): s # t}. We are going
to prove that m(y) > m for any y satisfying Dy (X, 7) < &/6.

For any such y there exists an ne N such that

[{jelk, k+n): d(T?x, T'y) > g/6}] < ne/6 < nf2
for all ke Z. Choose 6 > 0 such that for u, ve X
d(u,v) <26 = d(T'u, T'v) <¢/3

whenever j€[0, n). By Lemma 1, there exists K = {z,, ..., Zyy } for which the
set J (K?) (for the orbit of y) is syndetic (with some constant L). Fix a natural
number s < m+1 and choose an interval [k, k+ L+n) in J (F¥/). Among the
points T¥y, j €[k, k+ L), there exists an element u = T" y of K% ie. u e {Zyy )¢ for
some h(s) < m(y). Since d(T7x, TV y) < /6 for more than n/2 of the numbers
J from [r, r+n), we obtain T/ueF%? for more than a half of the numbers
jel0, n).

Now suppose h(s) = h(). This implies the existence of ve {zy)’ such
that for more than a half of the numbers je[0, n) we have T'peF¥2.
Consequently, there exists 2 j for which both TYue F#* and TYve F¥3. Since
d(u, v) < 24, this implies s = t. We have proved that the mapping s — h(s) is
1-1, which gives m+1 < m(y) and the proof is complete.
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The following example shows that m(x) need not be continuous.

ExampLE 2. Let T be the shift on {0, 1}% Define a, =10...0, 0, =0...0,
both of length n. Now let

Xy = .. .00y 0p Gy Oy Oy Gy Gy 0,0, 0.

Each O (x,) has at least two minimal orbits: that of ...a,a,4,... and the fixed
point 0 = ...0,0,0,... Thus m(x,) > 2. On the other hand, Dy(x,, 0)—0
and m(o) = 1.

As an application of Theorem 1 we show that in general neither
Dy (X, ) nor any equivalent pseudometric on X is complete.

ProrosiTioN 2. If the shift on {0, 1}% occurs as a subsystem of (X, T)
then no pseudometric D equivalent to Dy (X, 3) is complete on X.

Proof. Given D, we construct inductively a Cauchy sequence without
limit points. Set x = ...000... and suppose we have already defined x,_, to
be ...b,_b,_1b,-1... where b, is a 0-1 block. We let x, =...b,b,b,...
with b, = b,_y...b,_15...s, where s =0 or 1 according as n is odd or even,
the terminal block s...s has length |b,_ 4|, and b, is repeated r, times in b,.
By making r, large enough we may have D(x,4;, X,) <277 so the sequence
x, is Cauchy in D. Suppose D(x,, y) =0 for some y eX. Then also Dy (X,, ¥)

.—(. In view of Theorem 1 we will arrive at a contradiction if we are able to

show that O(y) contains the fixed points ...000... and ...111...

Suppose eg. d(...000...,0(y)=¢>0 and let LeN be such that
d(...000..., z) < ¢/2 whenever z(j) = 0 for |j| < L(ze {0, 1}% = X). Choose n
such that b, =b,_;...b,—;0...0 has the terminal block b =0...0 of length
|b| > 2L+1. Clearly b appears in x, with density of at least |b,|™! =.
Observe that the appearance of b in x,., is with density greater than
8(1 —r;},) since only one in every sequence of r,, + 1 subsequent blocks b,, is
altered. By the same token, b appears in x,, (m > n) with density greater than

" =5H(1"ri"l)7
i>n

and n > 0 if the r, grow rapidly enough. Now choose m > n with

Dy (X, §) < min(e/2, n).

Since d(...000..., TVy) > ¢, we have d(T?x,,, T'y) > ¢/2 whenever b appears
in TYx,, around zero (so that x,(j+i) =0 for || < L). This happens with
density greater than #, contradicting the choice of m.

