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convergence of

S k[T =T~ T (= TN)]
k=1 .

n-1 /1 1 ) o
=T AT )= (T

as ntoc; by (5) and (6) we see that the limit

lim 3 k=t [T(f= Tf) = T~*(f—Tf)]

n-reo k=1

exists a.e. on X. This completes the proof.
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On the geometry of spaces of C, K-valued operators
by
EHRHARD BEHRENDS (Berlin)

Abstract. Let K be a locally compact Hausdorll space and X a Banach space. We consider
operator spaces W in L(X, C'qK) which contain the compact operators and have the property
that T'e W implies M, 0 T'e W for every bounded continuous scalar-valued function & on K (M,
denoles the multiplication operator f1-hf on Cy K).

Our main results center around the M-structure properties of such spaces W. We
characterize the centralizer of W if the centralizer of X’ is small, and for many classes of Banach
spaces X (including c.g. the L'-preduals) we are able to describe all M-ideals of W, at least in
the case of compact K. .

These characterizations generalize results of Flinn and Smith who discussed the case W
= L(CK, CK) if the scalars are complex.

With our methods we also can treat questions as “Is K determined by W?" or “When can
W be a dual space?”, We are able to derive answers which generalize recent results of Cambern
and Greim.

I. Introduction. Let X be a real or complex Banach space (the scalar
field, R or C, will be denoted by K in the sequel). The following basic
definitions from M-structure theory will be of importance:

1.1. Dermvmion. (i) Let J < X be a closed linear subspace, J is called an
M-summand (resp. L-summand) if there is a closed subspace J* < X such that
X=J@®J" algebraically and |lx+x%| = max {||x|, [|x*]} (resp. = |||
+[|xY]) whenever xeJ, x*eJ*. J is called an M-ideal if J*, the annihilator
of Jin X', is an L-summand.

(ii) Let ' X — X be an operator. T is called a multiplier if for every
extreme functional p (i.e. for every extreme point p of the dual unit ball)
there is a scalar ag(p) such that poT=ay(p)p. Mult(X) will denote the
collection of all multipliers.

A multiplier S is called the adjoint of a multiplier T (and we write §
= T* in this case) if ag(p) is the complex conjugate of ay(p) for every p.

Z(X), the centralizer of X, is the set of all multipliers which admit an
adjoint.

These definitions have been introduced by Cunningham ([8, 97) ‘and
Alfsen—Effros ([1]); for a systematic introduction the reader is referred to
Behrends ([2]).

Here we only note that Z(X) and Mult(X) are always commutative
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Banach algebras of operators and that M-ideals can be characterized by
suitable intersection properties as follows:

1.2. Tueorem. For a closed subspace J = X the following assertions are
equivalent:

@) J is an M-ideal.

(ii) For every neN and every collection B; = B(x;, 1) (i=1,....,n) of
closed balls with B;nJ # @ and (\B, % @ we have ((\B,(x;, ri+e))nJ # @
for every & > 0.

(i) For x;, ..., x,eJ, xe X with ||Ix|, || <1 and & >0 there is yeJ
with ||x;+x—y|| < l+e for i=1,..., n

(iv) The same as (iii), with n = 3.

Proof: [2], Theorem 2.20, and [13].

Applications of M-structure theory range from Banach-Stone-type
theorems over the study of L!-preduals to approximation-theoretical ques-
tions for operator algebras (cf. Ch. 5 in [2], [4], and [11] and the references
cited there). In connection with these operator algebras the M-ideals of such
spaces have attracted much attention. For example, all M-ideals have been
characterized in L(X, X) (= the space of bounded linear. operators from X
to X) for several complex Banach spaces X (cf. the references in [4]).
However, there seems to be up to now no infinite-dimensional real space X
in the literature for which all M-ideals in L(X, X) have been described (in
the sequel we will obtain spaces for which such a description is possible).

The aim of the present paper is to investigate the M-structure properties
of certain Banach spaces of operators. For the sake of easy reference we
introduce the following.

1.3. DermviTioN. Let X be a Banach space and K a locally compact
Hausdorff space. A closed subspace W < L(X, Co K) will be called an
admissible operator space if it satisfies:

(i) W contains the compact operators.

(ii) For every TeW we have M, o TeW for every heC’K: here C°K
denotes the space of bounded K-valued continuous functions, and M,: Cy, K
— Co K means the multiplication operator f i hf.

Thus, for example, K(X, CoK) (= the compact operators) and
L(X, Cy K) are admissible, and further admissible spaces can be obtained by
considering the various operator ideals treated in the literature (which, of
course, have to have the property that they are complete with respect to the
operator norm).

Our main results are the following (where W is an admissible operator
space in L(X, CoK)):

— If Z(X") (resp. Mult(X") is one-dimensional, then the operators in
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Z(W) (resp. in Mult(W)) are precisely the operators T M,oT with
heC*K.

