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Zero-one law for subgroups of paths of
group-valued stochastic processes

by
H. BYCZKOWSKA and T. BYCZKOWSKI (Wroclaw)

Abstract. Let ¢ be a symmetric infinitely divisible stochastic process with values in a
locally compact separable group G and let n be its Lévy measure. If H is a measurable subgroup
of paths of ¢ then y(Iffy=x implies that P'¢eH' =0 and jp(H)=0 implies that
Pi¢eH) =0 or L

Let G be a complete separable metric group and let (u),.o be a
continuous convolution semigroup of probability measures on G. Suppose,
further, that H is a Borel subgroup of G. We investigate conditions under
which either p(H) =0 for all t >0 or y(H) =1 for all t > 0.

The results of this paper extend the ones from [2] and [6] in two
directions: first of all, we do not assume that H is a normal subgroup, as in
these two papers; mareover, our results are valid not only for Gaussian but
also for general convolution semigroups.

Since our approach is rather general, the results we obtain here are valid
without the local compactness assumption, as in [6]. This enables us to
prove 0-1 laws for subgroups of paths of stochastic processes with values in
locally compact groups.

1. Preliminaries. Throughout this paper G will stand for a complete
“separable metric group, unless stated otherwise. By C, = C,(G) we denote the
space of all left uniformly continuous real bounded functions on G. By a
probability measure 1 on G we mean a c-additive Borel measure such that
u(G) =1, For any probability measure g on G we define the probability
operator T, on' C, by the formula

T.f () =[f(xp)udy), [eC,.
It is easy to see that T,feC, and that T, f— T, f uniformly, for every
feC,, if and only if p,= pu weakly. Also, we have T,, =T, T..

Now, let (1),»0 be a convolution semigroup of probability measures on
G, ie. .

Wox g = phy, for all £,5>0.
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(1) >0 is called continuous if lim, .ot = 8,. If (1,)y>0 is continuous then the
corresponding family (7,).»o of probability operators forms a strongly
continuous semigroup of contractions on C, regarded as a Banach space
under the supremum norm. This semigroup is uniquely determined by its
infinitesimal generator N defined on its domain % (N) which is dense in C,.
It is evident that N commutes with left translations: L.Nf = NL, f for
f & @(N). Therefore it is enough to consider the generating functional A,

Af =(Nf)(e), fe2(N).
If fe 2(N) then Nf = AL, f.
The crucial role in the proof of our theorems is played by

TROTTER APPROXIMATION THEOREM. Let T be a sequence of strongly
continuous semigroups of operators on a Banach space X, satisfying the
condition

TN < e,

where K is independent of n and t. Let N, be the infinitesimal generator of T™.
Assume that lim N, x exists in the strong sense on a dense linear subspace D.
Define

Nx =limN,x,

Suppose additionally that for some A > K the range of A — N is dense in X.
Then the closure of N is the infinitesimal generator of a strongly continuous
semigroup T, such that

xeD.

Tx=HimT"x for xeX.

|
We will also use the following version of the perturbation theorem (cf.
[3], see also [6]):

PERTURBATION PRINCIPLE. Let (u),~o be a continuous convolution semi-
group of probability measures on G with the generating functional A defined on
2(A) < C,. Suppose that A= B+c(v—3,), where B is the generating functio-
nal of a convolution semigroup (3,),-o, ¢ iS a positive constant and v is a
probability measure. Then

) e =3 ¥ ()
n=0

where YO (t) = %, Y™ () = cf Hy—uw ¥V &Y VW) du for n >
convergent in the total variation norm.

1, and the series is

Another important point in our method is the use of the L!(y) space for
u defined by

()] b= et pdr.
)
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It is easy to see that u is a probability measure. By L! we mean the space of
all Borel measurable functions on G that are p-integrable. The importance of
this L' space follows from the fact that (u),», acts as a strongly continuous
semigroup on L' and that

©)] T lle g1 S €
Moreover, if H is a Borel subgroup of G then
@) u(H) >0 implies p(H)—1 as t—0.

It is not difficult to show that u(H) > 0 implies g, (H) >0 for all t > 0. On
the other hand, if the p, are symmetric then u, (H) > 0 for a single ¢, implies

4 (H) >0 for all > 0. All these facts concerning the L' space are taken
from [2].

