78 S. Mazur

we get

Szifk(r)ztszisk,»[(f) 1@)"”] for 0 <t <r.

r

Hence we obtain easily

i - [T

for 0<t <rand all k, n=1,2, ...

Let ¢ be a number such that 0 <c¢ <1 and (1+¢)(b*—b'** > 1. For
each k, choose n, such that [S, , | > cS¥. Since Ty 2 o0 Si, i/ Sk = 0 we obtain
lim o 1 = 0. If m > ng then

M 2 | fi ()] 2 Sicml [(%—")pnk— (L:k)pnkﬂ]
st (1) ()]s st o (2 () )

> SE L+ —b™ ™) 1) > sE[1+0) (" b9 —1],

1
because rb*" < t, <rb !"n for each n.

It follows that the sequence {S§} is bounded, contrary to what was
assumed at the beginning of the proof. Thus |Z| =0. =

Remark 1. The proof of the theorem gives a stronger result. Namely,
the assertion of the theorem is valid under the assumption that the set A of
points of pointwise convergence of the sequence {f,} has the property:
|[An[1-=6, 1]} >0 for each § > 0.

Remark 2. Let {p,} be a sequence of positive numbers as in the
theorem. The space F of continuous functions on the interval [0, 1] which
are sums of power series of the form Y " ¢,™ on the interval [0, 1) has the
following properties:

(i) If f is a continuous function and f is the pointwise limit of a
sequence {f;} on [0, 1] with f,eF for k=1, 2, ... then feF.

(i) F is a linear space different from C[O0, 1].

(i) If ¢y, t5, ..., [0, 1] and sy, $,, ..., 5 are real numbers then there
exists a function feF such that f(t;)=s fori=1,2,..., k.

The above example solves Problem P80, Colloquium Mathematicum 2
(1951), p. 152.
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Abstract. In this paper we study quantitative aspects of the local .Z,-structure and the
uniform approximation property of Ly, 1 < p < co. Let K > 1. Given a subspace X of L, with
dimX = n < co, the parameters m,(X, K) and k,(X, K) denote, respectively, the smallest
dimension m of a superspace Y, X < ¥ < L, such that d(¥, I}) < K and the smallest rank of an
operator u on L, such that |lull < K and ux = x for xe X. :

We consider mainly the case p = 1, For some natural Euclidean subspaces X cL; we
show that my (X, K) and k; (X, K) are at least exponential in n, which in general cannot be
improved. In fact, our lower estimates lead to new L,-characterizations of Sidon sets (cf. Section
2). Analogous estimates are obtained in Section 3 in the case where X = Ly is spanned by niid.
r-stable random variables, 1 <r <2,

The case p=co is lreated in Section 4. We prove that ku (X, K)< m, (X, K)
< exp(4(K)n) and, if n > 1, we show cases where ko (X, K) = exp(8K~?*n), for some 6 > 0 and
each K > 1.

Our method depends on analysis of factorizations of the embedding map X < Ly. In
Section 5 we show that a similar scheme can be applied also in the case of quotient maps onto
some subspaces of L.

0. Introduction. In this paper and its sequel [FJS] we investigate 'quapti~
tative aspects of the local Z-structure and the uniform approximation
property of L,. The two most basic questions can be phrased as follows:

(%) Given a subspace X of L, (or C(S), when p = ), dim X = n, and a
constant K > 1, estimate the smallest m = m,(X, K) such that thereq is a
subspace Y of L, with X <Y and diY, ) < K. In particular, estimate
my(n, K) = sup {m,(X, K): dimX = n}. (Here d(Y, Z) is the Banach-Mazur
distance coefficient

if {7 Y T Y = Z is an onto isomorphism}.)

(%) Given a subspace X of L, (or C(S), when p = o), dim X = n, qnd a
constant K > 1, estimate the smallest k = k,(X, K) such that there is an
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operator u: L,— L, with ux =x for xeX, |[u| <K, and ranku <k. In
particular, estimate

k,(n, K) =sup {k,(X, K): dimX = n}.

Problems (%) and (%) are related, at least for small values of K, because
by the Dor-Schechtman theorem [D], [Scl], for each p thereis a K s> 1s0
that every K-isomorph of an I7 space in L, with K < K, is f,(K)-
complemented in L,, and f,(K)—1 as K~ 1.

Although they did not consider the problem of estimating the parame-
ters m,(n, K) and k,(n, K) precisely, the concepts were introduced by Pel-
czynski and Rosenthal [PR], who showed that for all K > 1, all n, and all
1<p< oo, m,n K) and k,(n, K) are finite. In fact, [PR] contains an
argument, due to Kwapien, that m,(n, 1+¢) and k,(n, 1+¢) are of order no
larger than (n/e)" for some constant C.

In Section 1, we show that for natural n-dimensional Euclidean subspa-
ces X of L, the uniformity functions m, (X, K) and k, (X, K) satisfy a lower
exponential estimate expdn, where § =8(K) >0 is a constant which is
independent of n. “Natural” is broad enough to include the cases where X is
spanned by independent gaussian variables, independent Rademacher func-
tions, or any set of characters whose Sidon constant is bounded independent-

ly of n. The analytic condition which is relevant is that there exists a
constant C so that

0.1 lIxll, < C/qlIxl

holds for all 2< ¢ < oo and all xe X. (Here and elsewhere we assume that
the L, space is L,(u) for some probability measure pu) Weaker lower
estimates (which, however, examples show are best possible) are obtained for
m (X, K) and k, (X, K) if X satisfies (0.1) for some ¢ > 2 (e.g., X is the span
of n characters from a A,-set [Rul]).

Note that the results of Section 1 (also those of Section 3) say something
about the necessity for nonconstructive approaches to packing problems. For
example, random techniques are used in [FLM] to prove that B 1+
embeds into % with k < C(e)n. By the results of Section 1, this phenomenon
cannot be exhibited by finding an % superspace in L, to a natural n-
dimensional Euclidean subspace of L,.

In Section 2 we present a result of J. Bourgain which combines with the
results of Section 1 to give an L, characterization of Sidon sets: A set A of
characters on a compact abelian group G is Sidon if and only if for some (or
any) K > 1, for each n, and for each n-element subset A of 4, every operator
T on L,(G) with |T||< K and Ty =y for ye A must have rank at least
expén (6 =5(K) > 0). )

In Section 3 we estimate m, (X, K) and k, (X, K) from below when X is
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the span of n iid. random variables with p-stable distribution for some
1<p<2

In Section 4 we show that m,(n, K) < exp A(K)n; the corresponding
lower estimate is known. This gives the same kind of upper estimate for
k,(n, K) and we observe in Proposition 4.3 that k. (X, K) >expd(K)n
when X is an n-dimensional Euclidean subspace of C(S).