— It is possible to characterize the M-ideals in W provided that K is
compact and

X is finite-dimensional and contains no nontrivial L-summands,
or X' is uniformly convex,

or X' is an abstract L'-space (in fact it suffices to assume that X'

contains “sufficiently many” one-dimensional L-summands);
more precise information is obtained if X = ¢, (I) or X = PI),1<p<oo,
for some set I

The methods are elementary, and they apply to the real and complex
case as well. The results imply: ‘

— Banach-Stone-type theorems for operator spaces: if W = L(X;, Co K)
are admissible, if the Z(X;) are one-dimensional (i = 1, 2), then the Stone—
Cech compactifications of K; and K,.are homeomorphic provided that W,
and W, are isometrically isomorphic; these theorems contain the results of
Cambern ([6]) and parts of the results of Cambern and Greim 7 as
special cases;

— the characterization of the M-ideals in L(CK, CK), K compact, K
= C by Flinn and Smith ([11]) (which is proved by using techniques from
the theory of complex Banach algebras and which works by relating the M-
ideals of L(CK, CK) with certain elements of the bidual of CK; a characteri-
zation which is much better accessible is due to Werner and Werner [14]);

— the existence of infinite-dimensional real Banach spaces X for which
one knows all M-ideals in L(X, X); take X = CK, K infinite and compact.

As the preceding short survey indicates, M-structure properties of X’
have to be known to obtain information on admissible operator spaces
W< L(X, CyK). We therefore collect together some facts which concern
spaces for which Z (X) resp. Mult(X’) consist only of the constant multiples
of the identity operator.

1.4. ProrosiTiON. Let X be a Banach space; to avoid notational complica-
tions, we will assume in (ii) and (i) below that X is not isometrically
isomorphic to the two-dimensional real space 1. .

(i) Z(X') is one-dimensional iff X contains no L-summands other than {0}
and X.

(i) Each of the following conditions implies that Mult(X") (and thus
Z(X") is one-dimensional:

(&) X' is smooth.
(b) X' is strictly convex.
{c) X' is an abstract L'-space (eg. X = CoK).
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(iil) Each of the following conditions implies that Z (X') is one-dimensional:

(a) X has a nontrivial (ie. different from {0} and X) M-ideul.

(b) X' has no nontrivial M-ideals.

(¢) X has a nontrivial LP-summand for some pe]l, o[ (the definition
is similar to that of M-summands or L-summands, but the relevant
norm condition is now ||x+ xH|P = ||x||P+|lx*?).

(d) X' has a nontrivial LP-summand for some pefl, o[,

(€) X' is an abstract LP-space for some 1< p < o0.

Proof. (i) Suppose that J is a nontrivial L-summand in X. Then the
transpose E' of the natural projection E onto J is not in KId so that Z(X)
is not one-dimensional (E’ is in Z (X'} by 1.5 and 3.15 in [2]). Conversely,
suppose that Z(X') is at least two-dimensional. Since Z(X') is isometricaily
isomorphic to a space C(Kj), where Ky is compact and extremally discon-
nected (3.10 and 5.10 in [2]), Z(X") contains a nontrivial idempotent which
gives rise to an M-summand in X’ and thus to an L-summand in X (3.15,
5.6, and 1.5 in [2]).

(i) (a) and (c) are proved in Prop. 5.2 of [3], and (b) has been shown in
[127 (see also [157).

(iii) (a) This follows from (i) and [2], Prop. 24.

(b) This is proved in 3.16 of [2].
(c) and (d) follow from (a) and (b} by using [2], Theorem 6.2.
(e) is an immediate consequence of (d).

The author wants to express his gratitude to D. Werner and W. Werner
for making available their manuscript [14]. It was their results which stimu-
lated the research leading to the present paper.

2. The multiplier and the centralizer for admissible spaces. It is well
known that, for every locally compact space K, Z(CyK) and Mult(C, K)
consist precisely of the operators M,, where he C* K. These operators give
rise to elements in the centralizer of every admissible operator space
W < L(X, CyK) which has been observed for the case W= L(X, (;K)
already in [14]:

2.1. Proposition. Let W L(X, CoK) be an admissible operator space
and heC*K. By ¢,: W — W we denote the operator Tr>M,oT. Then ¢, lies
in the centralizer of W, and hw— ¢, is an isometric algebra homomorphism from
C*K into Z(W).

Proof. It is obvious that ¢, is an isometric algebra homomorphism
from C°K into L(W, W) so that we only have to show that ¢, Z(W) for
every h.
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It is straightforward to prove that ¢, is M-bounded in the sense of
Definition 3.2 in [2] so that, by ([2], Theorem 3.3) ¢, lies in Mult (W). This
proves the assertion in the real case.

In the complex case, we consider ¢; (7 = the complex conjugate of h).
The operators (1/2)(¢y+ ) and (1/(20) (¢, —pp) are obviously hermitian
operators on W so that the eigenvalues of the transposes are necessarily real.
This proves that ay, = a,, so that ¢; = ¢jf. Therefore ¢, admits an adjoint,
ie. ¢ e (W).

In order to treat the problem whether all ¢ €Z (W) have the form ¢, we
need two preliminary results, The first scems to be well-known; nevertheless,
a proof is included since we are not aware of a reference.

