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Abstract. Consider a basic Fredholm perturbation theorem; for example:

Let T be a Fredholm operator and suppose that B is a linear operator with [|B| < y(T).
Then T+B is a Fredholm operator with the same index as T.

The question we consider, for this theorem and others like it, is to what extent can the functions
[IBYl, »(T), and }|B||/¢(T) be improved and still have the conclusions of the theorem hold.

L Basic theorems. The problem of finding the “best possible” constants in
perturbation theorems has been studied by many authors. In this first section it
is shown that for two classical perturbation theorems it is possible to describe
the “best” perturbation constant for that theorem. These specific results raise
the question dealt with in the rest of the paper: What is the general form of a
perturbation theorem and what constitutes a best theorem.

One concrete instance of the problem of finding a best perturbation
constant is that of finding the best constant y(T) for the classical Theorem
A below; this question is raised in [8, p. 96] for a weaker version of Theo-
rem A. The answer to this question is given as Theorem 1 below, and was given
in [11] for operators with a bounded inverse.

Here, and in what follows, all operators are bounded linear operators
mapping a Banach space X into a Banach space Y, a(T) is the dimension of the
null space N(T) of T, and B(T) is the codimension of the range of 7. A Fredholm
operator T has both a(T) and f(T) finite, and its index is %(T) = a(T)— B(T).

The perturbation constant y(T) used in [8] depends upon the choice of
complementary summands. We will instead here let y(T) denote Kato’s
minimum modulus [10, p. 231 or 6, p. 96] defined by

) Y(T) = inf{|| Bel/d(x, N(T)): d(x, N(T)) > 0}.

The operator T has closed range iff y(T) > 0 [6, p. 98].

The @, operators of Gohberg and Krein [7] are defined by: an operator
T is a @, operator if it has closed range and finite nullity o(T).

TreoreM A. For any @, operator T, if B is a linear operator with
|B)] < y(T), then T+B is a @, operator with:

@) %(T+B) = «»(T).

(i) (T +B) < (7).
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The index »(T) of a &, operator T'may be — co. A Fredholm operator is
a &, operator, since T has closed range if f(T) is finite [6, p. 100].

Kato’s perturbation constant y(T) is best possible for Theorem A in the
following sense.

1. THEOREM. Let T be a &, operator on an infinite-dimensional Banach
space. Given & >0 there is an operator B with ||B| < y(T)+e¢&, but
ofT+B) > o(T).

Proof. Let N = N(T). Given & > O there is a vector v with d(v, N) =1
and ||Tv|| < y(T)+e& Since N is finite-dimensional, there is a w with
w+N =v+N and ||w| = d(w, N) = 1. Let x* be a linear functional with
x*(w) =1, x*(N) =0, and |x*| = 1. Define

Bx = —x*(x)Tw

and note that ||B)} = |[x*|| [Tw| < y(T)+¢&. The null space of T+B is
N' = N+sp(w). To see this, it is clear that N(T + B) contains N’, and if
(T+B)x =0, then T(x—x*(x)w)=0 and x belongs to N’. Hence
a(T+B)=a(T)+1. B

The other classical perturbation theorem we will consider originated in
classical spectral theory for a compact operator K, in which one concludes that
M —K, for A # 0, is a Fredholm operator with index zero, but with nullity
which, though finite, may be nonzero. More generally, one concludes, under
appropriate hypotheses, that T+ B is ¢, with x(T + B) = »(T), but conclusion
(ii) of Theorem A is omitted. For this theorem we define an analogue to y(T).

2. DEFINITION.
) W(T) = inf{|| A]l: a(T—4) =o0}.

Here we presuppose that Banach spaces X and Y are given and that T, as
well as all the operators A over which the infimum in (3) is taken, map X into Y.
From now on, X will always be infinite-dimensional, and all subspaces will be
closed infinite-dimensional subspaces.

The next lemma will be used repeatedly.

3. LEMMA. An operator A is not a ® . operator iff for each & > 0 there is a
compact operator K with |K|| < & and a(A—K) = co. Consequently, Tis a ¢,
operator iff u(T) > 0.

Proof. The first part of the lemma follows from [15, Theorem 23] or
[6, p. 80]. This result and (3) together imply that u(T) = 0if Tisnot &, . If T
is @, then there is a (closed) subspace M’ of finite codimension with the
restriction of T to M’, T|,,., one-to-one with closed range. Thus for all x in M,
I Txlf = yllx|l, with 9 = p(T]4;.). Then if for some A4, w(4—T) = oo, there is an
(infinite-dimensional closed) subspace M with T=A4 on M, and then
14l = [Tl ll Z [ Tlpgnp- | = y. Therefore u(T) = y. =
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4. THEOREM. Let T be a @, operator. If B is an operator with
(4) Bl < u(T)

then T+ B is a @, operator with x (T + B) = %(T). Further, given ¢ > 0 there is
a B with |B|| < u(T)+e, but T+B is not a @, operator.