Finally, in Section 5 we generalize the results of Sections 1 and 3, which
are best thought of as factorization results for embedding mappings into L,
to the setting of mappings into L; which act like quotient mappings relative
to suitable subspaces of L,. This gives a fourth proof of the most basic result
in Section 1 (there are two proofs in Section 1, another in Section 3, and a
fifth proof will be presented in [FJS]), so our presentation is not the most
economical, On the other hand, each proof yields different constants, the
proofs which give stronger results are at a deeper conceptual level, and tl'{e
application to harmonic analysis in Section 2 requires only the most basic
argument. Moreover, the context of Section 5 and the arguments in Section 3
do not seem natural until one has thoroughly analysed the situation consid-
ered in Section 1.

In regard to the questions (%) and (%), we have very good informati_on
for p= oo and good information for p =1, Probably the main remaining
problem in the latter case is whether m, (n, K) and k, (n, K) admit upper
estimates of the form expA(K)n In [F] a proof is given of such upper
estimates for m, (X, K) and k (X, K) when X is spanned by » iid. gaussian
variables. While this is perhaps the easiest nontrivial example, the argument
is a bit complicated and does not appear to be applicable to other subspaces
of L.

]For pé 1,2, w}, problems (%) and (%) are wide open. While the
techniques of Section 1 can be used to estimate k,(n, K) for 1 <p <2 and
small K > 1 (this is why we prove Proposition 1.2 for general p), the
conclusions are so weak that, in the sequel, we do not treat the case
1 <ps2<oo. It may be that for 1 < p s 2 < co and some (or any) K>1,
there exist constants s = s(p, K) and 4 = A(p, K) so that m,(n, K) < An®
and k,(n, K) < An'. A Buclidean section argument shows that

my(n, k) 2 8,(K)nt?

where ¢ = max(p, p(p—1)""), but we do not know any lower estimate for
k,(n, K) when | < p+ 2 <o except when K is close to 1.

We should note that the results of Sections 1, 3, and § are streng?her.led
in [FJS]. Roughly speaking, whenever we give a result that any factorization
of a certain operator into L, through an L, space Z must yl'eld an operato:
w: Z — L, which is “big” (e.g, u has large rank or uZ contains a copy of I}
with k large), in [FJS] we check that in fact the operator u must preserve a
copy of k.

for 1 <p#2<c0,
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We use standard Banach space theory notation and terminology as may
be found in [LT1], [LT2]. Less familiar terms are defined where they are
introduced.

Work on this paper and on [FJS] was begun several years ago. Some of
the results were obtained during visits to the Mittag-Leffler Institute and the
Banach Space Theory Worskhop at the University of lowa. The authors
benefited from discussions with many people; in particular, J. Bourgain,
B. Maurey, A. Pefczynski, G. Pisier, and J. Zinn made comments and sugges-
tions which were useful for us.

1. Natural Euclidean subspaces of L,. Let 0 <p<r <2, let X be a
subspace of L, = L,(y) for some probability measure g, and suppose that u
is an operator from some Banach space Z into L,. We shall obtain lower
estimates for the “size” of u in terms of two quantities:

(1) The y,-norm of some extension #i: Z — X of the restriction of u to
u”'X; and

(2) The constant of equivalence between the L,- and L.-norms on X.

(Recall that for 1 < p< oo and u an operator between Banach spaces,
Ppu: X =Y) =inf {|[v|l[w]: w: X >Z, v: Z—~Y, Z an L, space, u = vw}.)

When there is a good lower estimate for y; (#), one can conclude that the
range of u must be large. To illustrate this, we outline now the briefest (but
not the most elementary; see Remark 1 after Corollary 1.1) application of
Proposition 1.2 and Theorem 1.3 to a special case: For some natural number
n, let X be a subspace of L, spanned by n independent gaussian random
variables or n independent Rademacher functions; it is well known that
1]} < \/r—* [|Ix]l; for xe X. Suppose that u is an extension of the inclusion
mapping i: X — L, to an operator of norm < K from a space containing X
which is K-isomorphic to some L, space. Proposition 1.2 implies that T, (w),
the type r-stable norm of u as defined later in this section and written T:.1 (W)
in Pietsch’s book [Pie, p. 291], dominates, up to a constant depending on
the bound K, (r*)™*/* times the y,-norm of some extension of the identity on
X to an operator from an L, space to X. Since this latter quantity is of
order n'/%, T (u) is estimated from below by a constant depending on
K times (n/r*)'/%. Setting r* = 4na?, we get

T >expdn (5 =6(K)> 0).

It then follows from Pisier’s method [Pis3] (see [Sc2]) that the range of
u contains a copy of [' with m of order expdn. The choice of r guarantees
that [ is 2-isomorphic to I, so we conclude:

CoroLLARY 1.1. Suppose that X < Y c L, where X is the span of n
independent gaussian random variables or n independent Rademacher functions
and the inclusion i: X — Y satisfies y,(i: X — Y) < K. Then there exists a
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constant & = 8(K) > 0 independent of n so that for some m > expén, I7 is 2-
isomorphic to a subspace of Y.

Remark 1. If we weaken the conclusion of Corollary 1.1 to “dim Y
> expdn” then we do not need the concept of T,(u) or the results of [Pis 3],
[Sc2]. This more basic result is worked out in detail in Corollary 1.5. The
direct argument provides better constants in the lower estimate for dim Y
than can be deduced from Corollary 1.1.

Remark 2. Since y, (i: X — Y) < d(¥, &) (k = dim ¥), Corollary 1.1 and
Corollary 1.5 say in particular that every L,-superspace of X in L, must
have dimension which is exponential in n, ie., m (X, K) > expé(K)n, in the
notation of the introduction.

Remark 3. Another special case of Corollary 1.1 or Corollary 1.5 is
that if v: L, — Ly, ||v]] < K, and vx = x for xe X, then rank v > expé (K) n.
That is, in the language of the introduction, the uniformity function for the
bounded approximation property of L, satisfies the lower estimate k, (X, K)
= exp o (K)n.

Remark 4. The argument outlined above yields a quantity 6(K) in-
Corollary 1.1 which satisfies §(K) > 1K~ for some absolute constant 7 > 0.
Alternatively, this estimate is explicit in the derivation of Corollary 1.1 from
Proposition 3.2 and the strengthened form of Corollary 1.1 given in Section
5.

Before stating Proposition 1.2, we introduce notation which will occur
frequently. Given a probability measure u and a subspace X of
L,(uy N Ly(p), 0 <p, g < 0, we let iy , denote the formal inclusion mapping
from (X, ||-|l,) into L, and set

D, (X) = [li%]I.

g
(The mnemonic is “divide”, because
Dy o (X) = sup {lxll/llxl,: 05 xeX})
Given an operator u: Z - L,, we set
Cp'q (u) = inf {Hh”s“hdu Z - Lq”}
where the inf is over all appropriate changes (mnemonic) of measures; i.e.,
over all 0 < he Ly(¢1) wherte 1/q+1/s = 1/p. Thus
Cpp) =llu: Z— Lj|

and for 0 <p < qo < ¢y < 0, g =1—a)/qo+0/q,,

Coy(w) < Cp,qo (w)'== Cray (w).
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If X is a subspace of L,(u),
C,y(X) = C, (i3 ,) =inf{D,,(h~

where the parameter D, ,(h"97X) is computed relative to the spaces
L,(h*dy) and L,(h*dp). Or, if one prefers to speak in terms of the one
measure f,

Xy h>0, [hdp=11,

Cpq(X) =inf{D, , (W)}

where the inf is over all subspaces W of L,(x) which are the image of X
under an isometry from L,(u) onto L, ().