2.2, Lemma, Let X be a Banach space and TeMult(X). Then, for x in
the kernel of T and y =TV in the range of T we have |lax+ byl
= max {|[ax]|], [|byll} for arbitrary scalars a, b (which just means that ker T’
and range T satisfy the norm condition for M-summands in Definition 1.1; in
general, however, these spaces are not M-summands of X since they do not
span the whole space).

Proof. Without loss of generality we may assume that a=b =1,
x# 0z y. We first note that a,(p) = 0 for every extreme functional p such
that p(x) s 0 (since O = p(Tk) = ar(p) p(x)).

Choose a p with p(x) = ||x|[. Then p(y) = ar(p)p(Hh) = 0 so that ||x||
= p(x) = p{x+y) < [|x+y|l. Similarly it follows that |[y|} < ||x-y||, since p(y)
=||y|| yields ay(p)+# O and thus p(x)=0.

Conversely, let p be given with p(x+y) = [|x+ . If ar(p) #0 then
necessarily p(x) = 0 so that |[x-+y|| = p(») < ||yll. Il ar(p) = 0, then p(y) =0,
and in this case we get ||x+ || = p(x) <||x|]. :

2.3, LemmMa. Let W L(X, Cy K) be an admissible operator space.

(i) Let T he uan operator from X to CyK with ||T|| €1 such that
| @h+T|| <1 for every X'€ X', heCoK with ||X|| = ||l = 1; here x' @ h
denotes the operator xv-x'(x)h. Then T= 0.

(ii) Let ¢ e Mult(W) be given such that {x' @h|x'eX’', heCy K lies in
the kernel of ¢. Then ¢ =0,

Prool (i) For xeX with ||x|| =1 and ko €K choose x'e¢X', heCy K
with [|h]] = h(ky) == ||x'|] = x'(x) = 1. Then, by assumption,

%" (x) ko) (Tx)(ko)l = |1t (Tx) (ko)l < 1

which yields {Tx)(ky) = 0. Since x and k, are arbitrary, it follows that T= 0.
(i) This is a consequence of Lemma 2.2 and part (i).
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2.4. THeOREM. Suppose that W < L(X, CyK) is an admissible operator
space.

(i) If Mult (X') is one-dimensional, then Mult(W) = {¢,| heC"K].

(i) If Z(X") is one-dimensional, then Z(W) = {¢,|he C"K}.

(Therefore Mult(W) = Mult(CoK) =C°K in the first
= Z(CoK) = C°K in the second case)

Proof. (i) Let ¢ e Mult(W) be given. We first note that, since all ¢, are
multipliers, we have ¢ o¢, = ¢,0¢ ([2], p. 54) which means that
(*) Myodp(T)=¢p(M,0T) (all heC°K, TeW).

Now let koK be given. We choose a function he CoK with |jh]] = 1
and hy =1 for a suitable neighbourhood U of k,. Wyt X' — X' will be
defined by x'+6, 0¢(x' ®h); here 0, denotes the usual evaluation fun-
ctional.

1. e Mult(X).

and Z (W)

This follows from the fact that ¢ is M-bounded from which we conclude
that w is M-bounded as well. So one only has to apply [2], Theorem 3.3.

2. The definition of @y, does not depend on the choice of h.

Suppose that h and K are functions in Co K with k|| = [[K]| =1, k|,
=1, K|y =1 {for suitable neighbourhoods U, U’ of k,. We choose a
function ge CoK with g(ko) = |lgll =1 which has its support in U AU". It
follows that (h—h)g =0 so that, for every x/,

0=0d,,00(x® (h—h)g)= 6koo¢(My o(x’ ®(h—h’)))
=3,,0(M, 00 (¥ ®(h—k))) (by (%)
=i, 0B (x' @ (h—h)
which proves that d, o¢(x' @ h) = Okp OB (X' @ K).

By assumption there is an hy(ky)e K such that Wy, = ho (ko) 1d. We
claim that

3. hg is bounded and continuous.

flq is clearly bounded by [|/¢||. Let koeK be given and h as in the
definition of wy,. Let U be an open neighbourhood of k, such that hly = 1.
By “2” we can define w, for all ke U by taking the same function h, ie.

50(x' @K = w(x) = hy(k)x'  for ke U.

This means that k> hg(k)x' coincides on U with ¢ (x’ ® h). Therefore

k—hy (k) x'(x) is continuous on U for arbitrary x, x' which proves that h, is
continuous at k.
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Now suppose that g,,g,e Co K, koeK, and that g, and g, coincide in a
neighbourhood of k,. We claim that
4. $(x ®g,) = P(xX' ®gy) in a neighbourhood of k, (all x'e X').
The proof is similar to the proof of “2”, the details are therefore
omitted.
5. 0(x ®g) =M, 0(x'®g)

Let kye K and let he Cy K be a function with bl =1 and h=1 in a
neighbourhood U of k. Then, by definition, ¢(x' @ h) = My, 0(x' ®h) on
the interior of U. Since hg and g coincide on U, “4.” implies that

for X' €X' and geCyK.

