i ©
m STUDIA MATHEMATICA, T. LXXXIX. (1988)

Some results on symmetric subspaces of L,

by
Y. RAYNAUD (Paris) and C. SCHUTT (Kiel)

Abstract. We extend the result of Dacunha-Castelle concerning subspaces of L; with
symmetric basis to the more general setting of rearrangement invariant function spaces. Methods
we use are of finite-dimensional nature, and completely different from Dacunha-Castelle’s ones.
We also study the embeddability of L(E) into L,, when Lis a symmetric space.

Introduction. It was shown by D. Dacunha-Castelle that each infinite-
dimensional subspace of L; with a symmetric basis is order isomorphic to a
mean of Orlicz sequence spaces ([2], exposé 10, Th. I, and exposé 11,
Prop. 3).

A finite-dimensional version of this result was given by S. Kwapief and’
C. Schiitt in [5]. The purpose of this note is to give a reduction of the
infinite-dimensional result of Dacunha-Castelle to the finite one of Kwapien—
Schiitt, and an extension of this to the more general setting of rearrangement
invariant spaces (over [0, 1] or [0, co]), as well as to symmetric sublattices of
Li(l) and Ly(co). ) ) .

Dacunha-Castelle used an ultrapower device to reduce the question to
the case of exchangeable random variables; which (as known by de Finetti’s
theorem) is reducible to the independent identically distributed r.v. case. The
random variables we consider here (in the “finite case”) are discrete and not
independent.

We also give some results on the embeddability of L(E) into L,, when L
is a symmetric space and E a Banach space. As a consequence of the results
of [5] we deduce that for E = L this embeddability implies that L is equal to
some L, space. For L = L, we show that L, order embeds into some L, (Lp)
and E embeds into L,.

The fact that [,(J,) does not embed into L, if p > ¢ (Cor. 3.2 below) is a
matter of “folklore”, and was known for some time to several authors. See
also [9] for a proof due to J. L. Krivine, or [3].

0. Definitions and notation. We say that a basis {x};,y of a Banach
space is C-symmetric if for all g,e R, & = +1, ie N, and all permutations = of
N,

I, o5l < €,
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For simplicity of notation we refer to 1-symmetric sequence spaces (of
finite or infinite dimension) or rearrangement invariant function spaces (“r.i.
spaces™) over [0, 1] or [0, co] (cf. [6] for a definition and basic properties)
as symmetric spaces. '

Let (2, P) be a probability space. A family (F,),.q of Orlicz functions
will be said to be measurable if for each le R, the function w—F,(1) is
measurable. It is then clear that for each fixed vector ae R™ (resp. for each
simple measurable function f) the function w r—»”aH,Fm (resp. @ H“f“LF(,,) is
measurable.

We denote by || ||, both the norm in I (Orlicz sequence space) and in
Lg, (Orlicz function space over [0, 1] or [0, c0]). The completion of R™
(resp of the space of smlple functions) for the norm | olldllr, dP (w) is called a

“mean of Orlicz spaces”.

Note that the functions F, may be degenerate, ie. F, may be O for
0<t<ty and +oco for ¢, <t < co.

An Orlicz function F is said to be normalized if F(1) = 1, and p-convex
(g-concave) if A F(AY?) is convex (A+>F (119 concave).

If N is a natural number, let Sy be the group of permutations of
{1,..., N} (or, equivalently, of N and fixing the numbers n > N) and Dy the
group {—1, 1}" (identified with a subgroup of D = {~1, 1}™). Ave,., and
Ave,,, are the natural averages on Sy and Dy,

If a and b are positive real numbers, we

(1//o)b <a< Jeb.

1. The Representation Theorem.

write ayb if

THEOREM 1.1. There is a universal constant K such that every symmetric
space X which is C-isomorphic to a subspace Y of L, is KC-isomorphic to a
mean of Orlicz spaces with 2-concave Orlicz functions.

More precisely,

fllx gz m .[ 1fllp, dm ()
where (7, m) is a separable probability space, m & 1. and the F
2-concave normalized Orlicz functions.

In this representation, the Orlicz spaces are sequence spaces (finite or
infinite) or function spaces (over [0, 1] or [0, c0]) according to the nature of
the symmetric space X.