Proof. If T+ Bis not a &, operator, then, given & > 0, by Lemma 3 there
isa K with |K| < zand «(T+B—K) = c0. Then u(T) < |B—K|| < [B| +¢,
and (4) cannot hold. Lemma 6 of the next section shows that »(T + B) = »(T).

By the definition of u(T), given & > 0 there is a B with |B|] < u(T)+¢ and
o(T—B) = c0. m

If Tis a &, operator, then Theorem 4 shows that the function u(T) is the
same as the distance from T to the complement of the &, operators which was
studied in [22] and [23].

Theorems 1 and 2 show that the functions y(T) and u(T) are, in one sense,
best possible for their respective theorems, in which we use || B|| to measure the
size of B. The question of how |B| could be improved is one of a class of
questions which will be discussed in the following sections.

II. Perturbation functions

5. DermITION. Let m(B, T) be a nonnegative function, defined for any
operator B and any T either a &, operator, in (a) and (c) below, or a
@ (= Fredholm) operator, in (b) below,

(a) The function m(B, T) is a &, perturbation function if:

(i) m(AB, T) = |m(B, T).
@) m(B, T)< 1 for T &, implies T+B is @,.
(b) Similarly, m(B, T) is a ® (or Fredholm) perturbation function if:
() m(AB, T) = |A{m(B, T).
(i) m(B, TY< 1 for T & implies T+B is .
(c) Also, m(B, T) is a ®, perturbation function if:
(i) m(AB, T) = |Alm(B, T).
(i) m(B, T)< 1 for T &, implies T+B is &, and a(T +B) < «(T).

The phrase “a perturbation function” will ambiguously refer to one of

these three types described above.

Perturbation functions are defined for operators mapping a (infinite-di-
mensional) Banach space X into a Banach space Y. This dependence on X and
Yis not made explicit in the notation m(B, T), but whenever a perturbation
function is discussed, all the operators which occur in the discussion will be
maps from X into Y.

Theorem A shows that ||B|/y(T) is a &, perturbation function, and
therefore also a @, perturbation function. Theorem 4 shows that |[B|/u(T) is a
@, perturbation function. One consequence of Lemma 6, below, is that a &,
perturbation function is also a @ perturbation function when restricted to
Fredholm operators T
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6. Lemma, Let m(B, T) be a perturbation function. If m(B, T) < 1, then
#(T +B) = 3(T).

Proof. In the case that m(B, T) is either a &, pf. or a @, pf, take T to
be a @, operator; in the case that m(B, T)is a @ p.f, take T to be a & operator.

The following technique is standard [6, p. 118]. Consider the function
S(2) = %(T + AB), defined for 1 in [0, 1. To see that £ is continuous, let 1’ in
[0, 1] be given. Since m(A'B, T) < m(B, T) < 1, T+VBisa &, operator with
y=9(T+AB)>0. If |A1—-2||B| <y, then (T +1B) = %(T+AB) by The-
orem A. Since the range of fis the integers, together with — oo, with the discrete
topology, f, being continuous, must be constant with f(0) = #(T) = f{1)
=%(T+B). u

The injection modulus j(T) of an operator T [13, p. 26] is defined by
%) HT)=sup{A |Tx| > A|x]| for all x}.

If Tis one-to-one j(T) = y(T), whereas j(T) =0 if T is not one-to-one.

The four functions below were introduced in [157]. In the definitions, and
elsewhere, M and N denote closed infinite-dimensional subspaces of the
domain space X.

(6) I(T) = inf{| Tl |: M},

0] A(B) = sup{I'(By): M},

8) W(T) = sup{j(T},): cod M < oo},
9) ©(B) = sup{j(B|y): M}.

In [14] it is shown that T is a @, operator iff I(T) > 0iff W(T) > 0, and
thatif T is a &, operator and either 4(B) < I (T) or o(B) < v(T), then T+ B is
a @, operator. To use the terminology of Definition 5, 4(B)/I'(T) and
©(B)/v(T) are &, perturbation functions. Also see Theorems 5.1 and 5.2 of [22].

Ifm,(B, T)is a perturbation function and my (B, T)is a function satisfying
m,(AB, T) = |Am,(B, T), then the inequality m, (B, T) < m,(B, T), for all
B and all suitable T, implies that my(B, T) is itself a perturbation function.
Thus one corollary of Lemma 9 below is that A(BYI'(T) and ©(B)/v(T) are &,
perturbation functions.

8. DeriNiTION. For B an operator and T a @, operator define
(10)
o(B, T) = inf {sup {inf(| Bx||/|| Tx|: Tx # 0, xin N): N « M}: cod M < o0}
9. LemMa. The function g(B, T) is a @, perturbation function with
2(B, T) < 4(B)/I(T),
e(B, T) < w(B)w(T).

(1)
12)
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Proof. Suppose that g(B, T) < a < 1. There is an M of finite codi-
mension, on which T is one-to-one, such that for each N = M there is a norm
one x'in N with || Bx'|/[ Tx'|| < a. Assume that T+ B is not &, , and therefore
that T+ B is not &, when restricted to M. By Lemma 3 there is an N « M
with

ITx) < IBx|l +ell x| j(Tly)
for all x in N and any preassigned positive &. For x’ chosen in N as above,
ITx'|| < al| Tx'|| +&(T|,),
that is,
(Tl > Q- TX|| = (1— a)j(Tly,)

which is impossible for small ¢&. Thus T+ B is &, and therefore o(B, T)is a & +
perturbation function.