Bro 0P (X' ® ) = by, 0 (x' ® hg) = 8y, 0 b (M, o(x’ ® b))
=(g(ko)) e, 0b(x ®h) by (¥
= g (ko) o (ko) X' = 8, 0 My 0 (' ® ).

This proves our claim since k, was arbitrary.

Finally, we show that ¢ = ¢, . But this is easy, since ¢—¢,, lies in
Mult (W), and all x' ® g are in the kernel by ~5.”. Thus we only have to
apply the preceding lemma. )

(i) Let ¢peZ (W) be given (the adjoint of ¢ will be denoted by ¢*). The
preceding proof will lead us to the desired result provided that we are able to
show that the operators w,;: X' — X' not only are multipliers but lie in the
centralizer of X'

If K = R nothing has to be proved so that we may assume that the
scalars are complex.

We fix ko and define @ : X'~ X' by x'+>3,, 0¢*(x' @ h), where h is
as in the definition of wy,. Clearly & eMult(X'), and we claim that &,
= wf,. It suffices to show that w, := (1/2)(w +dy,) and @, 1= (1/(2i))(w,,0
~@y,) are hermitian. To this end, let pe(L(X ’)3’ be given with (p(Idf) = ||o||
= 1. We define § €(L(W)) by () := ¢ (@), where @y (x) 1= 8, 0 (x' @ h).
Then &(Idy) = ||@|| = 1 so that, since (1/2)(¢+ ¢*) and (1/(2i))(¢ —d*) are
hermitian, @ () = &((1/2)(+¢*) and (@) = F{(1/(2)(¢ —¢*)) are real
which completes the proof,

We now turn to some applications of the preceding theorem.

2.5. TueoreM., Suppose that Z(X') is one-dimensional and that
W < L(X, Co K) is an admissible operator space. Then there are as many M-
summands in W as there are clopen subsets of K. More precisely, the M-
summands of W are just the subspaces {T|TeW, 6,0T=0 for every ke D},
where D = K is clopen.
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Proof. This follows at once from the fact that the M-summands are in
one-to-one correspondence with the idempotents of the centralizer.

2.6. THEOREM. Suppose that X and X, are Banach spaces such that the
dual spaces have one-dimensional centralizer. Then the following Banach
Stone-type theoremis valid: If W, « L(X;, CqK}), i =1, 2, are admissible
operator spaces, then the existence of an isometric isomorphism between W,
and W, implies that K, and BK, are homeomorphic (BK := the Stone-Cech
compactification of K).

Proof. W, =W, vyields C(BK,) =C°K,=Z(W)=Z(W) =CK,
= C(BK,) so that BK, = BK, is a consequence of the classical Banach-Stone
theorem.

Notes. 1) The result is only a first step towards an understanding of
such Banach-Stone-type theorems for operator spaces. For example, it would
be interesting to know whether not only K, and K, are homeomorphic
but also K; and K,, and whether or not X{ and X} are necessarily
isometrically isomorphic (as the simple case K = {k,} shows it is not to be
expected that W, = W, yields X, = X,).

2) For W,=L(E, CK)), i=1,2, where E is a reflexive space with
strictly convex dual and where the K; are extremally disconnected and
compact, the preceding theorem has been proved by Cambern [6] (note that
by Prop. 14, Z(E') is one-dimensional). The case W, = L(E;, CK,), i=1, 2,
where Z(E;) are one-dimensional and K, are compact and hyperstonean, is
treated by Cambern and Greim in [7]. There also some information on the
structure of isometric isomorphisms between L(E;, CK,) and L(E,, CK,) is
obtained.

2.7. TueoreM. Suppose that W < L(X, CoK) is an admissible operator
space and that Z (X') is one-dimensional. If W is a dual Banach space, then BK
is necessarily hyperstonean.

_ Proof. The centralizer of a dual Banach space is always of the form
CK, where K is compact and hyperstonean (see [5], 3.2 and [2], 5.10).
Therefore our assertion follows from Theorem 2.5 and the Banach-Stone
theorem.

3. M-ideals in admissible operator spaces: general results. In this section
W will be a fixed admissible operator space in L(X, CyK). The following
definition is due to D. Werner and W. Werner [147; they used it for the case
W = L(CK, CK) to obtain an intrinsic description of the M-ideals of this
space.

3.1. Derniion. For every closed subset D < BK let Jipy be the subspace
{T| TeW, ||6,0T|| — 0 for kekK, k—D}.
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3.2. PrOPOSITION. Jp, is an M-ideal in W,

Proof. By 1.2 we have to show that, for TeW, T}, T3, TyeJyp with
T T <1, & > 0, there is an SeJy, such that ||T+ TS| < 14¢ for
i=1,2,3.

Let such operators T, T;, Ty, T be given. Since the T; are contained in
Jp there is an open neighbourhood U of D such that ||§,07T| <& for
keKnU and i=1, 2, 3.