4. Invariant measures. Let (X, T) be a compact dynamical system. An
invariant measure is a Borel probability measure p on X such that u
=poT L It is well known that invariant measures always exist and the
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extreme points of the convex set of all invariant measures are exactly the
ergodic measures for T (see e.g. [1]). For any xe X we denote by P(x) the
(weak-star) compact convex set of invariant probability measures on O (x)
and define 2(x) to be the number of ergodic measures (extreme points) in
P(x). By the Krein-Milman theorem we have e(x) > 1. We may assume that
the metric ¢ in the space of all probability measures on X is given by

e(u, V) =27 [ fidu—f fidv,

. where {fi}, |}l <1, is a suitably chosen sequence of continuous functions on
X. Recall that the Hausdorff distance between nonempty closed subsets of a
metric space with metric ¢ is defined by the formula

ou(E, F) = maX(SIga(x, F), supe(x, ).
It was shown in [5] that if e(x,) =1 and x, — x quasi-uniformly, then
e(x) =1.

Tueorem 2. If x,— x quasi-uniformly then P(x,)— P(x) in gy.

Proof. Given ¢ >0 we find me N and 0 <& <¢/8 such that 27" < ¢/4
and d(x, y) <6 = |fi(x)—f£i(y)l <e/d for i=1,...,m. Now it suffices to
show that g, (P(x), P(y)) <& whenever Dy (X, ) < 4. To this end fix any
peex P(x). Then

kp+ Ly~ 1

p=lmL;* Y 5,
n j=k,
for some sequences {k,} and {L,}, L,— oo (see [2, Proposition 3.97). Let
kp+Ly—1

v=1lmL;! Z 5ij
n i=k

(choose a subsequence if necessary). Obviously ve P(y) and we have

Kyt Ly~ 1
o(w PO) <o) < L2 mLt ¥ |f(TVx)~f(T/y)
i n j=k"
. Kyt Ly—1 '
<e2+ ¥ 27m Lt Y ATV X)—£(TVy)
i<m n =k

n

<2+ Y 27(e/4+20) <.

i<m

If ue P(.x) is _arbitrary, the inequality g(g, P(y) < ¢ now easily follows from
the Krein-Milman theorem. By symmetry we also obtain o(v, P(x)) e for
every ve P(y), which ends the proof of the theorem.

COROLLARY 2. e(x) is Ls.c. with respect to the quasi-uniform convergence.

icm°®
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Proof. In view of Theorem 2 it suffices to show that the number of
extreme points of a compact convex set is an ls.c. function with respect to gy
provided all the sets in question are contained in a common compact subset
(with metric g) of a locally convex space. A standard proof of this general
fact is omitted.

Note that Example 2 in Section 3 shows that e(x) need not be
continuous.

5. Topological entropy. For every open cover % of X we denote by
N(%) the minimal cardinality of a subcover of %. By

\/ T
i=0

we denote the open cover by the sets (.o T~ U;, where U;e %. Recall that
the topological entropy h(T) of the dynamical system (X, T) is defined as the
supremum over all open covers % of the numbers

n—1
h(%, T)=limn 'logN(\/ T7' %).
n i=o

A subset E of X is called (n, ¢)-separated if for any two distinct elements
x, y of E we have d(TV x, T’ y) > ¢ for some je[0, n). A subset F of X is said
to be (n,e)-spanning if for every xeX there exists yeF such that
d(TPx, T'y) < ¢ for all je[0, n). If s,(¢) is the maximal cardinality of an
(n, e)-separated set and r,(g) the minimal cardinality of an (n, &)-spanning set
then

h(T) =1lim35(e) = lim7(g)
e—0 &=0

where 5(g) = lim,n™ ! logs, (&), F(e) = lim,n" logr,(e) (see [1] or [7]).

In this section we study a function h(x) defined as the topological
entropy of the system (O(x), T). First we extend the notions of separated and
spanning sets.