Given N, set inf{||Tx|//|Bx||: x in N} = 1/¢, which may be + oo, so that
for x in N,

(13) c||Tx| < ||Bx|.
Then ¢|| Tl,|| < |Bl,|| for L= N, and so ¢I'(Tl;) < I'(B],). Thus
¢(B, T) < inf{sup {T'(Bly)/T(Tly): N = M}: cod M < o}
< inf{4(Bly)/I(Tl,)} < ABYT(T).
(13) implies that ¢j(T|y) < j(Bly) and therefore
(B, T) < inf{sup{j(Bly)/i(Tly): N = M}: cod M < oo}
< inf{z(Blp)/j(Tly): cod M < o0} < t(BY¥(T). =

Since ¢ (B, T) is smaller than the perturbation functions in (11) and (12), it
is better in the most obvious sense. For perturbation functions, smaller is better
and smallest is best, for which see Lemma 10 below.

10. LeMMA. There is a smallest perturbation function. In fact:
() The smallest &, perturbation function is

(14) m;(B, T) = max{|A: AT+B is not &, }.
(i) The smallest @ perturbation function is
my(B, T) = max{|A: AT+B is not &}.
(i) The smallest @, perturbation function is
my(B, T) = max{|A: either AT+B is not &, or «(AT+B) > a(T)}.

Proof. It is immediate from (14), (15) and (16) that each of m,, m,, and
my is a pf :

(13)

(16)


GUEST


180 ‘M. Schechter and R. Whitley
It mB, T)is a ®, pf and m(B, T) < m,(B, T) for some B and some
@, T, then by (14) there is a A’ satisfying m(B, T) <.|A'| with ' T +B not a o,
operator. But this is a contradiction because m(B/X’, T) < 1, so T+ B/1’, and
therefore A'T+B is a @, operator.

Similar arguments show that m, and m, are minimal. m

The point of Lemma 10 is that there are minimal perturbation functions.
The formulas (14), (15), and (16) beg the question of whether, for given T and B,
T + B has the desired property. Therefore while it is not possible to have, say, a
better @ perturbation function than m,, it is certainly possible to have a
formula for m, which is more informative than (15).

Recall that an operator T'is Fredholm iff there is an operator T, with
TTy=I+K, on X and T,;T=1I+K, on Y, where K, and K, are compact
{16, p. 108].

Let n denote the quotient map of the bounded linear operators on
X, #(X), onto #(X)/¥(X), #(X) the compact operators on X. For an
operator T on X let r,{n(T)) be the spectral radius of the element 7(T) in the
Banach algebra %#(X)/#(X). Compare with Theorem 5 of [23].

11. THEOREM. Let. T be Fredholm, and suppose that A is an operator, like T,
above, for which AT=1I+K, and TA =I+K,, K, and K, compact. Then,
setting C = AB, the best Fredholm perturbation function m, is given by

an my(B, T) = lim(c(C")*/",
(18) my(B, T) = Lim(4(C)'",
(19) my(B, T) = ,(n(C)).

Proof. Since 4 is also Fredholm, AT+B is Fredholm iff A(1T+ B)
= AI+AB+ 1K, is Fredholm iff AI + AB is Fredholm. Thus (19) follows from
the equation r,(n(C)) = sup{|A: AI—C is not in &}.

In [14, p. 1062] it was shown that r,(r(C)) = lim(t(C")'" = Lim (4(C™)*",
the lim being taken, of course, as n tends to infinity. =

A technical detail bars the extension of Theorem 11 to @, perturbations
and m,. Namely, an operator T in &, may not have a complemented range.
One must consider, instead of @, operators, the class @' of those operators in
&, which do have complemented ranges [217, and use the fact that T belongs

to @' iff there is an operator T, with T, T=1+K, K compact. We do not state .

this extension.

Note that if m(B, T) is a Fredholm perturbation function and T a
Fredholm operator with 4 an operator as in Theorem 11, then
m'(B, T) = m(4B, I) is a Fredholm perturbation function.

12. ExampLE. The function (B, T) is not the smallest @, perturbation
Junction.
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Proof. Let X =Y=1/’ and define B for a=)ae; by Ba
= oye3+a.es+ ... Let N be the closed subspace spanned by {e,, e,,...}. For
M a subspace of finite codimension, M’ = NnM is infinite-dimensional, and
JBly) =1=|Blyu|, and so ¢(B,I) = 1. However, (Al-+B)(AI—B)= %]
since B> =0, and thus my(B, I) = my(B, I) = m,(B, I) = 0.

Note that since 4(B) = 7(B) = 1, the perturbation functions 4(B)/y(I) and
7(B)/v(I) are both 1. =

13. LemMA. Let H be a Hilbert space, and suppose that T: H—H has
V(Tly) > 0. Given &> 0 there is an N = M with | T|y| < v(T},,)+e.