Another interpretation of C,, q(u) is given by a theorem of Maurey [M1,
Theorem 2]: Given a subset A of L,(x) and 0 <p, g < 0, let

[/ 1’
Cpg(4) = sup {[[(Cal A1y du] ™"}
where the sup is over all convex combinations of all finite subsets (f;) of A.
Maurey’s result states that for any subset 4 of L,,
Cra(A) = irhlf{llh'lfllq: fed},
- where h ranges over all positive functions satisfying fh*du =1 and 1/q+1/s
=1/p. (In fact, Maurey checks that the inf is obtained if one allows

nonnegative i and adopts the convention that 0/0 = 0.) Therefore, if u: Z — L,
is any operator, then

C,p (W) = C, ,(uBall Z).

For 0 <p < g <2, let (;)2; be independent symmetric g-stable random
variables normalized in L,. Following [Piel, denote by T, ,(u) the smallest
constant C such that

n n
(IZ gunl)™ < C(T Il
i=1 i=1
for all vectors (x;){-; in the domain of wu. It is quite easily seen that

T, (W) = C, ,(uBall Z)

when u is an operator from Z into L,. For p=1 we write T,(u) = T, , (1)
and call T,(u) the type g-stable norm of u. Note that T, (u) differs from Pisier’s
ST, (w)[Pis 3] by a constant factor which depends on 4.

ProrosiTioN 1.2. Suppose that 0 <p <2 <r* < co with p<r (p=1is
the main case), 1/r+1/r* = 1, and define t by 1/r+1/t = 1/p (so t = r* when p
= 1). Assume that X is a closed subspace of L, and that D #(X) < oo. Let u
be an operator from a Banach space Z into L, for which ( ) < oo and set
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Zo=u"'X. Then there exists an operator #: Z — X such that

Jor xeZ,,
Yz(ﬁ3 Z_'Ls) < 4”‘

Ux = ux
Y2(i: Z— X) <
where 1/t+1/2 = 1/s.

Proof. Since s >

D (X)Cp,(u)

p and
V2(@: Z = X) =y, (@ Z~ L)

the left inequality is evident.
Since C,, (W) < o, we can find 0 < hyel, so that [IAyll, = 1 and

”h{ ‘ur Z— Lr“ = Cp,r(“)-
Setting h = max {1, h,}, we have
Al <2, |k *u: Z- L|| < C,, ().

Let P: L, — L, be the orthogonal projection onto h~!X. To see that
this makes sense, first note that since the L~ and L,-norms are equivalent
on the closed subspace X of L, and p <2 <r*, X is closed in L,. Moreover,

mutliplication by h™! is an L, isomorphism on X. Indeed, for x in X, we
have

(1A~ " x|, <
Ixllz < Dp 2 (X) [1x]], <
Define for zeZ

15~ Ml l16ll2 < Il
Dy 2 (X) Al 1R~ xll, < 24Dy (X) 1B .

fiz = hP(h™ ' uz).
Evidently, iz = uz for ze Z,, but the norm estimate requires some comments.

Facr 1. If P is the orthogonal projection onro the subspace H of Lz and
1<r<2 then

P2 Ly = Lal| = ||P: Ly ~ Lysl| = Dy, pe(H).

Facr 2. If0<s <2 <g <, 1/t+ 1/2 = 1/s, and X is a subspace of L,,
then for all 0 < hel,,

Dy (B X) < {Ihll (1™l o Ds,q (X).
Fact 1 is obvious. Fact 2 follows from the following computation for x
in X:

B~ xllg < 1Al [l < Dg (N B 1o 12l S Do (XD 1A 1Al 1B I .

7 - Studia Math, §9.1
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Returning to the proof of Proposition 1.2, we have
|IP: L,— Lyl = Dy u(h"* X) (by Fact 1)
<Al AT Yl Depr(X)  (by Fact 2)
< 2M D, o (X).
Thus
y2(i: Z— L) < |lh: Ly = L|[|P: L — Lo|l A~ uz Z — Ll
< 2V |All, Dy (X) Cpp () < 2% Dy (X)) Cp (). m

Remark. By making a suitable change of density, the quantity D, (X)
- in Proposition 1.2 can be replaced with C_,(X).

A slight weakening of Proposition 1.2 and the above remark are more
convenient for us to apply.

THEOREM 1.3. Let 0 <p <2 <r* < oo with p<r and let- X be a closed
subspace of L, for which C,+(X) < co. Suppose that Z, is a subspace of a
Banach space Z and uy: Z — X is an operator such that every extension i: Z
— X of uq satisfies

y2 (@) = B.
Then every extension u: Z — L, of u, satisfies
Cpr(W) 2 4712C, (X)" 1 B.
Suppose now that we are in the position described in Theorem 1.3. Then
Cppr (1) < Cpa (W Cp p ()} ™% = Copp (w)* 1]~
where a/2+(1—a)/p = 1/r. Now by [M1]
Cp2(W) < Kpy, (W)

where K, is from Khintchine’s inequality (so K, < \/-2- for 1 <p <2 [H]
[Sz]). Thus from Proposition 1.2 and the remark following we get

(1.1) K; Ul (474 C e (X Blll)™ < 72 (),
which, when specialized to the case p = 1, yields
(12 2712 | (471 Cy e (X0 BN < 7200,

Since u factors through the Banach space Z/keru which has dimension
rank u and the identity operator on an m-dimensional Banach space has y,-

norm at most \/r; [GG], we have y,(u) < (rank )*/?||u||. So inequality (1.2)
can be weakened to

Embeddings of I into L., I . 87

(13) 3477 CLp(X) 7 (B/lul)Y” < rank u.

Suppose that the injection j = if ; from some n-dimensional subspace X
of L, into L, factors through an L, space Z:

j=uw, w: X—-2Z, w Z-L;, |w|=1
Set Zy = wX, uy =ulz,. Since by [Gril], [GG]
71(13) = (/)2
we see that any extension u: Z — X of u satisfies
il = d(X, I3)~* (n/2)*/3,
which gives a lower estimate for f in (1.3). We summarize these remarks as:

CoroLLARY 1.4. Let X be an n-dimensional subspace of L, and j: X — L,
the inclusion map. If j =uw with w: X - Z, u: Z— Ly, and Z an L, space,
then for all r* > 2,

(14 rank u > (8Cy +(X)d (X, 1) [iwll llull) ™ s

Note that if Y is an infinite-dimensional subspace of L; with C; ,«(Y)
< oo for some fixed 2 <r* < oo (for example, Y is the span of a A,»-set of
characters [Rul]), then Corollary 1.4 says that the parameters m, (X, K) and
k. (X, K) discussed in the introduction can be estimated from below for n-
dimensional subspaces X of Y by

exp 8 (n/K*™?
for some constant & = §(r*, Cy ,+(X)) > 0. Much more can be said if there is

very good control of Cj,(X) as r*—oco. The smallest possible rateof

growth for infinite-dimensional X is \/r—* (a precise version of this known
fact will be proved in [FJS]); this occurs, for example, if X is spanned by
independent gaussian random variables or independent Rademacher func-
tions or any Sidon set of characters. In this case we obtain:

CoroLLARY 1.5. Suppose that X is a subspace of Ly for which
Ci (X)) < C\/r—’;for all 2 < r* < o0, If j is the inclusion mapping from an n-
dimensional subspace Xo of X into L, andj = uw withw: Xo— Z,u: Z— L,
Z an Ly space, then

ranku > 24 where A =(2*Cd(Xo, 13) Wl llul)”*
Proof. Choose r* so that
12 = 2(8C /r* d(Xo, 1) 1wl lul).