DEFINITION. A subset E of X is (n, ¢, 8)-separated if for any x # y in E
[{jel0, n): d(T/x, T'y) > &}|/n > 6.
A subset F of X is (n, &, 0)-spanning if for every xe X there exists ye F
such that
{jel0, n): d(TVx, TVy) <e}l/n>1-06.

Denote by s,(¢, 8) and r,(g, 6) the maximal cardinality of an (n, ¢, d)-
separated set and the minimal cardinality of an (1, ¢, 8)-spanning set, respec-
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tively. We define
5(e, 8) = limn~'logs,(e, 8), (e, §) = imn~'logr,(e, 9).
Note that both 3(¢, 6) and F(g, 8) are nonincreasing in both variables. The
following lemma is straightforward (cf. [1] or [7]).
LemMMa 2. 1,(e, 6) < s,(e, 8) < 1,(¢/2, 6/2) for all neN, ¢ >0, §>0.
Lemma 3. h(T) = sup,;505(&, 0).
Proof. By Lemma 2, it suffices to prove

h(T) = im lim#(e, 6).
5~0&:—0
First we show that if % is an open cover with Lebesgue number

e =¢&(%) (ie. every ¢-ball in X is contained in some Ue%) then for every
0<d<1/2

h(U, T) < 7(e, 5)+A(8)+ 6 log N (%),

where

A(0) = —Slogd—(1—3)log(1—8) (A(6)— 0 as & — 0).

Let F be an (n, &, 6)-spanning set of cardinality r,(¢, 6). For any
J = [0, n) define U(y,J)={xeX: d(T/x, TMy) <¢ for all jeJ}. The sets
Ul(y, J) where yeF and |J|/n>1—0 form an open cover of X and clearly
each U(y, J) is contained in a member of \/;;; T~/ 4. It follows that the
family

v =U(U0. )y yeFy v VT2

is an open cover which is a refinement of \/224 T~/ %; here (), is taken over
all sets J < [0, n) with |J|/n > 1—6, and \/,, is taken over all j in [0, n)\J.
Without loss of generality assume |%| = N(%) and né = ke N. Now

N('f\:/: T~ ) < N(¥) < |J: [J)jn > 1=8}|-|F| N (@)

< (:)kr,,(a, 8) N (2.

This implies

h(%, T) <7z, 6)+1im n~'log ((:)k)-{—élog N ().
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By Stirling’s formula, for n large enough,
knn+ 1/2

h
k) S ETE e

so h(%, T) < F(e, )+ A(8)+5log N(%). Consequently,
h(%, T) < lim lim7(s, 6) < lim7(e) = h(T).
e—+0

60 &0

— nl/Z 6—5n+ 1/2 (1 _5)—(1—6)11—1/2’

For every xe X we define s} (¢, d), (¢, 8) as the numbers s, (¢, 8), 5(¢, 6)
for the dynamical system (O (x), T).

Lemma 4. If BD*{j: d(T?x, TVy) > ¢} < 6 then s)(s, 8) > s¥(3e, 35) for
all sufficiently large n.

Proof. First choose n such that for every keZ
{jelk, k+n): d(Tix, TVy) > ¢}l/n < 6.

Next let s = s¥(3¢, 36) and let {x,, ..., x,} be an (n, 3¢, 36)-separated subset
of O(x). If 5 is sufficiently small and d(x;, z) <% (i=1,...,s) then
{z1, ..., z,} is also (n, 3¢, 36)-separated, so we may assume that x; = T x
(me Z). Now set y; = T y. If k + m then, by an elementary application of the
triangle inequality,

{iel0, n): d(T y, TV y,) > e}l/n>36~6—6 = 6.

The set {yi, ..., ys} is (n, &, 6)-separated, which implies s} (e, 8) = s.
THEOREM 3. h(x) is Ls.c. with respect to the quasi-uniform convergence.