2. Zero-one laws. Let (1), be a continuous convolution semigroup of
probability measures on G. Suppose, further, that H is a Borel subgroup of G
with u(H) > 0, where p is defined by the formula (2). The following lemma is
an important step in proving the main result.

LEMMA. Assume that (w)-o and H are as above. Then

(5) o lim (1/6){1~p (H)) = ¢ < c0.
10+
Proof. Let X = {X(1); t =0} be a homogeneous stochastic process

with independent increments taking values in G, determined by the condition
that the distribution of X (z) is equal to j, ie. X(0) =e and for all 0 < s,
<s§; < ... <s, the increments X (s;), X (52) X (s1)™ %, ooy X {s) X (55—1)~ " are
independent and have distributions p,, fs,—s;5 - A routine appli-
cation of Kolmogorov’s Extension Theorem shows the existence of such a
process. Next, let 7: G — G/H be the canonical mapping of G onto the space
of left cosets of H, endowed with the g-algebra induced by = from G. Then
{n(X(t); t >0} is a homogeneous Markov process on the state space G/H
with the following trausition probabilities:

Pin(X(+u)eD|n(X (1)) =zH}=P,(zH, D) = |1

In particular,

» Ho-s—y -

o (xzH)dp, ().

P.(H, H) = p,(H).

Since P, is differentiable (see e.g. [7]) the limit in (5) exists. We only
have to show that it is finite. To do this, we apply the following version of
Ottaviani’s Inequality:

min P {Xw) X (ku/n)"*eH} P{X (iu/n)¢H for some i, 1 i< n}

OsksSn—1

S P{Xw¢H},
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where {X(t); t > 0} is the previously determined process. In terms of one-
dimensional distributions the above inequality can be rewritten as follows:

(6) IT‘:B Hyufn (H)(l “(.uu/n (H))n) < 1 = Hy (H)

Since p (H) — 1 as s — 0, we may choose u > 0 such that u,(H) > 2/3 for all
s such that 0 <s < u. Then the inequality (6) yields

(:uu/u(H))" 2 1 '_(3/2) (1 - :uu(H)) = 1/25
SO

n(1 = pya () < n{l ~(1/2)"") = In 2.
This shows that the constant ¢ in (5) is finite and completes the proof of the
lemma.

Now, we are able to state and prove our main result.

THEOREM. Let (1), 5o be a symmetric convolution semigroup of probability
measures on G and let H be a Borel subgroup of G such that p,(H) > 0 for all
t > 0. Then the generating functional A of the semigroup (i), o acting on C,
has the following decomposition:

)] A=A"+c(v=94,),

where A" is the generating functional of a symmetric convolution semigroup of

probability measures which are concentrated on H, 0<c< oo, and v is a
probability measure such that cv(H) = 0.

Proof. 1. Let u? be the conditional probability with respect to H.
Observe that if pu (H) =1 for a single s > 0 then y,(H) =1 for all s > 0 and
in that case the conclusion is clearly true with 4 = A¥ and ¢ = 0. Therefore
we may assume that for every s > 0, y,(H) > 0. Then for all s > 0 we have
the following identity: ‘

(1/8) [ue= 8.1 = (1/5) pts (HO) L™ — 8]+ (1/5) p () [l — 8,].
Write the above identity in the form
®) Ay = AT 4 AH

with A, = (1/5)[1,— 3,1, A = (1/5) m[“s ~06,] and A = (1/s) u, (He) [l
—4,]. Now, observe that by our lemma 4% is norm bounded. We show that

the family {4} is conditionally compact as s — 0+ . To do this, we apply
the formula (1) with 4, as 4, A¥ as B and u™ as v. We then have
© e exp((t/s) [, —3.1) = Z ),
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where ¢, = (1/s) u,(H®) — ¢ <0 as 5s— 0,

1O (e = exp((¢/9) us () L5’ ~.),

and

(10) “‘)(l)—c [ PO (t—w) 5 p wy® " Vdu  for k= 1.