Then r* = 4n, so the conclusion follows from inequality (1.4). =
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Remark 1. In the conclusion of Corollary 1.5, we could of course
replace d(X,, I3) with Cﬁ. However, when C is large it is better to use
[FLM] and apply Corollary 1.5 to a subspace of X, of dimension propor-
tional to »n which is 2-isomorphic to a Hilbert space.

Remark 2. In [FIS] we improve the conclusion of Corollary 1.5 by
showing that if ||w|| = 1, then u is a 1/d-isomorphism on a subspace of Z
which is 2-isomorphic to I7 for some m > expdn, where § > 0 depends only on
C and on ||u|.

2. An L,-characterization of Sidon sets. G. Pisier pointed out to us that
Corollary 1.5 and the Malliavin-Malliavin [MM] characterization of Sidon
sets for the Cantor group yield the following:

CoroLLARY 2.1. Let G = {—1, 1}V be the Cantor group and let A be a set
of characters on G. The following are equivalent:

(1) A is a Sidon set.

(2) There exists C so that for all 2<p <o, Dy ,(spand) < Cp''.

(3) For all K > 1 there exists 6 = 6(K) > 0 so that for all finite subsets A
of A, if spand = X < L (G) and X is K-isomorphic to I7, then m > exp (8 |A4]).

(4) Same as (3), except that “for all K > 17 is replaced by “there exists
K>1"

Proof. (1)=(2) is classical (see [Rul]), (2)=>(3) comes from Corollary
1.5, while (4) =(1) follows from [MM] (if 4 is not Sidon then for all 5 >0
there is even a subset A of A so that the sigma algebra generated by 4 has
cardinality less than exp(d|4)). =

It is open whether the implication (4) = (1) (or (3)=>(1)) is valid for all
compact abelian groups. However, J. Bourgain has shown that in the general
case there is a similar characterization which involves the uniformity function
in the bounded approximation property for L,.

TueoreM 2.2. Let G be a compact abelian group with dual group I' and let
A < T. The following are equivalent:

(1) A is a Sidon set.

(2) There exists C so that for all 2<p < o0, Dy ,(spanA) < Cp'2

(3) For all K > 1 there exists § = 6(K) > 0 so that for all finite subsets A
of A and all operators T on Ly(G) for which |[TI| <K and Ty =y (yeA), it
follows that

rank T > exp(d|4]).

(4) Same as (3), except that “for all K > 1" is replaced by “there exists
K>1".
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(5) Same as (3), except that “translation invariant” is inserted before
“operators”.

(6) Same as (4), except that “translation invariant” is inserted before
“operators”.

Proof. In view of Corollary 1.5, the only implication requiring proof is
(6)=-(1), which is due to J. Bourgain. He kindly allowed us to present here
our exposition of this argument.

The main fact needed for the proof is Bourgain’s L,-entropy estimate
[B], which is both an improvement of and a fairly simple consequence of an
entropy estimate due to Pisier [Pis1]. We restate Bourgain's lemma in a form
suitable for our use. (Given a set B of characters, S(B) is the Sidon constant
of B, i.e. the constant of equivalence between B in (span B, ||‘||,) and the
unit vector basis for %, k =|B|)

ProrosiTioN 2.3 [B]. There exist constants o > 0 and C so that if Ais a
set of characters on some compact abelian group G and A is not a Sidon set,
then for each M < oo there is a finite subset B of A with S(B) > M so that for
each ¢ > 0, there exists a partition of G into

N < exp[CS(B)™*|B|log(1/e)]
measurable sets {GM%. | so that for each yeB and all g, heG; (L<i< N),
(@) —7y(h)] <e?.

To prove (6)=(1) in Theorem 2.2, assume that A is not Sidon and that
K > 1. Given any M >'2 satisfying ’
(2.1 A+M Y +2/M <K,
take B = A to satisfy the conclusions of Proposition 2.3. Now choose & of
order S(B)™!; say,

(22 (1—&%/e = S(B),

so that $S(B)"! <& < S(B)”", and let N and {G;})L, satisfy the conditions
of Proposition 2.3 for this choice of &.

Our goal is to find a signed measure y on G with total mass |l < K
so that fi(y) =1 for y in B and the support of [ satisfies

l{yel: i(y) # 0} < 2N°.

Indeed, then the operator T of convolution with p has rank at
most 3N? < exp[3CS(B)*|B|log(28(B))], T is the identity on B,
and ||T: L,(G)— L, (G)] < K.

Let P be the conditional expectation projection onto the sigma algebra
generated by {G,}/L,. The entropy condition yields that for each ye B,

8§ — Studia Math, 89,1
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(2.3) 1Py =9Iy < IPy=lle < €2
Replace P by its average R over G, defined by
R= j?;,l PT, A(dg)

where T, is translation by g and A the normalized Haar measure on G. The
positive translation invariant operator R satisfies the norm condition

IRt L= Lt <||P: L,— Ll =1
in particular for p = co and hence [Ru2, p. 74] is given by convolution with

some measure v with total mass ||v]|; < 1.
Since property (2.3) is inherited by R, we have

24) 1-e2<i(y) <1 (yeB).
Moreover,
25) 2 PO < IRllee € 1Pl = N

yel'

where || ‘||;c is the trace class norm of an operator on L, (G).

