	cm [°]	
_		

STUDIA MATHEMATICA, T. LXXXIX. (1988)

On the convergence of lacunary polynomials *

STANISŁAW MAZUR**

Abstract. It is proved that if $\{p_n\}$ is a sequence of positive numbers such that $p_{n+1}/p_n \ge 1$ +a for each $n=1, 2, \ldots$, where a is a solution of the inequality $2a > (1+a)^{1+1/a}$, then on the linear span of the functions t^{p_n} , $n=1,2,\ldots$ considered on the interval [0,1) the topology of convergence in Lebesgue measure coincides with the topology of uniform convergence on compact subintervals of [0, 1).

Let $\{p_n\}$ be a sequence of positive numbers such that $p_{n+1}/p_n \ge 1+a$ for n = 1, 2, ..., where a satisfies the inequality $2a > (1+a)^{1+1/a}$ (a > 3.403...)let $p_0 = 0$ and let $c_{k,n}$, k = 1, 2, ..., n = 1, 2, ..., be numbers such that for each k, $c_{k,n} = 0$ for large n. Let

$$f_{\mathbf{k}}(t) = \sum_{n=0}^{\infty} c_{\mathbf{k},n} t^{p_n}.$$

The aim of this paper is to prove the following

THEOREM. If the sequence of functions $\{f_k\}$ converges almost everywhere on the interval [0, 1) then:

- (i) For each n the sequence $c_{k,n}$, k = 1, 2, ..., converges to a limit c_n .
- (ii) The series $\sum_{n=0}^{\infty} c_n t^{p_n}$ converges to a function f on the interval [0, 1). (iii) For each 0 < r < 1 the sequence $\{f_k\}$ converges uniformly to f on the interval [0, r].

Proof. The validity of the above theorem is a simple consequence of the following two lemmas.

Lemma 1. Let 0 < s < 1. Assume that:

- (a) $\limsup_{k\to\infty} \sum_{n=0}^{\infty} |c_{k,n}| s^{p_n} < \infty$.
- (b) For each n=1, 2, ... the limit $\lim_{k} c_{k,n}$ exists and equals c_n . Then for each r < s the sequence of functions $\{f_k\}$ converges uniformly on the interval [0, r].

^{*} This paper is based upon posthumous notes of S. Mazur. It contains a result presented by him at the Conference on Functional Analysis which took place in Warsaw in September of 1960. The result gave a solution to a problem posed by S. Mazur in 1949 and published in Colloquium Mathematicum 2 (1951), p. 152 (cf. the end of the paper).

^{**} Prepared by W. Smoleński from the notes taken by W. Kołodziej.

Proof. For 0 < t < r and m = 1, 2, ... we have

$$|f_k(t) - f(t)| \le \sum_{n=0}^m |c_{k,n} - c_n| r^{p_n} + \sum_{n=m+1}^\infty (|c_{k,n}| + |c_n|) r^{p_n}.$$

Let M be such that $\sum_{n=0}^{\infty} |c_{k,n}| s^{p_n} \leq M$. Then $|c_{k,n}| s^{p_n} \leq M$ and $|c_n| s^{p_n} \leq M$. Consequently,

$$\sum_{n=m+1}^{\infty} (|c_{k,n}| + |c_n|) r^{p_n} \le 2M \sum_{n=m+1}^{\infty} (r/s)^{p_n}.$$

Given $\varepsilon > 0$ there exists m_0 such that

$$\sum_{n=m_0+1}^{\infty} (r/s)^{p_n} \leqslant \varepsilon/(4M)$$

and there exists k_0 such for each $k > k_0$

$$\sum_{n=0}^{m_0} |c_{k,n}-c_n| r^{p_n} < \varepsilon/2.$$

Hence $|f_k(t)-f(t)| < \varepsilon$ for $0 \le t \le r$ and $k > k_0$.

LEMMA 2. Let 0 < s < 1. If

$$\limsup_{k \to \infty} \sum_{n=0}^{\infty} |c_{k,n}| \, s^{p_n} = \infty$$

then the Lebesgue measure of the set

$$Z = \{t \in (s, 1): \limsup_{k \to \infty} |f_k(t)| < \infty\}$$

is equal to 0.

Proof. Without loss of generality we may assume that

$$\lim_{k\to\infty}\sum_{n=0}^{\infty}|c_{k,n}|\,s^{p_n}=\infty.$$

Assume, on the contrary, that |Z| > 0, where |A| denotes the Lebesgue measure of a set A. Then there exists M such that

$$|\{t \in (s, 1): |f_k(t)| < M \text{ for each } k = 1, 2, ...\}| > 0.$$

Denote the above set by W and choose $r \in W$ such that W has density 1 at r. If we put

$$S_{k,n} = \sum_{i=0}^{n} c_{k,i} r^{p_i}, \quad S_k^* = \sup_{n} |S_{k,n}|$$

then $\lim_{k\to\infty} S_k^* = \infty$. Indeed, otherwise $S_k^* < N$ for infinitely many k. Conse-