Next, let ¢ >0 and let ¢ be fixed. Since exp((t/s) [, —8.]) = 14 as s— 0
([3]) there exists a compact subset K of G such that for s <s, we have
exp((¢/s) [pg—8.1) (K®) < ¢/2. Further,

(11) Iy @l = (e, 1/k!
for k =0, 1, ... Therefore for all s <s, we obtain
YO K) = & (1—g/2)— (€ — 1) = 1 —(g/2) €™

Since ¢, — ¢, this means that {y{”(¢); s <1} is conditionally compact. By
standard symmetry arguments we get

(12) WK > 1-ee™
for all 0 <u < ¢ and s as before, where K’ = KK~'. Moreover, by (9) and
(11) we get

PO (N(K) = ¢, [ PO (¢ — ) # 1 5y (u) (K) du

2 (1—g/2)—1— (¥ =1 —c,0) = ¢, 1 —(g/2) €.

This and the formula (12) show that for some u, 0 <u <
490 ) (K) = 1—(e/2¢)) ¢
with s as before. The above inequality, together with (12), shows that
W (KKK > 1 ~(g/c,— 8% ) €

S, This means that the family {u*; 0 <5<

t, we have

PO (= u)

for all s <
compact.

1} is conditionally

2. Now, observe that A, converges on & (A) to A as s — 0. Since {u*; 0
<s < 1} is conditionally compact, choosing an appropriate subsequence we
get the following equality on @ (A):

A=cy—3,)+A"

for a probability measure v and a linear functional A™. Because A¥ is a sum
of a generating functional and a norm bounded functional and, by (12), the
family 9P (1) = exptA¥, 0 <5 < 1, is conditionally compact for every fixed t,
A" is the generating functional of a continuous convolution semigroup of

6 - Studia Math, 89.1
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probability measures on G. We show that these measures are concentrated
on H. This part of the proof is the same as the corresponding part of the
proof of the main result of [2]. It is included here for the sake of
completeness. We apply here the L' method. Namely, observe that

™l e 0 < (¢*/us (D). Thus we have
llexp ((¢/s) s (H) [Ef"lj)”l.l,u < el s =)
Since lim,..o (1/s) (¢ — ps (H)) = 1+ ¢ < oo, the family of semigroups
T = exp((t/s) lls(H)['I;H—I])a se(0, 1],
has the property '
[ all

for a K >0, independent of s.

Now, let N¥ and N¥ be the generators of the convolution semigroups
T and lim,_, T;¥ considered as acting on C,, and let A" H and A be the
generators of the same convolution semigroups, regarded as acting on L.
Denote the convolution semigroup corresponding to N¥ by 3. Let N H be the

closure of N¥ in L!. By standard arguments N¥ = .4 Moreover, by the
definition of N¥ we obtain

(13) lim|[l A/~ NEf|l,, =0 for feZ(N™).
s—0

<X

JAN2!

Since also (A—NH)(2(N™) is dense in L' for A > K, (13), by the Trotter
Approximation Theorem, gives

(14) Wm || T, [~ TOf|l,, =0 for feLl.
s—0

Since the convolution semigroups corresponding to T are all concentrated
on H, by (14) we get

Y (H) p(H) = | T, 1u(y) p(dy) = is;lndu = p(H).
H

Hence

for all ¢t > 0.

P(H) =1

3. Finally, we show that always cv(H) = 0. This, again, is a consequence
of the formula (1) applied to the decomposition 4 = ¢(v—5,)+ A%
) [
(15) eu= 3 "),
n=0

where (1) =y, and (1) = c‘ro Ye—u*v*y" Y (w)du, and the above series
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converges in the total variation norm. Indeed, observe that as in (11) we have
I @l = (cty/n!
Moreover, since y,(H) is concentrated on H we get

YR OH) =c [ [y (Hx™)d(v*y,)(dx) du
o

t

=c[{v(y™* Hydy,(y)du = cv(H)t.
0

The above observation, together with (15), shows that
(16) e w(H) = 1+ctv(H)+ 0 (t?).