Note that by the 2-concavity of the Orlicz functions, each of the spaces
appearing in the average is isomorphic (with a universal isomorphism
constant) to a subspace of L, by [1].

We give the proof of Theorem 1.1 after recalling the treatment of the
finite case [5].

F., te7, are
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(A) The finite case. Let (x;)'.; be a C-symmetric sequence in L;. We
have Y axll % [|Y axlx where X is a (finite) sequence space with

1-symmetric basis (x;)}L,;. We have

N N N
I axiflx = Ave|| T & ang xiflx & AyeH 2 & Gy X1
i=1 neEN i=1 ey i=1

eeDy eeDy
Ave” Z & a,m)x”1 ~ jAve Z Grgey X (2)] )1/2 dP (w)
ﬂGvN l—
eeDy

where Kh = \6 (Khintchine equivalence constant).
By Kwapien-Schiitt’s results we have

N N
Ave( Y. lawy % (@) & llaley, (N7* T 1 (@))

neZy i=1 i=1

where K, is a universal constant and Fy,, is a 2-concave normalized Orlicz
function depending measurably on o (cf. [5], Lemma 2.10).
In fact, if we set, as in [5], formula (2.3),

N2, 1
— t J—
3 _lr for 0 < <y

N 1 1
Y (2——) forez—
2N—1( N) TN

S 3 ()]
Fralt) = 2, M ( o @) 1||MN)

it is clear that Fy, is 2-concave, normalized and depends measurably on w.
Putting Py = my (N1} |x,(-)) P with my = [N™'Y |x ()| dP(w) we
see that Py is a probability measure and

”Z ax”ch

My@®) =

|a”FN deN( w).

Note that

N
= Z J’Ci“Ll"‘N Z [Ixdlx = 1.
i= i=1
(B) The infinite sequence case. Let (x)2; be an infinite C-symmetric
sequence in L; and X the associated 1-symmetric space C-isomorphic to
span[x] ;. Let (Fywloen D€ the measurable family of Orlicz functions
associated to the vectors Xy, ..., xy as in (A) before. It can be viewed as a
random variable whose values are Orlicz functions.
More precisely, consider the space ¢, of normalized 2-concave Orlicz
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functions equipped with the topology of pomtw1se convergence. It is a
compact metrizable space, for it is closed in R and the topology of
pointwise convergence coincides on (7, with the topology of compact con-
vergence. This follows from Ascoli’s theorem and the fact that F(f) <2 for
fe®, and t = 1.

Let my be the image of Py by the map Q — 0,, w+—Fy,. We can
extract a subsequence (my, )iz ; which w*-converges to a probability = on 0.

Now for each aeijN’, the map 0,—R,, F=F(g)=}),  F(a) is
clearly bounded and continuous. But

llalls = inf{A: F(a/A) <1} =sup{i: F(a/3) =1}

The first equality shows easily that F +|a||r is 1s.c., and the second that
it is us.c.; so this map is bounded continuous, and consequently

VaeR™: [ |la|lpdny, (F)— [lldlpdn(F) as k—co.
by by

If we suppose my, —m as k— oo it follows that

*s]
IS axlx gom § llallp dr(F).
i=1 0y

(C) The rearrangement invariant case. Let X be a r.i. space over [0, 1]
(resp. [0, o0]) and suppose that T is an embedding of X into L,, with
ITI|-IT~ Y ~ C. We apply the same procedure as for finite sequence spaces
but normalize differently the Orlicz functions in order to get Orlicz function
space norms.

Let (4; y); be the dyadic partition of order N of [0, 1] (resp. of [0, NJ),
which generates a ring Qy. We have

N N

2 2
”}: Aila, Jlx 7 Ave ||Z & ey Tla, ollL,  (xesp. Ave )
i=1 "E€2N i=1 nsk:NzN
eeDzN eeD

IIZ A, ,

|T1 A'.'Nl, and‘l 4; y 18 the characteristic function of the

N2N
(@) dP ()
where hy =27 ”Zf:l
set A; y.