Proof. To simplify the notation, take M = H. From (8), given & > 0 there
is an M’ of finite codimension with v(T,.) > 0, and therefore Tis ¢, and
there is a norm one x, in M’ with | Tx, || <j(T|,;)+e < v(T)+¢. Let N be the
orthogonal complement of sp(x,), N' be the orthogonal complement of
sp(Tx,), and set M”" =N T *(N')n M’', which has finite codimension
in M'. There is a norm one x, in M” with |Tx,| < j(T|y)+ & < v(T)+e.
Since x, is in M", x, is orthogonal to x, and Tx, is orthogonal to Tx,.

Continuing in this way we obtain an orthonormal sequence {x,} and an
orthogonal sequence {T'x,} with ||Tx,|| < v(T)+¢&. On the closed span of
the {x,}, )

(ITE oaa|* = Tl 1T,1* < (v(T)+ &) | Lo, 2. m

14. THEOREM. On a Hilbert space, ©(B) = A(B) and v(T) = I'(T); conse-
quently, the two perturbation functions A(B)/I'(T) and t(B)/v(T) are equal.

Proof To show that A(B) < t(B), choose an M with T'(B|,)> 0. By
[14], v(Bly) > 0, so given ¢ > O by Lemma 13 there is an N contained in M
with [ Bly[l < v(Bly)+ & < t(Bly)+¢& < ©(B)+ . Hence I'(B,,) < t(B)+ ¢ and
consequently 4(B) < ©(B). The reverse inequality 1s given in [14].

We know from [14] that v(T) < I'(T). The reverse inequality is well
known [22, p. 2297 and follows from Lemma 13.

Note that A(T) is the Calkin norm of T, which follows from the
submultiplicativity of 4 and [20]. =

15. EXAMPLE. Suppose that a Banach space X has the following two
properties.

(i) There is a strictly singular operator S: X — X which is not compact.

(i) The space X is isomorphic to its Cartesian square X x X .

Examples of such spaces are I[0, 1] for p #2, and C[0, 1].

Then there is an isomorphism T mapping X onto X with v(T) < I'(T).

Proof. We first construct such an operator on Z = X x X, normed by,
say, [(x, )l = [x[l+ |y]l. Define ¥ on Z by x, y) = (0, Sx), S being the
operator in condition (i). The map V is strictly singular, being the composition


GUEST


182 M. Schechter and R. Whitley

of § with two bounded operators, and is easily seen not to be compact [197]. Set
T= M~V Since V?> =0, (I—V)(AI+ V) = 22, and T is one-to-one and
onto.

Since V is strictly singular, given M and ¢ > 0 there is an M’ = M with
IVl <& [6, p. 84]. From this it follows that I'(T) = |A).

An operator K is compact iff for each ¢ > 0 there is an M of finite
codimension with K|, | < ¢ [6, p. 85]. Because S is not compact,

a = inf{]|S]y[l: cod M < o} > 0.

Let M be a subspace of finite. codimension in Z. There are linear functionals
z¥, ..., z% with M= (\N(z}). Bach of these functionals can be written

zx(x, y) = x}(x)+ y¥ (), where x¥ and y¥ are in the conjugate space X* of X..

Set M’ = () N(x¥), and note that M" = M'x {0} = M so that j(T],) <
J(Tly). Because T has the inverse A 2(AI+V), it follows that
JH(Tlye) = JAP(IAL+ Ve ) 1. Now ©

WAL+ V) g || = sup{llAx || + [Sx|: |x]| =1 and x in M’} > [i|+a.
Hence j(T,) < A4+ a), and therefore
v(T) < (A1 + @) I (T).

This gives the desired example on Z.

Let U: X~ Z be an isomorphism of X with Z, as hypothesized in
condition (i), and set T" = U~ TU. It is easy to show that v(T') < bv(T) and
I'(T) < bI'(T"), where b= |U™Y| |U||. Hence

v(T') < D*(ANIAI+ @) T (T")

and the R.H.S. is less than I'(T') for A small,

There are strictly singular operators which are not compact on L?[0, 1]
for p # 2 (see [7]) and on C[0, 1] (see [12]). The fact that all the common
Banach spaces are isomorphic to their Cartesian square goes back to Banach
({1, pp. 244-5]; see also [2]). =

II. Factored perturbation functions. Given a @, operator T and an
operator B, the computation of |B|/y(T) involves the computation of the two
useful numbers || B|| and y(T). After this computation, y(T) can, of course, be
used in studying the perturbation of T by other operators and | B|| can be used
in studying the perturbation of other &, operators by B. In contrast, the
computation of, say, ¢(B, T) must be completely redone if either B or T
changes. This observation leads to Definition 16.

16. DEFINITION. A perturbation function m is factored if it can be written in
* the form

(20) m(B, T) = m, (B)/m,(T).
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17. THEOREM. Let the factored perturbation function.m be given by (20).

Given the numerator m, there is a best = largest denominator d(T, m,) for
which m,(B)/d(T, m,) is a perturbation function of the same type — @, D, or
@, —as m.