Since (1/t) 4, (HY) — ¢ as t — 0, the formula (16) gives
cv(H) =0.
A convolution semigroup (u),-o is called Gaussian if

lim (1/2) g (V) = 0
t—0

for every neighbourhood of the identity e. Using the same arguments as in
[2] we can show that in the decomposition (7) we have 4 = A whenever
() >0 is Gaussian. Moreover, in that particular case we do not have to
assume that the g, are symmetric. Thus we have the following:

COROLLARY 1. Assume that (), is a Gaussian convolution semigroup on
G. If H is a Borel subgroup of G such that u,(H) > 0 for all t > O then p,(H)
=1 for every t > Q.

Throughout the remainder of the paper G will stand for a locally
compact group satisfying the second countability axiom. Suppose that ¢
= {£(t); te T} is a stochastic process with values in G, where T < R. Assume
that ¢ is infinitely divisible and symmetric, i.e. for every s =(sy, ..., s)e T,
8; < ... <s,, there exists a continuous symmetric convolution semigroup
(#"), 50 on G" such that 4 is the distribution of (é(sy), ..., £(s,). Because of
the uniqueness of such a semigroup (cf. [1]), applying for every ¢ the Kolmo-
gorov Extension Theorem we obtain a family (1),. of probability measures
on G” endowed with the product o-field #;. Moreover, it is clear that ()¢
is a continuous convolution semigroup.

Now, let (u),>0 be a continuous convolution semigroup on GT. For
every seT" the semigroup (i),»0, the corresponding finite-dimensional
distribution of (1), i$ a continuous convolution semigroup on G", which
again is a locally compact group. Therefore the generating functional A® of
(1% 5o is defined on the set @ (G") of test functions (see [4], [5]), and can be
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represented on 2(G") in the form
Af =98 Y8 f+ [(F=f (=T (f)) dn®,

where Y§ is a primitive form, ¥¥ is a quadratic form (which defines a
Gaussian semigroup on G"), I'" is a fixed Lévy mapping, and ¥ is a Lévy
measure on G" (see [4], [5]). Let now # be the measure on (G”, #y), defined
by the family #. n is called the Lévy measure of (i) 5o0.

We now reformulate our theorem in terms of subgroups of sample paths
of infinitely divisible processes with values in G.

COROLLARY 2. Let & =1{E(t); te T} be a symmetric infinitely divisible
stochastic process with values in G and let n be the Lévy measure of &. Suppose
that H is a measurable subgroup of G*. Then:

@) If n(H%) = o then P{(cH} =

(ii) If n(H°) =0 then either P{éeH} =0 or P{¢cH} =1

Proof. Let us first observe that in view of the structure of %, we may
restrict our considerations to the case when T is countable. However, G* is
then again separable, so our theorem still can be applied. Now, let (1),.., be
the symmetric continuous convolution semigroup on G’ determined by ¢.
Suppose that for every t > 0 we have , (H) > 0. By our theorem we obtain

A=A%+c(v-46,),

where A# is the generating functional of a continuous convolution semigroup
(7); >0 which is concentrated on H and v is a probability measure with the
property cv(H) =0. Let now #¥, #n be the Lévy measures of (y).o and
() >0, respectively. By the uniqueness of # we obtain

n=nH4cv.

Now, if #¥(H) # 0 then we may decompose A as A, +d(m—3J,), where 0
<d < oo and m is a probability measure concentrated on H°. Using once
more the formula (1) we then obtain (exptd,)(H) =1 for every ¢ >0 and

1 t

t = [(exp(t—u) A;)xmxexp(uA,;)(H)du = [m(H)du = 0.

0 0
Therefore n®(H?) = 0. Thus n(H®) = oo implies that v(H®) = co, which is
impossible. This proves the first part of the corollary.

The proof of the second part is even easier: if n(H®) =0 and w (H) >0

then cv(H) =0, so A= A" which means that pu (H)=y,(H)=1. This
concludes the proof.

Remark. Corollary 2 was proved in [6] for infinitely divisible random
variables with values in a locally compact group G, instead of stochastic
processes, and under the additional assumption that H is a normal subgroup.
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The next corollary follows immediately from the fact that the Lévy
measure of a Gaussian process vanishes.

COROLLARY 3. Let & = {{(t); te T) be a symmetric Gaussian process with
values in G and let H be a measurable subgroup of G”. Then either P{¢c H)
=0or P{teH}=1..
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