Set Oy(w)=Fy. (27" and Fy, () = 2" FN " (0~ ()?). Then

I3, Aellny, = lmqumM

and the famlly (F N,o)y TEmains measurable w1th values in 0,. Set vy
= (hy/0x) P and my = ||vyl|; let Ty be the probability on ¢, corresponding to
vy/my. We have

(1A Nlx &j”f”LﬁN’m dvy(w) = mNﬂ[f”LF dny(F)

Fyo()=1,
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for f=zi/1i 14, The same holds for each N> N, when f is Qu,-
measurable. '

With f = 1j0,4;, we get
my = [vall x 1

so we can pass to the limit (w*) along a subsequence and get

11l gz m 1l .

Note that the simple functions on dyadic intervals form a dense sub-
space of X. Indeed, since X is isomorphic to a subspace of L;, X does not
contain a subspace isomorphic to ¢,. Therefore X is an order continuous
lattice, thus the dyadic functions are dense in X.

2. Symmetric sublattices of L, (), L, (co). Analogously to Theorem 1.1,
the following theorem holds for symmetric sublattices of L, (l) or L;(co).

THEOREM 2.1. A symmetric space X which is C-order isomorphic to a
sublattice of Ly(cq) (resp. Ly (1) is KC- (resp. K, C-)isomorphic.to a mean of
Orlicz spaces (resp. of q-concave Orlicz spaces) where K is a universal constant
(resp. K, depends only on q).

Note that a g-concave Orlicz space-is in turn order isomorphic to a
sublattice of L, (L), by [8], Th. 2. )

Proof. (A) The finite case is treated with a suitable modification of the
function My. We set in the case of L;([), q < o,

N? 1
- il
qN—(q—l)t ifosr< N’

N ( , qg—1 . 1
N (0T s L
aN—g-)\T N N

and in the case of L, (co),

MY @) =

0 fOo<t< %,
(00) (4) ==
MY O =9 _yn £rsl
1—1/N “N
We then have the following analogue of Lemma (2.9) of [5]:

LemMmA 2.2. Let a2 a2 ... 2a

as §

Pl € %
Mls) 1=1 =N+1

220. Then

1 1/q )
Nlla.) a%‘”) <~l!(a) 1||M(13, ifg < oo,

3


GUEST


32 Y. Raynaud and C. Schiitt
1 N NZ —
Ty < 2 o S UGy 4= 0

It is straightforward to verify this lemma (by adapting the proof of
Lemma (2.9) of [5]).
Then (by using Ths. 1.1 and 1.2 of [S]) it is clear that

N N
IS axlyug = TAve( Y, lawa Il (@)if) " 4P ()
i=1 i=1

K;C_f“(ai)HzFN‘mdP(w)

with Fy, deduced from M{ as in the L; case.

(B) The infinite case is obtained, in the case of L, (/) sublattices, by
convergence of probability measures on ¢, the compact metrizable space of
g-concave normalized Orlicz functions.

In the case of L;(co) one has to consider the space ¢ of normalized
(possibly degenerate) Orlicz functions, which are left-continuous at irrational
points, endowed with the topology of simple convergence on Q.. It is easy
to see that (U is again a compact metrizable space. Moreover, it is clear that,
for example, the functions F ~»|al|p are continuous on ¢ when ae Q™). So by
the convergence procedure we identify the norm of ||} g; xf| for ae Q™ and
conclude by approximation. In the r.i. case one has to notice, moreover, that
the simple dyadic functions are dense in r.d. spaces order isomorphic to
sublattices of L, (co): in fact, sublattices of L, (c,) are order continuous (cf.
[6], Def. 1.2.6). m

3. Embeddings of L(E) into L, where L is a symmetric space. We recall
the following result, given as a remark (without proof) in [11] (the proof will
appear in another paper of Kwapiei and Schiitt).

ProposiTioN 3.1. Let L and F be two spaces with 1-symmetric bases of the
same dimension (finite or infinite). If L(F) is embeddable into L, then the
identity map from L to F is bounded, and more precisely

lid: L— F|| < 5./2d, (L(F))
where dy (L(F)) = inf {d(L(F), G): G is a subspace of Ly}.
CoroLLARY 3.2. If the space 1,(l)) embeds into L, then p <g.

ProrosiTioN 3.3. An infinite-dimensional symmetric space L such that L(L)
embeds (isomorphically) into Ly is order isomorphic (by the Idenmy map) to 1, or
L, for some p, 1 <p<2.