Given the denominator m,, there is a best = smallest numerator n(B, m,) for
which n(B, m,)/m,(T) is a perturbation function of the same type as m.

Proof. Suppose that m is a @, pf. Set
21 d(T) = inf{m(B): T+B is not &, }.

We claim that m,(B)/d(T) is the minimal @, p.f. with numerator m,(B). First,
if m,(B)/d(T) < 1, then by the definition of d in (21), T+B is &, . Second,
suppose that m,(B)/d(T)is a &, pf Let a &, operator Tbe given. For each
& > 0 there is a B with d(T)+¢ > m,(B) and T+ B not &, ; since T+ B is not
D,, m(B)/d(T) =1 and thus d'(T) < d(T)+e. Hence for each &, T,
d(T) > d'(T). Note, in particular, that d(T) = m,(T) > 0.

To define d(T) for a Fredholm p.f, replace ¢, by @ in (21). To define d(T)
for a @, pf, set

d(T) = inf{m, (B): either T+B is not &, or a(T+B) > «(T)}.

In either case, proceed as above to see that the d so defined is maximal

Suppose, again, that mis a @, p.f. To show that the best numerator, given
m, exists, let 4" be the set of all those numerators n' for which n'(B)/m,(T) is a
&, p.f and set

(22) n(B) = inf{n'(B): n’ is in A'}.

If n(B)/m,(T) < 1, then there is an n’ in 4 with n'(B)/m,(T) < 1, hence T+ B
is @, . That n(B) is the smallest member of /4" and that n(1B) = |4|n(B), follow
from (22).

Note that one could alternatively define d(T) analogous to (22) or could
define n(B) analogous to (21).

Similar definitions and proofs establish the results for & and &, pertur-
bation functions. =

The notation n(B, m,) and d(T,-m,) ambiguously denotes the numerator
and denominator of either a ¢, or @, or @, perturbation function; context
indicates which is meant.

Recall that Kato’s strictly singular operators [9] contain the compact
operators [6, pp. 84-5]. °

18. LemMA. Suppose that m,(B)/m,(T) is either a &, or a & perturbation
JSunction. Let n(B, m,) =n(B) be the best numerator given the denominator m,,
and let d(T, m,) = d(T) be the best denominator given m,, as discussed in
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Theorem 17. Then:
() n(AB) = ||n(B).
@) d(AT) = [A|4(T).
(iii) n(B+S) = n(B) for § strictly singular.
(@iv) d(T+8) = d(T) for S strictly singular.

Proof. Suppose that m,/m,is a &, p.f. Property (i) is immediate. To see
that (ii) holds,

d(AT) = inf{m(B): AT+B is not &}
= inf{m(AB/A): T+B/A is not &,} = |d(T).

Define n'(B) = inf{n(B+S): S is strictly singular}. Ifn'(B)/m,(T) < 1, then
there is a strictly singular S with T+B+S &, andso T+Bis @, [6, p. 117].
Since n'(AB) = |A|n'(B), W/ (B)/m,(T) is a &, p.f, and therefore, by the mini-
mality of n, n' = n.

Define d'(T) = sup{d(T+S): S is strictly singular}. As above, m, (B)/d'(T)
is a &, p.f, and by the maximality of d, d' = d.

The proof for a Fredholm p.f. is similar. m

Note that property (ii) also holds for a &, perturbation function.

19. DEFINITION.

(i) A @, perturbation function m(B, T) is Teexact if given any ¢,
operator T and & > 0 there is a B with m(B, T) < 1+¢, yet T+ B is not D, .

{ii) A Fredholm perturbation function m(B, T) is T-exact if given any
Fredholm operator T and & > 0 there is a B with m(B, T) < 1+, yet T+Bis
not Fredholm.

(ii) A @, perturbation function m(B, T) is T-exact if given any ¢,
operator T and & > 0 there is a B with m(B, T) < 1+¢, and yet either T+ B is
not @, or a(T+B) > a(T).

20. LEMMA. If m,(B)/m,(T) is a T-exact perturbation function, then my(T) is
the best denominator, d(T, m,), given m,.

Proof. See the proof of Theorem 17. m

21. CorOLLARY. Given the numerator |B|:

(i) Kato’s y(T) is the best denominator for a @, perturbation function.

(i) The function u(T) of Definition 2 is the best denominator for a &,
perturbation function.

(iii) 1(T) is also the best denominator for a & perturbation function.

Proof. Statements (i) and (i) follow from Theorem 1, Theorem 4, and
Lemma 20.

By Lemma 6, |B||/u(T) is also a & p.f, and since | Bl/u(T) is T-exact as
a &, pf, it is T-exact as a ® pf u
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A &, perturbation function m which has m(T, T) =1 for each P,
operator T is T-exact, since B= —T then satisfies m(B, T) =1 and

(T +B) = co. Suppose that, in addition, the map K —m(K, T) is upper

semicontinuous with respect to the norm topology on compact operators K.
(Compare this with condition (i) of Lemma 22 below.) It is easy to construct 2
compact K with nonclosed range and infinite nullity «(K). Given & > 0, for
small positive 6, B = —T +8K will have m(B, T) < 1+¢ and yet have both
a(T+B) = co and nonclosed range. This is apparently stronger than m being
T-exact. It holds for g (B, T), since the two conditions mentioned are easily
shown to be satisfied by g.
Compare (24) below with Definition 2.