Proof. If h(x) >a then by Lemma 3 there exists 6 >0 with
§(36, 36) > a. By Lemma 4, Dy (X, ) <¢ implies 5°(é, §) > a and conse-
quently A(y) > a by Lemma 3.

The following example shows that h(x) need not be continuous.

ExampLE 3. Let T be the shift in X = YZ where Y is an infinite compact
metric space. Let y,sy and y,—y in Y- For every neN there exists
x,€{y, yn}Z such that O(x,) = {y, yn}%. Clearly h(x,) = log2, the x, converge
quasi-uniformly to x = ...yyy... and h(x) = 0.

For symbolic dynamical systems we have a stronger result.

ProrosiTiON 3. Let X = A% (2 < |A| < ) and let T be the shift transfor-
mation. Then h(x) is continuous with respect to the quasi-uniform convergence.

Proof. Let 6,(x) denote the number of n-blocks occurring in x. If x,
ye A% and BD*{j: x(j) # y(j)} <& then, for n sufficiently large, any two
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corresponding n-blocks in x and y differ at k < né positions. This implies

6,0) < 6, <Z>IAI"-

By using Stirling’s formula as in the proof of Lemma 3 we obtain for n large
enough

n~tlogf,(y) <n *logf,(x)+ A(5)+5log|A.

Parry’s formula for the topological entropy of subshifts (see e.g. [1, Proposi-

tion 16.11]) gives n™'log8,(x) = h(x) so h(y) < h(x)+A(5)+dlog|4|. By
symmetry, |h(x)—h(y)| < A(6)+ 5 log[A|, which implies the uniform continuity
of h(x) with respect to the pseudometric Dy, (X, ) of Section 2.

6. Sequences generated by group rotations. Let G be a compact monothe-
tic group with a dense cyclic subgroup with generator 6 and normalized
Haar measure p. Consider the rotation Tz = z+6 of G. If (Y, d) is a compact
metric space then for every function f: G— Y we obtain a sequence f°(j)
= f(T? 0), je Z, which can be viewed as a point in the shift system (Y% S).
(This idea has been exploited e.g. in [6].) For any f, g: G— Y define

R(f, 9) = [d(f (2}, 9(2))dn(2)

where f denotes the upper Riemann integral, i.e. j odu =
infimum is taken over all continuous functions ¥ > o.

Lemma 5. Dy (f°, g% < R(f, 9).

Proof. Let h: G — R be a continuous function with d(f (2), g(z)) € h(z).j
We have

inf [ dy, where the

k+L-1 ) )
_gk d(f (170), ¢(170))
k+L-1

S K(TV0).
i=k

Dy (f°, ¢° = limsup L™*
L k

< limsup L™1
L k

Since the system (G, T) is equicontinuous, the last limit exists and equals
{hdy, which clearly ends the proof.

. Now we let K = {ze C: |z| = 1}, the unit circle, and 0 = exp 2mia with «
irrational. Note that every element of the shift space YZ is derived in the
above manner from the irrational rotation (K, T). In fact, given xe YZ we

can define f on the orbit {TV1: je Z} by f(T'1) = x(j). We use this simple
observation to prove our next result.

Prorosirion 4. The shift space YZ is pathwise connected with respect to
Dy,.
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Proof. Without loss of generality assume diamY < 1. Given f, g: K
— Y we will construct functions f;, 0 <t <1, such that f, = f, f =g, and
the mapping t—f, is R-continuous. The assertion will then follow from
Lemma 3.

Let 1(0) = @ and for 0 <t <
1 with p(I(1)) =t. Now define

glz)y if zel(t),
(z)  otherwise.

1 denote by I(t) the closed arc centered at

AUES

Clearly fo = f, fi =g and if 5, te[0, 1] then f(z)
= I(s) AI(t). This implies

R(foo f) = [ 22 d (£ (2). £ (2))dp(z) <

so t— f, is continuous, which ends the proof.