We want to perturb v by a signed measure of small mass so that the
resulting signed measure has Fourier coefficients which are 1 on B and still
satisfy (2.5). Since (2.5) is preserved by convolution with a signed measure of
mass 1, we want to find a signed measure 7 so that

(2.6) (+Txv) () =1 (yeB),
that is,

() =(1=9M)PE  (eB).
Since

[(1=9)F0) < e*(1—¢Y)  (yeB),

there is a linear functional of norm at most
£28(B)(1—&%) (=¢, by (2.2)

on L, (G) which for y in B takes on the value (1—7(y))/#(y). By averaging
against the Ts we obtain a translation invariant functional on L (G) with
the same properties and thereby get a signed meéasure v which satisfies (2.6)
and has mass [[zl]; <e. Setting v, = v+1xv, we see that ¥, (y) = 1 for yeB,
[Ivilly < 1+¢, and

2 5O < N+Nifelly < (1+¢) N.

yel
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Next, we smooth vy a bit by setting v, = v, #v,, so that ¥,(y) = 1 for ye B,
Ivall; < (1+¢)% and

@1 S 1502 < (1+e)N.

yel'

Letting 4 = {yel: |7,(y) < N™*} we get from (2.7)
LIS N2Y 5, < (1+¢e)/N <2/N.
yel'

yed
Therefore the multiplier defined by f — Y o $fs ¥)7 is an operator of norm
(even nuclear norm) at most 2/N on L,,((I}) for all 1 < p< oo and hence is
given by convolution with some signed measure t; with total mass
llrdlly < 2/N. The signed measure u = v,—1, satisfies

llly < A+e2+2/N < (1+S(B) "V +2|B ' <(1+M )2 +2YM <K

and [i(y) =1 for ye B. Finally, (2.7) gives us control over the cardinality of
the support of f:

[{yel: A(y) # O} =|{yel: |i,() > N~*}

SN YT M <(1+e N*<2N>. &
yel'

3. Subspaces of L, spanned by p-stable variables. In this section we study
the natural embedding of I, 1 < p <2, into L, defined by mapping the unit
vector basis of I onto L;-normalized ii.d. p-stable variables. The analysis is
similar to that for natural embeddings of I4 into L;; however, there are
additional complications because the orthogonal projection onto the span
of n iid. p-stables (even divided by a change of density) does not have
sufficiently small y,-norm as an operator from L,, 1 <r < p, to allow us to
mimic the arguments presented earlier for natural embeddings of /5 into L.
Although the orthogonal projection can be replaced with another natural
projection, the results we obtain for the span of p-stables are weaker than the
corresponding results for, say, the span of gaussian variables. For example, if
the inclusion mapping from X, the span of n iid. p-stables in L,, into some
superspace Y < L, satisfies py (i X — Y) < K, then we obtain in Theorem
3.3 that If 2-embeds into Y for some m > expon®r (5 = §(K) > 0). We
conjecture that this lower bound can be improved to m 2 exp dn for some
=d(p, K) > 0.

In the proof of the main technical result of this section, Proposition 3.2
(which for the ideal norm o = y, is a variation of Proposition 1.2), we use the
following lemma:

Lemma 3.1. Let X be a subspace of Ly = L,(u) for some probability
measure p such that D = Dy ((X) < co for some s > 1, and let u: Z — L, be an
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operator satisfying C, ,(u) < co where 1 <r <
a multiplication operator F on L, such that

lFu: Z — Ll < nCy,, (w),
llx—Fxll, < g™ Dllxll;  (xe X).
Proof Take 0 < h in L. with ||Afl,» =1 so that
B u: Z— LJl = Cy, ().
Let F be the indicator function of the set [# < #]. Then 0 < F < nh™! and

s. Then for every n = 1 there is

hence
IFu: Z — L|| < nCy,, (u).
On the other hand, if 1/r = 1/t+1/s, then
1A —Fyxll, < (11— Fl [Ixlly < 11 = Fl, D|x]); .

Since 1 —F is the indicator function of the set [#~'h > 1], we obtain easily
I1=Fllf = 1 =Fllx < (0~ |Ally" =

Since r*/t = (r* —s*)/s*, this completes the proof. =

—

Prorosimion 3.2. In the setting of Lemma 3.1, if uZ > X, then to every

operator P: L.(y)— X such that Px=x for xeX there corresponds an
operator ii: Z — X which satisfies

(3.1)
(32)

Uz =uz whenever uzelX;

If « is any operator ideal norm, then

a (@) < g(s*/r*)(D|PIF7"*"Cy,, (w)a(P)
—)~ 1=,

> max (2s*, s* [1+2log(D||P|)]), then
(33) a(@ <7C,, Wa(P: L, — X).

Proof. Notice that (3.3)

creasing for 0 <t <1 with g(}) =
(D[P0 < €2 < 7/4.

Let F be the multiplication operator obtained in Lemma 3.1. Put
w = PFu. Then w: Z - X and

where g(t) = (1
Consequently, if r* >

follows from (3.2)
4, and when r* >

bu,duse g is in-
s*(L+2log (D || PI)),

a(w) <a(P: L— X)|[Fu: Z— L]l < 5C,,(u)a(P).
Moreover, if zeZ, =u"' X, then uze X and hence

(1= Fyuzll, < 5" D juz]],.
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Consequently, since Puz = uz,
lluz —wzlly = |IP(1=F)uzlly <|[P: L, = Ly|[|I(1 = F) uzll,
S IPI 7 D luz])
Set 6 =n""""'D||P||. f § <1 and zeZ,, then
(1—=0) |luzll, .

Since uZ, =X, we get also wZ, =X and the correspondence wz — uz
defines an operator v: wZ, — X with ||v]] < (1—6)~'. Let & = vw. This clearly
ensures that (3.1) holds. Also

o (@ < Ilollac(w) < (1=8)71 (@™ DIPIFTC" =" Cy, (W) (P).

Now, letting d = s*/r* (the best choice) we obtain the estimate (3.2). m

lwzlly > lluzlly — lluz —wzll, =

Before presenting the application of Proposition 3.2 to p-stable subspa-
ces of L,, we note that Corollary 1.1 can easily by deduced from Proposition
3.2. Indeed, suppose that X < Y < L; and X is spanned by, say, n indepen-
dent gaussian variables. Factor the inclusion map i: X =Y as j: X - Z
followed by u: Z — X with Z an L, space, ||lu| =1, and |[j]| =y, (). Since
y (1) = G m'? ([Gri], [GG]), any #: Z— X which agrees with u on
jX cu”' X admits the lower estimate

Nl = 1171~ w2

For the P in Proposition 3.2, we take the orthogonal projection, so that
|P: L, ~X|| <D, «(X)<(@r9Y* for every 1<r<2 Setting s=2,
r* = (14]7|)"2%n, and «(:) =], we get from (3.3) (at least when n > 8)

T(Y)> Cp, )2 /2.

Hence T.(Y)" = exp(d,[|jll~%n) for some absolute constant §; > 0, whence

i ﬁ embeds into Y by [Pis3], [Sc2] for some m > exp(éyl ()~ ?n) and some
absolute constant § > 0, which in view of the choice of r gives Corollary 1.1.
We now come to the main result of this section.