Choose a function he("K such that its canonical extension h, to
BK satisties 0 < hy <1, hylp =1, supp hy < U. We define S:=M,.,T:
Sis in W since W is admissible. It is easy to check that § lies in J,, and
that ([0, (T, + T8 < L+¢ for every ke K so that ||T+T—S|| < 1 +e.

Since, as is well known, the M-ideals in Cy K are precisely the subspaces
of the form {f|/|p.x =0}, where D < K is closed, the M-ideals J,, are in
a sense just those M-ideals which are determined by Co K. We will say that
the M-ideals of W are determined by the M-ideals of CoK if there are no
other M-ideals, ie. if for every M-ideal J « W there is a closed set D < K
such that J = Jy,,.

3.3. Turorem. Let W < L(X, CoK) be an admissible operator space.
Suppose that:
(i) For every koe K and every M-ideal J which is strictly larger than
Juigy we have J =W (ie. the Jy.,, are maximal M-ideals).
(1) For every koe fiK for which there exists a Te W with
limsup|{é, 0 T|| >0
k-kg
there also exists an Se W with

liminf(|d, 0 8] > 0
k=kg
(which, for example, is automatically satisfied if K is compact).
Then the M-ideals of W are determined by the M-ideals of CoK.
Proof. Let J < W be an M-ideal. We define

D= kg lkoe K, |60 T — 0-as k — kg for every TeJ}.

Suppose for the moment that it has been verified that D is closed.
We will show that J = Jg,. J < Jp is trivially true so that it remains
to prove the reverse inclusion. Let TeJ,, and & > 0 be given, We claim that

(x)  For every ko €BK there are an open neighbourhood Uy, of ky and an
operator Sy, &J such that

8 o(T=Se )l <& for keUy, nK.
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If koeD, we simply take S, =0 and any neighbourhood Uy, of k, such
that |8, 0T|l <& for keU,,nK. For ko¢D we have J & Jyoy by the
definition of D and J,) so that J+J ., is an M-ideal which is strictly
larger than Jy,,, (note that the sum of two M-ideals is also an M-ideal;
[2], Prop. 2.7). By (i) it follows that J+J,, = W so that in particular
T—Sk, €Jgigy for a suitable S, eJ. Clearly then |6, 0(T—Sk )l <¢ in a
neighbourhood U, of k.

Thus (x) is true for every ko, and we may cover SK by finitely many
Uyo oo Uy by, o, h,e C(BK) is a partition of unity subordinate to this
cover we have, with h;:= g,

6. o(X My, 08, —T)| <& for every keK

so that ||y M, 08, —T|| <& But M-ideals are invariant with respect to
every operator in the centralizer ([2], Prop. 3.14) so that, by Proposition 2.1,
the operator S:=2MhioS,‘i belongs to J. Since ¢ >0 was arbitrary, this
shows that TeJ.

To complete the proof we have to verify that D is closed. Suppose that
ko¢D. Then, by definition, J+Jigy is strictly larger than Jy ), so that this
M-ideal is all of W. By (ii) there is an Se W such that

" liminf||8, 0§ > 0.
k—kq

We write § = T+R with TeJ, ReJyy. Then clearly also

limin||6, o T|| > 0,
k—kq

and this implies that U nD = @ for a suitable neighbourhood U of k.

Note. Since the M-ideals which contain J, are in one-to-one corres-
pondence with the M-ideals in W/J ., ([2], Prop. 2.9(ii)) the condition (i)
may be rephrased by saying that this quotient contains no nontrivial M-
ideals.

We close this section with some simple applications of the preceding
theorem.

The first corollary is included only to illustrate our methods and to
prepare a proof which will be given later. It can be derived independently by
well-known methods from M-structure theory.

3.4. CoroLLARY. Let X be a finite-dimensional Banach space. Then the
following assertions are equivalent:

(i) For every admissible operator space W <= L(X, Co K) and every K,
the M-ideals of CyK determine the M-ideals of W.
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(i) X' contains no nontrivial M-ideals
(or, by well-known results, X contains no nontrivial L-summands, or Z(X")
is one-dimensional).

Proof. (i)=-(ii). An application of (i) with K = {k,} guarantees that
W= L(X, Ci{ko}) = X' has precisely the M-ideals X' (=J,) and {0}
(= Jekon)-

(ii) = (i). Let K and W be given. From the continuity of the functions
k|60 T for all TeW it follows that

X' ifkoeK,
WiJ thop = {0 if koe BK\K,

so that 3.3() is satisfied. It is obvious that 3.3(ii) is also valid.

3.5. CoroLLARY. Let 1 <p < oo, I g set and X the space IP(I). Then, if
W< L(X, CoK) is an admissible operator space, we have:

(i) For every koeK, the space W/Jy, can be written as Y, ® Y,
where |[y+y*1|1= Il*+Ily Il for ye Yoy, y € Vi, ie. Yoy is an Li-summand
in the sense of 1A4(in)(c); in addition, Y, is isometricauy isomorphic to
X' = () (here, of course, q is defined by 1/p+1/q = 1).