quently, for those k, $|c_{k,n}| r^{n_n} < 2N$ for all n and hence

$$\sum_{n=0}^{\infty} |c_{k,n}| s^{p_n} \le 2N \sum_{n=0}^{\infty} (s/r)^{p_n} < \infty$$

which is impossible since we have assumed that $\lim_{k\to\infty}\sum_{n=0}^\infty |c_{k,n}|\, s^{p_n}=\infty$. Now, we will show that

$$\lim_{k \to \infty} S_{k,n}/S_k^* = 0 \quad \text{for each } n.$$

Indeed, in view of the estimate $|c_{k,n}r^{p_n}/S_k^*| \leq 2$, if the above convergence did not hold there would exist an increasing sequence of positive integers $\{k_i\}$ such that

$$\lim_{l\to\infty} c_{k_l,n} r^{p_n} / S_{k_l}^* = b_n \quad \text{for each } n=1, 2, \dots$$

and $b_n \neq 0$ for some n. By Lemma 1 it follows that

$$\begin{split} \lim_{i \to \infty} f_{k_i}(t) / S_{k_i}^* &= \lim_{i \to \infty} \sum_{n=0}^{\infty} \left(c_{k_i,n} r^{p_n} / S_{k_i}^* \right) \left(\frac{t}{r} \right)^{p_n} \\ &= \sum_{n=0}^{\infty} \left(\frac{b_n}{r^{p_n}} \right) t^{p_n} = g(t) \quad \text{for } 0 \leqslant t < r. \end{split}$$

On the other hand, $\lim_{k\to\infty} f_k(t)/S_k^* = 0$ for $t\in \mathbb{Z}$. Therefore the analytic function g is equal to 0 on [0, r). This yields $b_n = 0$ for all n, which proves the above claim.

Let $b = (1+a)^{-1/a}$. Then $b - b^{1+a} = a(1+a)^{-1-1/a} > 1/2$. Hence there exists $\alpha > 1$ such that $b^{\alpha} - b^{1+a} > 1/2$. Also we have

$$\lim_{n \to \infty} (1 - b^{1/p_n})/(1 - b^{\alpha/p_n}) = 1/\alpha < 1.$$

Since r is a point of density 1 for W we get

$$\begin{split} \lim_{n \to \infty} |W \cap J_n| / |I_n| &\geqslant \lim_{n \to \infty} |W \cap I_n| / |I_n| - \lim_{n \to \infty} |I_n \setminus J_n| / |I_n| \\ &= 1 - 1/\alpha > 0, \end{split}$$

where $I_n = [rb^{\alpha/p_n}, r]$ and $J_n = [rb^{\alpha/p_n}, rb^{1/p_n}]$. So there exists n_0 such that for each $n > n_0$ we can find $t_n \in J_n$ such that $|f_k(t_n)| \le M$ for all k.

We have

$$S_{k}^{*} \pm f_{k}(t) = \sum_{n=0}^{\infty} (S_{k}^{*} \pm S_{k,n}) \left[\left(\frac{t}{r} \right)^{p_{n}} - \left(\frac{t}{r} \right)^{p_{n+1}} \right]$$

for 0 < t < r, k, n = 1, 2, ... Since each term in the last series is nonnegative

we get

$$S_k^* \pm f_k(t) \geqslant (S_k^* \pm S_{k,n}) \left[\left(\frac{t}{r} \right)^{p_n} - \left(\frac{t}{r} \right)^{p_{n+1}} \right] \quad \text{for } 0 < t < r.$$

Hence we obtain easily

$$|f_k(t)| \geqslant |S_{k,n}| \left\lceil \left(\frac{t}{r}\right)^{p_n} - \left(\frac{t}{r}\right)^{p_{n+1}} \right\rceil - S_k^* \left(1 - \left\lceil \left(\frac{t}{r}\right)^{p_n} - \left(\frac{t}{r}\right)^{p_{n+1}} \right\rceil \right)$$

for 0 < t < r and all k, n = 1, 2, ...

Let c be a number such that 0 < c < 1 and $(1+c)(b^{\alpha}-b^{1+\alpha}) > 1$. For each k, choose n_k such that $|S_{k,n_k}| > cS_k^*$. Since $\lim_{k \to \infty} S_{k,n}/S_k^* = 0$ we obtain $\lim_{k\to\infty} n_k = \infty$. If $n_k > n_0$ then

$$\begin{split} M &\geqslant |f_k(t_{n_k})| \geqslant |S_{k,n_k}| \left[\left(\frac{t_{n_k}}{r} \right)^{p_{n_k}} - \left(\frac{t_{n_k}}{r} \right)^{p_{n_k+1}} \right] \\ &- S_k^* \left(1 - \left[\left(\frac{t_{n_k}}{r} \right)^{p_{n_k}} - \left(\frac{t_{n_k}}{r} \right)^{p_{n_k+1}} \right] \right) \geqslant S_k^* \left\{ (1+c) \left[\left(\frac{t_{n_k}}{r} \right)^{p_{n_k}} - \left(\frac{t_{n_k}}{r} \right)^{p_{n_k+1}} \right] - 1 \right\} \\ &\geqslant S_k^* \left\{ (1+c) \left\lceil b^{\alpha} - b^{p_{n_k+1}/p_{n_k}} \right\rceil - 1 \right\} \geqslant S_k^* \left\lceil (1+c) \left(b^{\alpha} - b^{1+a} \right) - 1 \right\rceil, \end{split}$$

because $rb^{\alpha/p_n} \le t_n \le rb^{1/p_n}$ for each n.