22. LEMMA. Suppose that m(B)/m,(T) is a &, perturbation function.
(23) @ d(T, m,) = inf{m,(A+K): a(T—4) = co and K compact}.

(ii) If the map K —m,(B+K) is upper semicontinuous with respect to the
norm topology on compact operators K, then

(24) d(T, m,) = inf{m,(A): «(T—4) = 0}.
(i) The best numerator, given the denominator of (23), is
25 n(B, d(, m,)) = sup{d(4, m)): «(B—A) = o0},

Proof. Let d(T) be the R.H.S. of (23). If T+ B is not &, by Lemma 3
there is a compact K with a(T+B—K) = oco. Then m,(B) = m,(B—K+K)
2 d(T), and it follows that m,(B)/d(T) is a @, p.f. Given ¢ > 0 there is an 4
and a compact K with a(T—4) = o and m,(4+K) < d(T)+¢. Since T— A is
not @, setting B = A+K, T—B is also not &, and yet m,(B) < d(T)+e.
Hence the p.f. m,(B)/d(T) is T-exact, and therefore d(T)= d(T, m,) by
Lemma 20. This completes the proof of part (i).

Assume the condition of part (ii) holds. Given & > 0 there is an A and
compact K with «(T—A4) = oo and m;(4+K) < d(T)+e¢. Since T— A is not
@,, T—(A+K)is not &, and so, given § > 0, there is a compact K’ with
[K'| <é and a(T—(A+K+K') = c0. Set A' = A+K+K'. Then a(T—A')
= oo and m,(4') < m;(4+ K)+& for small §. Hence inf{m, (B): a(T—B) = oo}
< d(T)+2¢, from which (ii) follows.

It is useful to note that

(26) d(T) >0 iff Tis @,.

To see this, note that if Tis @, , then d(T) > m,(T) > 0, while if T'is not &,
then there is a compact K' with a(T—K')= co and from (23), d(T)
< inf{m,(K'+K): K compact} = 0.

Let n(B) be the R.H.S. of (25). Note that n(B) < m,(B). f T+ Bisnot &,
there is a compact K with a(T+B+K) = oo. And then n(B) > d(T+K)
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= d(T), the last equality following from Lemma 18, from which we see that
n(B)/d(T) is a @, p.f. Suppose that n'(B)/d(T)is a &, p.f, and assume that
for some B, n'(B) < n(B). Using (25), given 0 <& < 1 there is a T with
a(B—T) = co and d(T) > n(B)(1—¢). By (26), Tis &,. But then n'(B)/d(T)
cannot be a @, p.f after all, since for small enough & and Tand B chosen as
above, #'(B)/d(T) <1 yet T+B is not &,. Hence, n(B) = n(B, d(:, m,)). m

DEFINITION. (i) A @, perturbation function m(B, T) is B-exact if for each B
with the property that m(B, T) is not identically zero for all &, T, given ¢ > 0
there is a Tin @, with m(B, T) < l+¢ but T+B not &,

(i) A Fredholm perturbation function m(B, T) is B-exact if for each B
with the property that m(B, T) is not identically zero for all Fredholm T, given
¢ > 0 there is a Fredholm T with m(B, T) < 1+¢ but T+B not Fredholm.

(iii) A @, perturbation function m(B, T) is B-exact if for each B, given
&> 0 there is a T'in &, with m(B, T) < 1+¢ but either T+B is not @, or
o(T) > a(T + B).

If m(B, T) is a perturbation function and B has the property that
m(B, T) =0 for all T in &, then T+ B is &, for all $, T, ie. such a B is an
admissible @, perturbation. An interesting result due to Weis [18, p. 4297 is
that in the case of operators mapping z Banach space X into itself, if X is
weakly compactly generated, then the set of &, admissible perturbations
coincides with the strictly singular operators. (Not all Banach spaces are
weakly compactly generated but all separable spaces and all reflexive spaces
are [3]). Lemma 18 shows that for a given &, perturbation function
my (B)/m,(T), n(S, m,) = O for § strictly singular; conversely, if X is weakly
compactly generated, then n(S, m,) = 0 implies, by the above, that § is strictly
singular.

24. Lemma. If m,(B)/m,(T) is a B-exact perturbation function, then m, (B) is
the best numerator n(B, m,) given the denominator m,.

Proof. See the last paragraph of the proof of Lemma 22. m

Begin with a perturbation function m, (B)/m,(T). Then, given m,, the best
denominator given m,, d(T, m,), can be found. Next, one can find the best
numerator n(B, d) given that denominator d(T) = d(T, m,). These numerators
and denominators are described in Lemma 22 for @, perturbation functions,
for example. One could conceivably continue this process indefinitely: next
getting a better denominator, given the numerator n(B, d), then a better
numerator given this new denominator, and so on. It will be shown in
Theorem 27 that this process actually stops with d(T) and n(B, d).