= f,(2) except for zeJ

pJ) =lt—sl,

The following in particular gives us a method of obtaining 0-1 sequences
of any topological entropy varying continuously between 0 and log2.

COROLLARY 3. For any x, y in the symbolic dynamical system (A% S)
(2 < |A| < o) there exists a “path” x(t), 0 <t <1, in A% such that:

(1) x(O) =x, x(1)=y.

(2) t — h(x(t)) is a continuous function.

(3) t - P(x(1)) is a continuous mapping into the space of nonempty weak*®
closed subsets of the probability measures endowed with the Hausdorff distance.

Proof. Combine Proposition 4, Proposition 3 and Theorem 2.

7. Toeplitz sequences. Let Y be a compact metric space. We recall some
basic definitions and facts (see [5] and [8]). A sequence ne YZ is called a
Toeplitz sequence if for every keZ there exists peN such that n(k) =
n(k+jp), for all jeZ. In other words,

J Per,(n) =
peN

where Per,(n) = {je Z: n(k) = n(j) whenever k =jmodp}. The orbit closure
of a Toephtz sequence is always minimal in the shift system (Y%, S). We set

d(n) = sup BD*(Per,, (1))
peN

The Toeplitz sequence 7 is said to be regular if d(n) = 1. The orbit closure of
n is then uniquely ergodic.

If p is the smallest period of the restriction n|Per,(n) then p is called an
essential period of n. For every Toeplitz sequence 7 there exists a sequence
(py) of essential periods such that p;|p;4+; and {J;Per, () = Z. Every such

3~ Studia Math, 89.1
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sequence is called a period structure for n ([8], p. 97). It is easy to see that
d(n) = lim; p7*|Per,, (n) A [0, p). .

Our aim is to describe Toeplitz sequences in terms of a certain O-
dimensional group rotation (cf. [6]). Next, as an application we prove that
the space of Toeplitz sequences is pathwise connected with respect to Dy,. In
particular, within 0-1 Toeplitz sequences, we can produce “paths” of conti-
nuously varying topological entropy in the interval [0, log2) (see [8, Cor.
5.2] for the upper bound of log 2).

First consider the group of a-adic integers 4, where a =(q;, q»,...) is a
sequence of primes containing every prime infinitely many times. It is known
that 4, is a O-dimensional compact monothetic group, and it is maximal in
the sense that every O-dimensional compact monothetic group is a conti-
nuous homomorphic image of 4, ([3, § 25]). Clearly 8 =(1,0,0,..) is a
topological generator of 4,. Let Tz =z+6 on 4,.

It should be noted that any individual Toeplitz sequence # can be easily
obtained from the group 4, where b = (py, po/py, P3/Pa, -..) for some period
structure (py, p,, ...) of u (the system (4,, T) is then the maximal equiconti-
nuous factor of O(r); see [8, Theorem 2.2]). We are going to derive all
possible Toeplitz sequences in YZ from the same group 4,, which will enable
us to control the quasi-uniform distance by means of the R-distance between
functions on 4,. The functions generating Toeplitz sequences will turn out to
have a nowhere dense set of discontinuity points (cf. [67]).

For every ke N denote by G, the subgroup of 4, consisting of all
elements beginning with k zeros (nfeG, iff g,q,...qi|n). Then u(Gy)
=(q19>.-.9x)" ", where p is the normalized Haar measure on 4,. Since G, is
open, the cosets of G, form a partition 2, into q;...q, clopen sets. For any
J: 4, Y denote by U (f) the union of all sets in (Jyy # on which f is

constant. The following proposition is similar to a characterization. in
Markley [6].

ProvrosiTion 5. Let f: d,— Y. If U(f) = {j0: je Z} then n(j) =f(j0) is a
Toeplitz sequence. Conversely, if n is a Toeplitz sequence in Y% then there
exists fi da—Y with U(f) > {j8: jeZ) and n(j) =1 (j6).