(i) The M-ideals of W are determined by the M-ideals of Co K provided
that K is compact and cardl = 2,

Proof. The case of finite I follows from 3.4 since M(I) never has
nontrivial M-ideals, We therefore may assume that I is infinite,
(i) Let koe K be given. We define two subspaces W, m% of W by

o = AT TeW, |80 T—d,,0 T|| =0 as k —k,},
W= {T| TeW, 8,,0 T=0}.

Clearly these subspaces are closed, and W N W = Jy ). Let %, and Y
be the canonical images of Wy, and W,% in W/J,y, respectively. It is
routine to show that Y, = X' (not only in the present case) Since
the quotient norm of an operator TeW in W/Jy,, is given by
liminfy .y, |6, 0 T]|, the claimed norm condition is a consequence of the
following observation: if x;, x'e ¥ (I) == [?(I)’ are such that the x, tend to O
with respect to the weak* topology, then

I

lim sup [|x' ;]| = |||+ lim sup [|xl|;

this is an immediate consequence of the fact that the x; have to tend
pointwise on I to zero.

(i) Let K be compact. By (i), the spaces W/J,, contain nontrivial
Lrsummands for every koepBK = K so that all M-ideals of these spaces
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are trivial (if a space would contain a nontrivial M-ideal and a nontrivial L*-
summand, then its dual would contain both a nontrivial L-summand and a
nontrivial I?-summand in contradiction to [2], Theorem 6.2).

3.6. CorROLLARY. Let I be an index set and X:=co(I). Then, if
W o L(X, CoK) is an admissible operator space, we have:

(i) For every koeK, W/J iy, is the direct sum of two  L-summands
Yo Yins Y, is isometrically isomorphic to X' = . .

(i) The M-ideals of W are determined by the M-ideals of CoK if K is
compact, cardK > 2, and cardl > 2.

Proof. This can be shown similarly to the proof of Cor. 3.5.

3.7. CoroLLary Let 1 <p, <p, <o, let Ig, 1,1, be index sets,
Ko, Ky, K, compact spaces and Wy, Wy, W, admissible operator spaces in
L{coUo)s CKo), L{F(1y), CK ), L{IP2(15), CK,), respectively. Then Wy, W,
W, are pairwise not isometrically isomorphic provided that card ;> 2 (j
=0,1, 2).

Proof. We prove that, for example, W, % W,. Suppose that there were
an isometric isomorphism ¢: W, —W,. Since for any fixed k,&K, the
subspace Jiy,) © Wy is a maximal M-ideal, ¢(J(;,,) © W, necessarily also
has this property and thus is of the form Jy,,,, for a suitable k, €K,. The
quotients Wy/Jiy,,, and Wi/J.y . are then also isometrically isomorphic. But
this is impossible: the first space has a nontrivial L-summand whereas the
second admits a nontrivial L'*-summand which never occurs at the same
time ([2], Th. 6.2).

4. M-ideals in admissible operator spaces W< L(X, Cy K) with K com-
pact, X' uniformly convex. Here we will show that Corollary 3.5(ii) generali-
zes to the case of arbitrary X with uniformly convex dual

4.1. TuroreM. Let X be a Banach space such that X' is uniformly convex,

and let K be a compact Hausdorff space. Then CK determines the M-ideals of

every admissible operator space W< L(X, CK), i.e. the M-ideals of W are
precisely the subspaces Jp,), D = K closed (see Def. 3.1).

Proof. Since condition 3.3(ii) is obvidus]y valid it remains to show that
3.3(1) is satisfied, too.

To this end let J be an M-ideal of W with J 2 Jy,, where koeK.
This means that there is a TeJ with limsupy ., [0 0 T >0, and by
considering Mo T instead of T for a suitable he CK we may assume that
IT)| = limsupl|lé, o T|| = 1.

Now let xpeX’ with ||xp|| =1 be arbitrary and g, > 0. Since X' is
uniformly convex we find an ¢ > 0 with
(% XN 2 1—e, X2l < L+e = [|2]] < 2.
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By using Theorem 1.2 we obtain an operator SeJ with ||S}| < 14z and || £ T
+(xo @1-S) < 1+ so that, by (x), [lxg—8, 05| <& whenever ||6,0 T||
2 1—¢. It follows that limsup, ., 10,08 2 1—¢.

We are now able to prove that J = W. Let Re W be given, ||R|] = 1, and
£ > 0. Choose & for &y as in (x) and an operator T,eJ with

Ll = limsup|id o Tl = 1, liminf||d, 0 T|| > 1 —e&;

such a T, exists by the first part of the proof. Another application of
Theorem 1.2 provides us with an SeJ with [|S]] < { +¢, [+ T+R-3)| < 1
+¢&, and () implies that [|0, o(R—S)|| < &, in a suitable neighbourhood of k.
Choose a continuous function h: K - [0, 1] with support in this neighbour-
hood and hiky) = 1. Then ||M,o(R~S)| €&, and consequently [R
—(My. O R+Myo8) <ep. But M., ,oR+M,0SeJ since J 2 Jigy and
M-ideals are invariant with respect to operators in the centralizer. It follows
that ReJ, and this completes the proof of the theorem.