Let a factored perturbation function my (B)/m,(T) be given. Since, for a
positive constant a, am, (B)/(am,(T)) is the same function, to fix this constant a
it will be supposed that there is a given @, or @ operator T, with m,(T) = 1,
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and this will also be required of the denominator of any improvement made to
the perturbation function. For operators mapping X into itself a natural choice
is to take T, to be the identity. In fact, it will be useful to require a slightly
more restrictive normalization, given in Definition 25 below.

25. DEFINITION. A factored perturbation function m,(B)/m,(T), to which
the condition m,(Ty) = 1 is applied, is normalized at T, if, in addition,
my(To) =1.

26. LEMMA. Let m, (B)/m,(T) be a perturbation function normalized at T;.
Suppose that my(B)/my(T) is a smaller perturbation function, i.e. m'y (B)/m%(T)
< my(B)/m,(T) for all B and all suitable T. Here, without loss of generality, we
take my(Ty) = 1.

Then m'y(B) < m,(B) for all B, and my(T) = m,(T) for all appropriate T.

Proof Choosing T= T, shows that we have m(B) < m(B). Since
my(To)mo (To) < my(To)/my(T) = 1, and since m(Ty)/my(Ty) = 1, because
Ty+(—Tp) is mot &, it must be that m)(T,) = 1. Taking B = T, shows that
m(T) > my(T). m

27. THEOREM. Suppose that m,(B)/m,(T) is a perturbation function nor-
malized at T,. Then there is no perturbation function smaller than
n(B, d(-, m,))/d(T; m,).

Proof. Suppose that m|(B)/my(T) is a p.f less than or equal to
my (B)/m,(T) for all Band all suitable T. Without loss of generality, my(Ty) = 1.
By Lemma 26, m5(T) = m,(T). Consequently, m} (B)/m(T) < m(B)/m,(T),
and this implies that the R.H.S. is a pf, from which it follows
that m}(B) > n(B, m,). Since m}(B) < m,(B), m} (B)/m'o(T) < my (B)/m(T).
This implies that the R.H.S. is a p.f. and, as above, this implies that my(T)
< d(T, my). Hence
27

(28)

n(B, m,) < my(B) < my(B),
my(T) < my(T) < d(T, my).

Suppose that m)(B)/m(T) < m(B)/d(T, m,). By (28), my(T) = d(T, m,).
By (27), n(B, d(-, m,))/d(T, m,) < m(B)/m(T) and we have shown somewhat
more than the theorem states. m

For operators on a Banach space X, |B|/u(T) is normalized at the
identity. From Corollary 21, u(T) = d(T, ||-||). Thus the proof of Théorem 27
shows that the smallest &, perturbation function less than or equal to
I Bll/u(T) has denominator u(T) and numerator n(B) given, as in Lemma 22, by
n(B) = {u(4): a(B—A4) = ©}.

28. TuEOREM. For operators mapping a Hilbert space into itsel f:
() There is no factored @, perturbation function less than || B| /y(T).
(ii) There is no factored @, or ® perturbation function less than A(B)/I'(T).
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Proof. Let a nonzero B be given. For 0 < ¢ < |B||, there is a v of norm
one with |Bv|| > |[Bf|—e. Let U be an isometry of the orthogonal complement
of sp(v) onto the orthogonal complement of sp(v, Bv). Define T by T= — Bon
sp(v) and T= AU on sp(v)*, where A = [|B|—e. Given x, let av be the
projection of x onto sp(v). Then ||Tx||? = |a|?|Bo||2+ A?|x—av|? = A*||x|>.
For this Fredholm T, |B| <y(T)+e&, but a(T+B) > 1> a(T). Hence
|Bll/y(T) is B-exact as a @, p.f, and, by Lemma 24, |B|| is the best &,
numerator given y(T). By Corollary 21, y(T) is the best &, denominator given
[|Bl|, and (i) follows from the proof of Theorem 27.

From Definition 2 and (6) it follows that, on a Hilbert space, u(T) = I'(T),
and then Corollary 21 shows that I'(T) = d(T, (), either as a ¢ or as a
9 p.f.

Suppose that B is not strictly singular (which is the same as compact on a
Hilbert space). Given 0 <& < A(B), there is a subspace M on which
inf{||Blyll: N = M} > A(B)—¢. Then I'(B|,) >0 and so B, is @, which
implies that v(B|,) >0. By Lemma 13, there is an M’'c M with
1Biae:] < j(Blye) +e.

Let dim denote the Hilbert space dimension. If dim M’ < dim H, H the
Hilbert space, then dim(M')* = dim(BM")*. If dim M’ =dim H, there is an
M" <« M’ with dim M” = dim(M")* = dim H, and dim(M")* = dim(BM"}*.
In either case there is an M” < M’ and an isometry U of (M")* onto (BM")*.
Define Tby T= —B on M” and T= AU on (M")*, where A = j(B|,.). Then,
writing any x = x"+y, x" in M” and y in (M), | Tx|? = | Bx")|*+ A2||y|* =
A%(|x]|*. Hence on any subspace N, || T|yll = 4 > || Bl —& > 4(B)—2s. Thus
A(B) < I'(T)+2s, yet for the ® operator T, a(T+ B) = co. Then A(B)/I'(T) is
B-exact, as either a @ or a @, p.f, and by Lemma 24, A(B) = n(B, I'), and (ii)
follows from Theorem 27. =

Let A map X into itself. Note that for the function appearing in
Theorem 11

(29) 74(n(A)) = lim (A" = sup{|2: A—2 is not @}.