THEOREM 3.3. Suppose that X <Y < Ly (u) where for some 1 <p <2, X
= X,n is the span of n independent symmetric p-stable variables x, ..., x,
normalized so that ||x;||, = 1. Let it X — Y be the inclusion map. If

nAP" > 400y, (it X — Y)2p*logn,

then I 2-embeds into Y for some
m = exp [0y, (it X —~ Y)~2n?"")

where 6 > 0 is an absolute constant independent of n, p, and y,(i: X = Y).
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Proof. If we set s =4(p+1), then there is D independent of p and n
such that Dy (X)<D (see [Pie], p. 289). Next observe that there is a
projection P: L; — X so that for all 1 <r <2,

y2(P: L= X) < (/)2 no™ 112,

Indeed, let r; =sgnx;, 1 <i< n, so that the r’s have the same joint distribu-
tion as the first n Rademacher functions. Define

Px=Y [x(&)r;(t)du(t)x;.
i=1

An application of Khintchine’s inequality to the natural factorization of P
through [ shows that y,(P) satisfies the required estimate. Since clearly
IP: L, »X||<nforall l <r<2 if n=2 and

(34) r* = s*(1+2log Dn)
we obtain from (3.3) in Proposition 3.2
2(#) < 5Cy,, (u) (F) > nMr= 12

if w and 7 satisfy the conditions in Proposition 3.2.

Suppose now that the inclusion i: X — Y factors as j: X — Z followed
by u: Z—Y with Z an L, space, |u|=1, and ||j|| =7,(i: X =Y). If
ii: Z— X agrees with u on jX <u™' X, then we get

Jn=m(X)
<1l 7 @
<17ll/2, @

(by [GG])

(by a weak form of
Grothendieck’s inequality [G], [LP]),

so that
Cop () 2 (S|l 2712 ntir %)~ 12,
For the choice r* = (10|[|))~ % n?/*", (3.4) is satisfied when
n3P* > 400y, (it X = Y)? p*logn,

and the estimate for C,,(u) becomes C, ,(u) > \/ 2. The rest of the proof is

identical to the last step of the proof of Corollary 1.1 in Section 1 given just
before the statement of Corollary 1.1. &

Remark 1. Notice that if X = W, then for every projection P from W
onto X and every subspace X, of X, there is a projection P from W onto X,
with y,(P) <y,(P). Thus the proof of Theorem 3.3 shows that, in the
notation of Theorem 33, if Xy <X, ,, dimX,=wm, X, <Y <L, with
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inclusion mapping i: Xo— ¥, and
n2P" > (400/x)"" p, (i: Xo— Y)*logn,
then I 2-embeds into Y for some m > exp dtn**".

Remark 2. In Section 1 we state Proposition 1.2 for subspaces of L,
even though we only have good applications for L; just to draw attention to
the fact that there is nothing in our approach which is basically L,. There is
an analogous version of Theorem 3.3 for p-stable subspaces of L, for s <p,
but in the absence of applications we decided that the extra parameter makes
the statement unduly complicated.

4. Local & -structure. In Corollary 4.2 we show that mq(n, 1+¢)
<expc(e)n. This means that every n-dimensional subspace X of a C(S)
space is contained in a subspace Y of C(S) with dimY =m < expc¢ (g) n which
is 1+ g-isomorphic to I, and a fortiori 1+s-complemented in C (S). On the
other hand, the easy Proposition 4.3 implies that if X is any I3 subspace of
C(S) and u is an operator on C(S) which is the identity on X and satisfies
lull < K, then ranku > expd(K)n. (In fact, in [FIS] we show that u must
preserve a copy of I%, with m > expd(K)n) Thus “exponential of n” is the
order of magnitude for the uniformity function ke (n, K) in the uniform
approximation property for C(S) spaces.

The main new fact we prove is that my (X, K) does not depend very
much on the embedding of X into C(S). More precisely, we have:

Tueorem 4.1. Assume that X is an n-dimensional subspace of I, and X is
K-isomorphic to a subspace of ¥,. Then there is a subspace Y of IY, with
X <Y and d(Y, ") < K for some m < kn (real scalars) or m < 2kn (complex
scalars).

Proof. The proof is more naturally phrased in the dual situation: Let
Q: I¥ — X* be the quotient map. Note that it is sufficient to find a subset 4
of {1,..., N} of cardinality at most kn (2kn in the complex case) so that

OBalllf o K~!Ball X*.

Indeed, having accomplished this, we can write for each 1 <i< N, i¢A,

Q8 =Y. A3, ) Q9

Jed
with maxls,-s,,zjw |AG, )| € K. Now define w: If — I by
d; if ied,
W =Y 20,08 if igA.
Jed .
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The operator u*: /4, — ¥ is a K-isomorphism because u is a projection and
Il|l < K, while u*I4 > X because Qu = Q.

The existence of A follows from Carathéodory’s theorem: Since X K-
embeds into %, there exists a subset F of Ball X* of cardinality k so that
convbal F = K™ 'Ball X*. For each f in F there is A, = {1, ..., N} so that

Sfeconvbal {Q8;: ic A}
and, by Carathéodory’s theorem, |4,] < n (2n in the complex case). Just set

A= 4; @
JeF

CoRroLLARY 4.2. There is a constant M so that if X is an n-dimensional
subspace of C(S) and 0 <g <1, then there exists a subspace Y of C(S) with
X Y, dmY =m<exp(Mnfs), and d(Y, ") < 1+¢.

Proof. By replacing X with its image under an 14&/2-isometry from
C(S) onto C(S), we may assume that X is contained in a subspace of C )
which is isometric to [}, for some N. Simple volume considerations (see, for
example, [FLM]) show that Ball X* contains an ¢/2-net of cardinality
k <(10/e)" and thus X (1—e¢/2)”'-embeds into . Now apply Theorem
41. w

Remark. In Corollary 4.2, C(S) can of course be replaced by any L,-
predual, or, if one weakens the conclusion on Y to d(Y, I) < A(1+¢), by any
2 . 2-Space.

ProrosiTion 4.3. Suppose that X is an n-dimensional subspace of N and u
is an operator from Iy, into a Banach space for which ||ux|| > ||x]| for all x in X.
Then

rank u > exp(5d (X, 15)™2|lu]| =2 n)
where 6 >0 is an absolute constant.

Proof. For all 1 <p< o0, u satisfies

m, () = d(X, 1) m, (1) > d(X, )" /nfp  (by [Pe]).

On the other hand, for the choice p = log, (rank u), by interpolating
between g, (u) = [jull and =, (u) < (rank w)"/?||u]| we get 70, () < 2||u|. =

Remark. Maurey [Pis2] proved that if dimX =»n and the type p
constant of X is not more than K for some p > | and X C-embeds into I,
then m > expé(p, K, C)n. Probably the assumption on X can be replaced by
the weaker condition that the cotype p* constant Cpv(X) of X is at most K;
this is Pisier’s “cotype dichotomy” problem for I¥. In the context of
Proposition 4.3, if X satisfies Co(X) < K for some g < oo and some constant
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K, then by considering large Euclidean sections in X we see that the proof of
Proposition 4.3 yields in this case that ranku > expdén®4 for some &
=8(q, K, ||ull) > 0. While it seems likely that n* can be replaced by n in
this inequality, we do not see how to check this strengthening of Pisier’s
dichotomy conjecture in some cases covered by Maurey’s argument (e.g,, X
=1, 2 <qg <o)

5. Factoring quotient mappings into L,. In this section we generalize the
situation studied in Sections 1 and 3 as follows: Suppose that X is a
subspace of L; and Q is an operator from some Banach space Y into L,
which is a “good” quotient mapping relative to X, ie, QBallY > Ball X.
Estimate from below the “size” of factorizations of Q through L, in terms of
some parameter of X. When Y* has small cotype g constant C,(Y*) for
some g < oo, we obtain exact analogues of Corollary 1.1 and Theorem 3.3 as
Theorems 5.1 and 5.3. When Y* does not have small cotype g constant, e.g.
when Y is an L, space, there clearly are no such generalizations; neverthe-
less, Theorems 5.2 and 5.4 imply that if Q well-factors through ' then m
must be large.