5. M-ideals in admissible operator spaces W L(X, CoK) with K com-
pact and sufficiently many one-dimensional [-summands in X'. In the prece-
ding section we used uniform convexity to conclude that ||Z|| is small
whenever |Ix"+ 2| < 1+¢, where ||[X|| 2 | —&. Here we will develop and apply
a subtle technique which allows similar conclusions provided.that there are
“sufficiently many” one-dimensional L-summands.

5.1. Lemma. Let Y be a Banach space, ne Y such that |||l = 1 and Kn is
an L-summand. Further, let x,ye Yand ¢, 20 (i =1, ..., 5) be given such that

o Ly X)) € Y ey,

— |lx--0n]| 2 285 (for all Oe K with |0] = 1),

— IVl € T+e,.

Then [[0x-+(n -yl < V+es (Jor all (0] =1) implies that ||n-y|| < e4+2(sy
+6y 483+ €5).

Prool. We write x = an+x,, y = fn+y,, where x,, y, are in (Kp)*.
We have

215 < v+ Onl] = [0+ + [,

2ty € 1=l + el == 1=l el 1o < 22 +e5.

It follows that |o| < (1/2)(z; +&3) =186, and consequently |lx|| = || x| o]
2 gy by,
On the other hand, we have

Lbag 2 ||0x-+(= P = [Oo-+(1 )] +]
L Bl et [0x— il

0xy -yl
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Thus 1+¢5-4¢e5—|1—B| = [|6x; — 4]l for all | =1 which yields, since ||x,|
>1—g, —t, that 14es+es—|1—fl = 1—&—se, ie. [1—P| < &y+es+ 2.
This implies that |f| = 1—e; —&5—2¢6, and we get

=yl = [L=Bl+1lyall < &;+es+2e6+ (M —15]
K 28y +2e5+ 465+ 84 = 2(e1 6+ 83 +85)Hé4

In order to apply this lemma it will be essential to know that, given x
with norm close to one, there is an L-summand Ky such that [x+40nj| is
close to two. We show that such an 5 can always be found if there are
sufficiently many one-dimensional L-summands.

5.2. LemMAa. Let X be a Banach space such that X' contains ng
one-dimensional L-summands Kny, ..., Kn,,, where |In,|l =1 for all n. By
P, X' = X' we denote the natural projection onto Ky,, n=1, ..., ny. Fur-
ther, let K be a compact Hausdorff space, &,, £, 2 0, and w: K = X' a weak*-
continuous mapping with || (k)| < 1+¢, for every k.

(@) For every koeK and every set A =K such that koe A~ there is
an nye{l,...,ng} such that ko is in the closure of {k|keA, ||Py, (e (k)|
<(14e;)/no}.

(ii) Suppose that || (ke)—n. |l <&z for some koeK, nyefl, ..., n}.
Then, for every nye{l, ..., ny} different from ny and every ey >0, there is
a neighbourhood U of k, such that

”P"z (CO(k))“ < & +82+283
Proof. (i) Define 4, by
A= {k|ked, |[Py(o@®)] < (1+e)/no}.

If ke¢ A, for n=1, ..., ny, then | JA4, & A. But this means that there exists
a ked with |P,(w(k)| > (1+&)/no for n=1, ..., no in contradiction to

1+e; = lo @l = Y|Pl ®)|-

(i) Let &; > 0 be given. J :=kern,, is an M-ideal, and 5, lies in (J7)*.
Since (|7, Il = Ilna, 14l by [2], p. 35, there is an xpeJ with |jxf =1,
|'11,,1 (x0)) 2 1—&3. Choose a neighbourhood U of k, such that
|(w(l;)—-co(ko))(x0)] <3 on U. For these k we have |( (k) (xo)| = 1 —¢,— 265
so that

for all keU.

(X — Poy) (0 (R) (x0)] = 1 -, — 25

(note that P, (w(k))eKn,,). Consequently [(Id—P,,)(w (k)| > 1—e,—2e,
so that -

1Py (0 ()] = fleo ()| = [[(Xd = P, ) (@ (K| < 1 +82+ 265
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5.3. LEmMMA. Let Y be a Banach space, and let ne Y with |n|| = 1 be such
that Kn is an L-summand. Then:

(i) 167+ yll < 1+e (for all 6 with |0] = 1) implies that ||)y|| <.

(i) |6n+y|| = 2—2e, &, for all 0 with |8] = 1 provided that 1—g; < ||yl
and also ||Py|| < &, (where P = the natural projection onto Kn).

Proof: elementary.

Our final lemma is a straightforward consequence of Theorem 1.2.

5.4. LemMa. Let J be an M-ideal in a Banach space Y, and let ¢ > 0.
Then, for yieJ, ye Y with ||y, Iyl <1l+e (i =1, 2, 3), there is a zeJ with
llzll < 1+¢ and |0y, +(y—2)l| <1+ for all |6 = 1.