Proof. If U(f)> {j8: jeZ) then for given meZ, f(x) = f(mb) on
some coset mf+G,. Let p=gq,...q, and jeZ. Since jpdeG,, we have
n(m+jp) = f ((m+jp)6) = f (md) = n(m), whence # is Toeplitz.

Now, let # be a Toeplitz sequence and let (p,) be its period structure.
Flrstﬁnd kldsuch that q;...qe, = Lypy. If yy, .., Y., are the symbols that
occur p;-periodically in # at positions ji, ..., j, , (modp,), respectively, then
put f(x) =y; whenever xe(Lp, +j)0+Gy, i=1,...,r;, L=0,...,L;~1.
By continuing this process for p,, ps,... we will have defined f on a union of

cosets containing {jf: je Z}. Clearly f(j8) = 5(j) (je Z). On the remaining
part of 4, the function is defined arbitrarily.
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Remark 1. It is not hard to see that if f is as in the second part of the
proof then u(U(f)) =d(y), so n is regular iff u(U(f))= 1. Moreover, if
#(U(g)) =1 then n(j) = g(j6) is always a regular Toeplitz sequence.

ProrosITION 6. Let Y be a compact metric space. The space of all Toeplitz
sequences in the shift system Y% is pathwise connected with respect to Dy.

Proof. First embed 4, topologically into the unit interval in the
following manner. Divide [0, 1] into 2g, —1 intervals of equal length and
choose every other (closed) interval to form H,. Next divide every compo-
nent of H, into 2q,—1 equal intervals and choose every other one to form
H,. By continuing this construction we obtain a nested sequence of compact
sets H, and define H = (\H,. It is easy to see (as in the standard construc-
tion of the Cantor set) that H is a homeomorphic copy of 4,, with the
elements jO (jeZ) mapped into the endpoints of the components of H
(ke N). Moreover, every G,-coset of 4, is now mapped into an interval in H,.
In the sequel we shall identify 4, with its image H.

Now let f, g: A,— Y satisfy U(f), U(g) = {j0: je Z}. We construct a
family {f: 0<t < 1) suchthat f;: 4,—~ Y, U(f)> {j0:jeZ}, fo=1 fi=¢g
and R(f,,f)—0 as s—t—0. To this end we let f,(x) =g(x) if x >t and
fi(%) = f(x) if x <t. We put f,() = f(2) or g(r) according as ¢ is the left or
right endpoint of an interval in some Hy; if t¢ {j0: jeZ} we let f;,(t) = f(2).
Clearly {j0: jeZ)\{t} c U(f). If t =j6 for some j and eg. t is the left
endpoint in some H; then f,(x) = f(x) on the G,-coset containing t. Since
teU(f), we have teU(f;). We have proved that f generates a Toeplitz
sequence (Proposition 5). Finally, if 0 <s <t <1 then

R(for ) = T Hinamaa 0400, £,09) du()
< (diam Y)TX[S‘IIﬁAa du.

One easily verifies that T Xis,dndg @t = p([s, 10 4,). Since p is nonatomic, we
obtain R(f;, f)— 0 as t—s—0.

Remark 2. If f and g generate regular Toeplitz sequences then the
same is true of f,, 0 <t < 1. In fact, by construction, u(U(f)) = 1 if u(U(f))
=u(U(g)) =1 and the statement follows by Remark 1. Therefore the space
of regular Toeplitz sequences in YZ is pathwise connected with respect to
Dy,.

Remark 3. Proposition 6 can also be proved directly, by constructing a
family {Z,},q0,17 Of subsets of Z such that Zo = @, Z, = Z, s <t = Z, = Z,,
BD*Z, =t and each Z, is equal to the union of its periodic subsets (the
construction runs inductively through dyadic rationals). If we have this
family and 7, 7, (two Toeplitz sequences) then we let ,(n) = 5, () or no(n)
according as n belongs to Z, or not.
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Every regular Toeplitz sequence is a quasi-uniform limit of periodic
sequences. In the rest of this section we show that the converse is not true even
in the class of 0-1 Toeplitz sequences. First we give an example of a Dy, limit
of periodic sequences that has positive D, distance from every sequence
having a periodically occurring symbol.