We conclude this section with a simple result, Proposition 5.5, which
however is rather surprising in view of Corollary 1.1 and Theorem 5.1;
namely, every norm one operator from I3 into L, is a convex combination of
operators whose y-parameters are less than 3. (Recall that yz(u: X —Y)
= inf {|[v|||w||: 4 = wv, v: X = Z, w: Z— Y}.) In the language of [T-J2], this
result says that the ideal norm generated by yu satisfies the inequality

P () < 3wl
for every operator from I3 into L.

THEOREM 5.1. Suppose that X <Y < Ly and Cy (X) < C/r* for all
2<r* <. If W is a Banach space with C;(W*) < co and Q: W —Y is an
operator for which

QBall W o Ball X,
then Y contains a subspace which is 2-isomorphic to Ii with

m = exp(S[C /g C,(W*)y, (Q: W~ Y)] *n)

where n=dim X and & > 0 is an absolute constant.

Proof. By [FLMJ], X has a subspace of dimension proportional to n
which is 2-isomorphic to a Hilbert space. Since absolute constants can be
absorbed into &, we assume that d(X, §) < 2.

Write Q =uj with j: W =2, u: Z—Y, Z an L, space, [lul| = 1, and
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il = 4(Q: W —Y). The main fact to be added to the arguments already
used in Sections 1 and 3 is Maurey’s result [M2] that there is a constant B
so that for all 2<¢q < o0,

Tiae () < BC, (W)

for every operator v from an L, space into W#*. (That the constant in this
inequality is of the form BC,(W*) instead of just some function of ¢ and
C,(W*) follows from the proof given in [MP]) We again use Pelczynski’s
computation [Pe] that for all 1 <g < oo

n2q(13) > $/nq.
Now if @1: Z — X extends the restriction of u to u™! X, we have
#jBallW o (QBallW)n X = Ball X,
ie., (@)* is norm—increa.sing. Therefore
Tag (%) 2 Mg (X¥) > ma (B/A(X, B) > 3/n/q.
Since also

T2 (L) < 720 Gl < BC,(WH)[|j 1] < BC (W11l y2 (@),
from Theorem 1.3 we get for all 2 <r* < o0,
Cirl) = b(Cy(W¥) /g Cow (X)) n

2 b(C /g Cu(WH)71) " (nfr)r?
where b >0 is another absolute constant.
=3(C/aC,(W*)|Ij||/b)"* we have

T > Cp, (0" > 24,

Setting r* = An with 4

which by [Pis3], [Sc2] yields that I ./2-embeds into Y for some

m > exp[8(C /g C, (W1 jl) 2 n]

where 6 > 0 is another absolute constant. In view of the closeness of r to 1,
this completes the proof. m

Tueorem 5.2. Suppose that X is an n-dimensional subspace of L, and

C, (X< C\/r—*. Jor all 2<r¥ < co. If u: IT— L, is an operator for which .

uBall IT > Ball X, then

m > exp (5(C ul)~* n*/?),

where & >0 is an absolute constant.
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P

Proof. As in the proof of Theorem 5.1, we can assume that
d(X, I3) < 2. Lewis [L] proved that for any Y < Ly, Cy,(Y) < (dim Y)'/?, so
that, by interpolation, C;,(Y) < (dimY)"" for 1 <r <2 Now if ii: ! — X
agrees with u on u™' X, then #*: X* — [™ is norm-increasing. Since I7, is 2-
isomorphic to [ with t = log, m, by [BDGJN], p. 182, we get

V2(#) 2 3d (X, )" (/)P m™ 1 2 84 (n/logy m)!/?
where &, = 0 is absolute. Letting r* = log, m, from Theorem 1.3 we get
20jull = m'"" flull 2 C1,0(u) = 26C; (X) ™" (nflogy m)'/?
2 26(Clog, my™ ! n'/?,
where & > 0 is absolute.
We now prove a strengthening of Theorem 3.3

TueoreMm 5.3. Suppose that X <Y < Ly and X is a k-dimensional sub-
space of the span of n independent symmetric p-stable variables for some
1 <p<2 If Qis an operator from a Banach space W into Y for which

QBallW o Ball X,
then Y contains a subspace which is 2-isomorphic to If with
m > exp (S [y/q C,(W*) 91 (Q: W= Y)I7 (k/r)n?/™")
for some absolute constant 6 >0, as long as
(k/my 27" > AL/ Co(W*)9,(Q: W = Y))* p*logk

where A is an absolute constant.

(5.1)

Proof. Again we may assume that d(X, ) < 2. From the proof of
Theorem 3.3, there is a projection P from L; onto X so that for all 1 <r <2

ya(P1 L, = X) < (r#/2)} 2 ptir= 102,
Since in Proposition 3.2 it is OK for the projection P to depend on r, we
may also assume that
y, (P L, X) < dim X = k.
As in the proof of Theorem 3.3, let s = (p+1)/2, so that Dy (X) < D for
some absolute constant D, and suppose that Q: W — Y factors as j: W—Z

followed by u: Z — Y with Z an L, space, |lull = 1, and ||j|| = y,(Q: W —Y).
According to Proposition 3.2, if r* > 2s* satisfies

(52) r* > s*(1+2log(D|IP: L, — X))
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then there is an operator fi: Z — X agreeing with u on u™' X so that
72(@) < 5C, (W) (r*) 2 ntiP= 12,
The computation in Theorem 5.1 yields
1/l < b (1) < mag (L71%) < BC, (W) 111180

where B is an absolute constant, so when (5.2) is satisfied, Proposition 3.2
gives

K< By JaCuWHIj || o () (r¥) 112 o= 112

where B, is another absolute constant,
We make C,,(u) > 2 by setting

1(By Ja CoWH)1II)” kM2 /2,

The rest of the proof is the same as the last steps of the proof of Theorem
5.1; however, to guarantee that (5.2) is satisfied, we need (5.1). m

(r*)l/z -

Remark. The restricition (5.1) in Theorem 5.3 is not very important
because when it is violated, the lower estimate for m in Theorem 5.3 would
be less than k”". .

Next we do the p-stable analogue of Theorem 5.2.

TueoREM 54. Suppose that X is a k-dimensional subspace of L, which is
contained in the span of n independent symmetric p-stable variables for some
L<p<2 If u: If =L, is an operator for which

uBalll? o> Ball X,
then

m 2 exp [(8/p*) (k/n) n*'""{[u)] =]
where 6 >0 is an absolute constant.