5.5. THEOREM. Let X be a Banach space such that X' contains at least 33
one-dimensional L-summands: Kny, ..., Knas, where |, =1 for all n.

Then, for every compact Hausdorff space K and every admissible operator
space W< L(X, CK), the M-ideals of W are determined by the M-ideals of
CK, i.e. they are precisely the subspaces {T| Te W, ||6,0T]|| -0 for k— D},
where D =D" c K.

Proof. We will show that Theorem 3.3 can be applied. Condition 3.3(ii)
is obviously valid, and it remains to prove that 3.3(i) holds, too.

To this end, let ky €K be given and let J 2 Jy,;, be an M-ideal. We will
show that d(T,, J) € 65/66 for every ToeW with || Tl =1 so that J = W.

Since J 2J (), there is an operator TeJ with lim supy i, 110, © Tl > 0.
As in the proofs of the preceding sections we may assume that ||T]|
= limsup||é, 0T} = 1.

Now let ¢ >0 be a fixed number such that 32/33+74¢ < 65/66. With
A:= {k|||8,0 T| > 1—¢} we have koe A~ so that, by Lemma 5.2(i) which we
apply with w (k) := 8, 0T, there are a subset A4, = 4 and an nye{l, ..., 33}
with [|P,, (6, 0 T < 1/33 for ke 4.

Lemma 54 provides us with an SeJ
0T+ (1, @ 1=8)| < 1+¢ for all 0] = L.

We apply Lemma 5.1 with x:=8,07T, y:=0,08 (where ked; is
arbitrary) and ¢y = &4 = 85 = &, 8 = 0, &3 = 2/33+¢ (that this number is
admissible follows from Lemma 5.3(ii)). Therefore we have

such that [|S]| <1+es,

[, — S 08Il < e+2(e+0+ 2/33 +e+¢) = Te+4/33

for keA, so that, since koed] and k4,08 is weak*-continuous,

* Moy =8y, 0S|I < To+4/33.,
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Now choose any n, different from n,. Lemma 5.2(ii) yields (with
w(k):=6,08, & =¢, ¢, =Te+4/33, &5 =¢/2) the existence of a neigh-
bourhood U, of k, such that ||P, (6, 0S) <9+4/33 for keU,.

we apply once more Lemma 54: we have ||S]| < 1-e, 1770, @ | =1,
so that there is an ReJ with ||R|| < 1+¢ and 08 +(n,, ®1-R)j| < 1+¢ tor
all 0] =1.

Choose a neighbourhood U = U; of k, with ||3,08]| > | —8¢—4/33
on U (this is possible since k+9,0S is weak*-continuous at k, and
16k, 08It = 1~75—4/33).

Since we also have

— li6 o8]l < 1+e,

— I3 oRl| < 1+e,

— {01, — 6, 0S|l = 2—26c—12/33 (Lemma 5.3(ii))
for these k, 1t follows from Lemma 5.1 that

11, — 3. O RI| < &4 2{(8e +4/33) + & +(26¢ + 12/33) +¢)
=32/33+73¢.

Now let Toe W with ||Tol| =1 be arbitrarily given. A third applica-
tion of Lemma 54 provides us with an operator ReJ such that
lBR+(To—R)ll € 1+¢ (for all [9] =1).

But then {/6#,, +5,,o(T0 Rl < 1+32/334 746 < 1+65/66 so that, by
Lemma 5.3(i), |6, o(To — R)|| < 65/66 for ke U. We choose any continuous
h: K —[0, 17 with supph < U and h(ko) = 1. Then T:= M,oR+M,_,0T,
belongs to J since M,oReJ and Ml_,,o'IZ)eJ(,, »-  Moreover,
16, o(T— Tp)l| < 65/66 for every k so that ||[T—T,|| < 65/66.

As a consequence we have

5.6. TueoreM. Let X be a Banach space such that X' is an abstract
L'-space; in the case of real scalars we ~assume that X is not isometrically
isomorphic to I¥.

Then, for every compact Hausdorff space and every admissible operator
space Wc L(X, CK), the M-ideals of W are determined by the M-ideals
of CK.

Proof. The case of finite-dimensional X follows from Cor. 3.4 and
the fact that L'-spaces do not have nontrivial M-ideals. If X is infinite-
dimensional, then X' admits in fact infinitely many one-dimensional
L-summands: Kp is an L-summand for every extreme functional pe X’ ([10],
Prop. 2.1).

5.7. CoroLLAry ([11], [14]). The M-ideals of L(CK, CK) are determined
by the M-ideals of CK for every compact Hausdorff space (in the case of real
scalars we have to assume that card K > 2).

icm
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Note. Flinn and Smith also can describe the M-ideals for L(Cy K, CyK)
provided that K is a locally compact Hausdorff space which behaves not too
pathologically. Our methods also apply to situations which are more general
than those treated in this section. The results, however, are far from being
satisfactory up to now, the difficulties arise mainly from the fact that one has
not much information about the behaviour of k8,0 T (TeL(X, CoK))
near the points ko efK\K.
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