ExamrLe 4. Define agq =00, agy =01, ag, =10. Let ko =3, ko, =

2
by induction on n. If a,, ..., a,;,—1 (2> 0) are already defined, put

i=0,..., k-1,
i=0,..

k
( ">+1. Next we define two sequences of blocks a,; and b, i =0, ..., k,—1,

by = ay...ay (n+2 times),

An1,i = bnyti(o)"'bn,ti(kn—l)’ 5 kn+1 -1,

where 7o =id and 7;, ..., 7, - are the transpositions of the set {0, ...,
k,~—1). Write L, = |a,|; note that |b,| = (n+2)L,. Now let a, (n > 1) be the
periodic sequence ...d,o a4, dyo- .. With a,, occurring at positions 0, +L,, ...,
and let a,, be a coordinatewise limit point of the sequence (a,) in {0,1}%.
Note that for m>n the a, (including a,) are made of the blocks
Gnos ---» Qny,—1 OCCUrring at positions 0, +L,, ... Clearly a,o and a, differ at
< 21b,_ 1| places, which implies Dy, (d,, a,) < 2/k,-,, Dy(a,, a,)— 0.

Now consider any sequence b having a symbol se{0, 1} repeated
periodically with a period p = n+2 for some n > 1 (every Toeplitz sequence
is such). Note that a, is made of the blocks b, ..., byy,-1, each by
occurring with Banach density 1/(k, |b,ql). Moreover, |b,| = pL,, so s occurs
in b at each of positions k+j[b,| for some 0 < k <|b,o| and every je Z. On
the other hand, it is easily seen from the construction of a,, that both 0 and
1 appear as the kth symbol in some b,;. This implies Dy (@, b) = 1/(pL, k).

Remark 4. By modifying the above construction it is possible to obtain
a 0-1 Toeplitz sequence which is the quasi-uniform limit of periodic sequen-
ces without being regular. In fact, it suffices to adjoin b,, to each a,., (for
all n large enough, say n 2 n,) as a new initial and terminal block, so now

.
An+ 1, = byo bn,r‘-(O)' . -bn,r,»(k,,— 1 buo-

Since |b,o| — o0, we see that each symbol in the limit sequence'n oceurs
periodically, so n is a Toeplitz sequence. Moreover, it is not hard to see that
for n = ng the L,-periodic part of # has density less than Z">"0 2/k, . Since, as

before, for every p there exists n with p|L,, we obtain d(i) < > o 2/k, <1

for n, sufficiently large. "

8. Continuous mappings. If T: X — X is a continuous mapping (not
necessarily homeomorphic) then the closed orbit O, (x) of xe X is defined as
the closure in X of the set {x, Tx, T?x, ...}. If the upper Banach density is
only considered on the subsets of the nonnegative integers rather than Z,
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then we can define a corresponding pseudometric Dy on X as in Section 2.
Now, just as in Sections 3-5 we define m. (x), P, (x), e, (x), and h, (x) to be
the number of minimal sets, the set of invariant measures, the number of
ergodic measures, and the topological entropy of O, (x), respectively. Ob-
viously, if T is a homeomorphism we have Dy, < Dy, my <m, P, < P,
e, <eand hy <h

All the results of this paper remain valid for continuous mappings with
Dy, m, P, e, h replaced by Dy, m,, P, e, and h,, respectively. The proofs
are essentially the same (for a general reference on topological entropy of
continuous mappings see e.g. [7, Ch. 5]). Proposition 3 and all the examples
are valid for the unilateral shift on AN.
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