A related function is

(30) ro(A) = inf{Jd: A—1 is not &,}.

29. LemMa. Consider operators from X into itself and let m, and m, be
JSunctions from these operators to R* satisfying:

(@ mn=1, j=1,2.

() my(A4) = |Am;(4), j=1,2.

(¢} Whenever Tis a $ ., operator, m,(B) < m,(T), and B commuies-with T,
then T+ B is a &, operator.

Then for all A,
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(31) 7o(n(4)) < my(4),
(32) o (4) = m,(4).

Proof. For my(d) < |i| =m,(4l), A—AI is ®,. As in the proof of
Lemma 6, x(ad—Al) = »%(Al) for a in [0, 1], thus A— Al is Fredholm, from
which (31} follows. On the other hand, if m, (Al) = || < m,(A) then A—2AI is
&, from which (32) follows. =

Replacing @, by & in condition (c) above gives a related lemma with (32)
replaced by r (n(4)) = m,(A).

30. TuroreM. Consider operators mapping X into itseﬁ' Suppose that
r.(n(B)) < r.(T) .

and that T and B almost commute in the sense that TB— BT is compact. Then
T+B is ®,. In addition, »(T+B) = x(T), so that if Tis @ then so is T+ B.

Proof. Implicit in (33) is r . (T) > 0 which implies that T is @, . A result
proved in [22] (see also [17] and [4]) is 7, (T) = lim(I" (T")!". From (33),
there is an n with ||z(B")| < I'(T"). Thus there is a compact operator K with
|B"—K| < I'(T"). Hence T"+B"—K is @_. and therefore so is T" + B". Using
the hypothesis that T and B almost commute, for 4 = T"~!—BT""24 e,
T"+B" = (T+B)A+K, = A(T+B)+K,, where K, and K, are compact.
Thus A(T+B) and (T+B)A are both &, and therefore so is T+ B.

The argument above shows that T+AB is &, for A in [0, 17: as in the
proof of Lemma 6, #(T +B) = %(T). Consequently, T+ B is Fredholm if Tis
Fredholm. =

(33)

With the appropriate definitions, which are left to the reader, Lemma 29
and Theorem 30 show that r,(w(B))/r (T) is the smallest factored (almost)
commuting @, perturbation function normalized at the identity.

The results here can be extended to the perturbation of & _ operators and,
in the obvious notation, ¢_ and @, perturbation functions.
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On uncountable unconditional bases in Bamach spaces
by

LECH DREWNOWSKI (Poznaf and East Lansing, Mich.)

Abstract. If a Banach space with an uncountable unconditional basis (v;) contains an
isomorphic copy of [,(4) or co(A) for some uncountable set A4, then the basis (v;) has “large”
subbases of I;-type, or cg-type, respectively (Theorems 1 and 2). This generalizes the results
obtained by S. L. Troyanski in 1975 for Banach spaces with symmetric bases.

In Theorems 1 and 2 below, we extend to Banach spaces with uncountable
unconditional bases the following result of Troyanski [6, Corollaries 1 and 2]:

Let F be a Banach space with a symmetric basis (v),.,. If F has a subspace
isomorphic to the Banach space I,{4) [resp., ¢y(4)] for some uncountable set
A, then the basis (v)),; is equivalent to the natural basis of the space
L (J) [resp., co(7)].

Our results show that if the basis (v));.; is merely unconditional, then it
must contain large I,- [resp., c,-] subbases. Unlike in [6], where the above
result was obtained via some renorming considerations, our arguments will be
purely combinatorial. The [, part of Troyanski’s result plays a crucial role in
the author’s recent paper [1]; the present work is, in a sense, a continuation
of [1].

In general, our Banach space terminology and notation is that of [4]
and [5].

Throughout, F will be a (nonseparable) Banach space with an uncountable
unconditional basis (v)),.;. Recall (cf. [5], [6]) that this means that for every y
in F there is a unique family of scalars (t),.; such that y = ¥ ¢;v; (uncon-

et
ditional convergence or summability). Let (vf),, = F* be thje dual family,
biorthogonal to (vj),;. Then, for y in F, we define the support of y as

s@) = {jeJ: vf () #0};

clearly, |s(¥)] < N,. (|4] denotes the cardinal number of the set 4.) The natural
unit vector bases in the spaces I,(4) and c,(4) will be denoted by (e,),.4 and

1980 Mathematics Subject Classification: Primary 46B15, 46B25. )
Key words and phrases: Banach space, uncountable unconditional basis, /;-subbasis, cg-sub-
basis. ‘
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