Proof. By Krivine’s results [4] the space L contains /2 uniformly as
sublattices. So I,(L) and L([%) uniformly embed into L, and the same is true
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for every symmetric sublattice A of L. By Proposition 3.1 we see that every
finite-dimensional symmetric sublattice A of L is order isomorphic to an Iy
with isomorphism constants uniformly bounded. So L itself is order isomor-
phic to an L, (or 1,) space. =

CoroLrary 3.4, If 1, (L) (resp. L,(L,)) embeds into L, then I, = 1, (resp.
L, = L) for some p, 1 <p<2.

More precisely, the function ¢ (1) is equivalent to 1* (at O in the case of l,,
at 4o in the case of L,([0, 1], at 0 and + o0 in the case of L,(R)).

Now if L is a lattice and E a Banach space (of infinite dlmensmns) and if
L(E) embeds into L,, then let

g(L)=infg: L is g-concave} =infly: L has a ¢ lower estimate! |
p(E) =sup ip: E is of type p!.

Then I, is latticially finitely representable in L (this is implicitly contained
in Krivine’s paper [4]) and, by Maurey-Pisier [7], Il,(b, is finitely represent-
able in E.

So Iyry(lpw) is finitely representable in L;, which (by Corollary 3.2)
implies g (L) < p(E).

Next, Iy, (E) is finitely representable (hence embeddable by standard
ultraproduct arguments) in L;. So by a result of N. Kalton [3], E embeds
into L,l(”.

In the case where L is an Orlicz space, we can make the situation more
precise.

ProposiTION 3.5. L, (E) is embeddable into L, iff there exists p such that
L, is order isomorphic to a sublattice of L, (L,) and E is embeddable into L,.

Proof (of the “only if* part). If g(L,) < p(E), choose ¢(L,) < p < p(E).
L, being p-concave, by [8], Th. 2, it is order isomorphic to a sublattice of
Li(L,) (note that there exists a p-concave Orlicz function W such that
Ly = L,). On the other hand, E is embeddable into L, by a well-known
result of H. P. Rosenthal [10]. )

Il 4(L,) = p(E) let p be the common value. Note that E is embeddable
into L, and that I, (/,) is finitely representable, hence embeddable, into L;.

The same is true if we replace L, by one of its symmetric finite-
dimensional sublattices. It is a consequence of Proposition 3.1 that for each
choice of n functions fy,...,f,. L,-normalized, disjointly supported and
having the same distribution,

llié Sl = Kntie

where K does not depend on the f’s and on n.
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It is then an easy exercise to show that L, is in fact p-concave (cf. [6],
proof of Prop. 2b.5) and therefore is a sublattice of L,(L,). m

4. Open questions. It seems not clear whether convexity or concavity
conditions can be translated on the representation of symmetric subspaces as
means of Orlicz spaces given in Section 1. More precisely:

Question 1. If L is a g-concave symmetric subspace of L, is it
representable as a mean of g-concave Orlicz spaces?

QuesTioN 2. If L is a p-convex symmetric subspace of L,, is it represent-
able 'as a p-mean of p-convex Orlicz functions, i.e.

IAUE ~ Sl Npdr(F) ?

These questions are equivalent to the following, which have affirmative
answers in the case of Orlicz spaces:

Question 1'. If a g-concave symmetric subspace of L; order embeddable
into Ly (L,)?

QuEsTion 2'. Is a p-convex symmetric subspace of L, embeddable into
L?

It is well known (see [10]) that a weaker form of Question 2’ has an
affirmative answer: a subspace of L, with p-convex lattice structure is
embeddable into L, for 1< p; <p<2. We do not know if, analogously,
the following weakening of Question 1’ has an affirmative answer:

QuesTion 1”. Is a g-concave (g <2) symmetric subspace of L, order
embeddable into L, (L,,), for each g, ¢ <gq; < 2?

One can also ask for the equivalent of Proposition 3.5, for symmetric
subspaces of L; in place of Orlicz spaces. )

To reproduce the proof of Proposition 3.5, it would be sufficient to
answer Question 1” in the affirmative, because, on the other hand, we are
able to prove (by “stability” methods, in the sense of Krivine and Maurey,
which notably differ from the methods we use here) that a lattice Lsuch that
L(l,) embeds into L, is order embeddable into L, (L,).
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