Proof. We begin just as in Theorem 5.3. Assume that d(X, k) <
P: L; — X satisfies for an appropriate 1 <r < p,

Y2(P: L, — X) < min((r*/2)!/2 nt/p= 112 k).

2 and

Set s = (p+1)/2, so that Dy ,(X) < D for an absolute constant D. By Proposi-
tion 3.2, there is an operator &: I — X so that

i
il < 2@ < 5Cy, () ()2 nlir= 112
as long as condition (5.2) is satisfied.
We now shift to the proof of Theorem 5.2. Since #*: X* — I%, is norm-
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increasing, from [BDGIN] we get

lli = &1 (k/logm)*/?

for some absolute constant ¢, > 0. Since C, ,(u)
tion yields that for some absolute constant A,

Cypr(w) < Afjull

Condition (5.2) holds when r* = Ap*logk (A another absolute constant), so
the choice r* = Ap* logm allows us to conclude from the two estimates on
lal that

< (rank )'/2 |ly)|, interpola-

when r* > logm.

log m = (8/p*) kM2 pti2= e ||y|| =2,
where & > 0 is an absolute constant. w

Remark. If p*logk = A(k/n)'/>n/** (4 is an absolute constant), then
the conclusion of Theorem 5.4 can be improved to

= exp [6 (k/m) 2 nt/"||u)| = 2]

where & > 0 is absolute. To see this, in the proof of Theorem 5.4 make the
choice r* = max(log m, Ap*logk). The further argument yields that for some
absolute 6 > 0,
log m 2 6 min {(k/mM2nt%", (k/n) n¥?" (p*log k)~ [lull = 2.

Provosrrion 5.5. If € > \/Zn then every operator u: I5 — Ly is a convex

combination of operators v: I3 — Ly satisfying
e (0) < Cllull.

Proof. In Tomczak’s notation [T-J2], we want to prove that

P () < /2 |l

Since 5% () = 5 (u*) and the dual norm to 7% is n{’ (ie., the absolutely
summing norm defined in terms of n-tuples of vectors), it suffices to check
the following:

If wi: 8~ L,, then

< /2m |jul] 7 (w).
By Tomczak’s result [T-J1], for such a w we have
75 (W) < 278" (w) < 27 (W)
so that, by Grothendieck’s theorem [G], [LP],
[tr (we*)| = [tr (u* w)| < 70 (u¥) 72 (W) < < /172 |u¥| 220 (w). @

[t (wu)| <


GUEST


102

T. Figiel, W. B. Johnson and G. Schechtman

References

[BDGIJN] G.Bennett, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman, On

[B]

[D]
[F]

[FIS]
[FLM]
[GG]
[G]

[Grii]
[H]

[L]
[LP]

[LT1]

[LT2]
[MM]

[M1]
M2]
[MP]
[Pe]

[PR]

[Pie]
[Pisl]

[Pis2]
[Pis3]
[Rul]

[Ru2]
[Sc1]

uncomplemented subspaces of Ly, 1 <p <2, Israel J. Math. 26 (1977), 178--187.

J. Bourgain, Sur les ensembles dinterpolation pour les mesures discrétes, C. R. Acad.
Sci. Paris Sér. I 296 (1983), 149-151.

L. E. Dor, On projections in L,, Ann. of Math. 102 (1975), 463-474.

T. Figiel, The exponential estimate for local structure of Guussian subspaces of Ly,
Bull. Polish Acad. Sci. Math.,, to appear.

T. Figicl, W. B. Johnson and G. Schechtman, Factorizations of natural embed-
dings of I, into L,, I1.

T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost
spherical sections of convex bodies, Acta Math. 139 (1977), 53-94.

D.J. H. Garling and Y. Gordon, Relations between some constants associated with
finite-dimensional Banach spaces, Israel J. Math. 9 (1971), 346-361.

A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologi-
ques, Bol. Soc. Mat. S3o Paulo 8 (1956), 1-79.

B. Griinbaum, Projection constants, Trans. Amer. Math. Soc. 95 (1960), 451-465.
U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70
(1982), 231-283.

D. R. Lewis, Finite dimensional subspaces of L,, ibid. 63 (1978), 207-212.

J. Lindenstrauss and A, Pelczyniski, Absolutely summing operators in & ,-spaces
and their applications, ibid. 29 (1968), 275-326.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces,
Springer, Berlin 1977.

—, -, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979,

M. P. Malliavin-Bromeret et P. P. Malliavin, Caractérisation arithmétique des
ensembles de Helson, C. R. Acad. Sci. Paris Sér. A 264 (1967), 192-193.

B. Maurey, Théorémes de factorisation pour les opérateurs linéaires & valeurs dans les
espaces LP, Astérisque 11 (1974).

—, Une nouvelle caractérisation des applications (p,q)-sommantes, Sém. Maurey-
Schwartz 1973-74, exp. XII, Ecole Polytechnique.

B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et
propriétés géométrigues des espaces de Buanach, Studia Math. 58 (1976), 45-90.

A. Petczynski, A characterization of Hilbert-Schmidt operators, ibid. 28 (1967), 355

360

A. Petczynski and H. P. Rosenthal, Localization techniques in LP spaces, ibid. 52
(1975), 263-289.

A. Pietsch, Operator Ideals, North-Holland, 1978.

G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Adv. in Math.
Suppl. Stud. 7B, 1981, 685-726.

~, Remarques sur un résultat non publié de B, Maurey, Sém. d’Analyse Fonctionnelle
1980-81, Ecole Polytechnique.

—, On the dimension of the Iy-subspaces of Banach spaces, for 1 < p < 2, Trans. Amer.
Math. Soc. 276 (1983), 201-211.

W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.

—, Fourier Analysis on Groups, Interscience, New York 1962.

G. Schechtman, Almost isometric L, subspaces of L,(0, 1), J. London Math. Soc.
20 (1979), 516-528.

icm

[Sc2]
[Sz]
[T-11]

[T-12}

Embeddings of I, into Ly, I 103

—, Fine embeddings of finite dimensional subspaces of L, 1<p <2 into finite
dimensional normed spaces II, Longhorn Notes, Univ. of Texas, 1984/5.

S. Szarck, On the best constants in the Khintchine inequality, Studia Math. 58 (1978),
197-208.

N. Tomczak-Jaegermann, Computing 2-summing norm with few vectors, Ark.
Math, 17 (1979), 273-277.

—, The weak distance between finite-dimensional Banach spaces, Math. Nachr. 119
(1984), 291-307.

INSTYTUT MATEMATYCZNY PAN, ODDZIAL W GDANSKU
INSTITUTE OF MATHEMATICS, GDANSK BRANCH
POLISH ACADEMY OF SCIENCES

Abrahama {8, 818258 Sopol, Polund

DEPARTMENT OF MATHEMATICS
TEXAS A&M UNIVERSITY
College Station, Texas 77843-3368, {.S.A.

THE WEIZMANN INSTITUTE OF SCIENCE
Rehovot 76100, lsracl

Received January 29, 1987 (2274)


GUEST