It follows that the sequence $\{S_{k}^{*}\}$ is bounded, contrary to what was assumed at the beginning of the proof. Thus |Z| = 0.

Remark 1. The proof of the theorem gives a stronger result. Namely, the assertion of the theorem is valid under the assumption that the set A of points of pointwise convergence of the sequence $\{f_k\}$ has the property: $|A \cap [1-\delta, 1]| > 0$ for each $\delta > 0$.

Remark 2. Let $\{p_n\}$ be a sequence of positive numbers as in the theorem. The space F of continuous functions on the interval [0, 1] which are sums of power series of the form $\sum_{n=0}^{\infty} c_n t^{p_n}$ on the interval [0, 1) has the following properties:

- (i) If f is a continuous function and f is the pointwise limit of a sequence $\{f_k\}$ on [0, 1] with $f_k \in F$ for k = 1, 2, ... then $f \in F$.
 - (ii) F is a linear space different from C [0, 1].
- (iii) If $t_1, t_2, \ldots, t_k \in [0, 1]$ and s_1, s_2, \ldots, s_k are real numbers then there exists a function $f \in F$ such that $f(t_i) = s_i$ for i = 1, 2, ..., k.

The above example solves Problem P80, Colloquium Mathematicum 2 (1951), p. 152.

> Received January 26, 1987 (2272)

Factorizations of natural embeddings of l_n^n into L_r , I

T. FIGIEL¹ (Gdańsk), W. B. JOHNSON^{1,2,3} (College Station, Tex.) and G. SCHECHTMAN² (Rehovot)

Abstract. In this paper we study quantitative aspects of the local \mathcal{L}_p -structure and the uniform approximation property of L_p , $1 \le p \le \infty$. Let K > 1. Given a subspace X of L_p with $\dim X = n < \infty$, the parameters $m_p(X, K)$ and $k_p(X, K)$ denote, respectively, the smallest dimension m of a superspace Y, $X \subset Y \subset L_p$, such that $d(Y, l_p^m) \leq K$ and the smallest rank of an operator u on L_n such that $||u|| \le K$ and ux = x for $x \in X$.

We consider mainly the case p=1. For some natural Euclidean subspaces $X \subset L_1$ we show that $m_1(X, K)$ and $k_1(X, K)$ are at least exponential in n, which in general cannot be improved. In fact, our lower estimates lead to new L1-characterizations of Sidon sets (cf. Section 2). Analogous estimates are obtained in Section 3 in the case where $X \subset L_1$ is spanned by n i.i.d. r-stable random variables, 1 < r < 2.

The case $p = \infty$ is treated in Section 4. We prove that $k_{\infty}(X, K) \leq m_{\infty}(X, K)$ $\leq \exp(A(K)n)$ and, if n > 1, we show cases where $k_{\infty}(X, K) \geq \exp(\delta K^{-2}n)$, for some $\delta > 0$ and each K > 1.

Our method depends on analysis of factorizations of the embedding map $X \subset L_p$. In Section 5 we show that a similar scheme can be applied also in the case of quotient maps onto some subspaces of L_1 .

- 0. Introduction. In this paper and its sequel [FJS] we investigate quantitative aspects of the local \mathcal{L}_n -structure and the uniform approximation property of L_p . The two most basic questions can be phrased as follows:
- (\mathscr{L}) Given a subspace X of L_p (or C(S), when $p=\infty$), dim X=n, and a constant K > 1, estimate the smallest $m = m_n(X, K)$ such that there is a subspace Y of L_p with $X \subset Y$ and $d(Y, l_p^m) \leq K$. In particular, estimate $m_p(n, K) = \sup \{m_p(X, K): \dim X = n\}$. (Here d(Y, Z) is the Banach-Mazur distance coefficient

$$\inf\{||T|| ||T^{-1}||; T: Y \to Z \text{ is an onto isomorphism}\}.$$

(2) Given a subspace X of L_p (or C(S), when $p = \infty$), dim X = n, and a constant K > 1, estimate the smallest $k = k_p(X, K)$ such that there is an

¹ Supported in part by NSF DMS-8316627.

² Supported in part by NSF DMS-8200584 and the U.S.-Israel BSF.

³ Supported in part by NSF DMS-8500764.