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Topological conjugacy of Morse flows
over finite Abelian groups
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WOIJCIECH BULATEK (Torus)

Abstract. The problem of topological conjugacy in the class of Morse flows over finite
Abelian groups is investigated. A necessary and sufficient condition for two Morse flows to be
topologically isomorphic is given,

Introduction. Generalized Morse sequences on n symbols and Morse
flows have been defined and studied by Martin. In [6] he has described the
topological structure, maximal equicontinuous factor and the form of endo-
morphisms of these flows. In [7] he has given a condition for the strict
ergodicity and investigated the spectral properties of Morse flows. The
solution of the same problems in the case of Morse flows over finite Abelian
groups was given by Poch in [8].

An important class of topological systems is that of flows generated by
substitutions. The classes of Morse flows and substitution flows coincide
on a nomempty class of topological systems. The problem of topological
conjugacy of substitution flows has been solved by Coven and Keane [1]
and Markley [5].

In this paper we solve the above problem for arbitrary Morse flows over
any finite Abelian group G. We show that if (@, T) and (Q,, T) are Morse
flows generated by Morse sequences x over G and y over G, then they are
topologically conjugate iff there exist blocks A, B with the same length, a
generalized Morse sequence z over G and an isomorphism ¢ from G onto G’
such that x = A xz and y = Bx3(2) (¢ {(9)i%0) = (¢ (g)i= o). First we give a
detailed description of the topological structure and of the equicontinuous
structure relation of these flows. We give an algorithm to construct the
set Q..

In [6] Martin has shown that if

x=b"xb!xb*x...,

then the maximal equicontinuous factor of (@, T) is isomorphic to the
group of (r+|b°, b, b7, .. )-adic integers with adding 1=(1,0,0,...),
where |b| denotes the length of the block b, and r is some divisor of |G| (|G| is


GUEST


2 - W. Butatek

the order of G). It turns out that the classes of the equicontinuous structure
relation are uniquely determined by some subgroup H of G, described by the
pairs occurring in b° bt, b2 ... From this result we deduce that r is the
order of the group G/H; so for isomorphic Morse flows the numbers r are
equal and the groups of all [b° xb' x... xb'|-roots of unity, t >0, are the
same. '

Rojek [9] has shown that if G = Z,, if (Q,, T) is strictly ergodic and if x
is continuous, then each class of measure-theoretic isomorphism is uncoun-
table.

I. Definitions and preliminaries. We use Z to denote the integers. Let G
be a nontrivial finite Abelian group. We call the elements of G" (ne Z, n > 1)
n-blocks, and if Be G", then we say that n = |B| is the length of B. Let Q = G?
be the set of all bisequences over G and let T -Q — Q be the shift transforma-
tion, 6. (T(0)) = Wx+1, keZ, 0 = (W )i Q.

We denote by wi(k, l) the block (wy, Wrt1s ...
Similarly, if B = (b, ..

s Wyri-1), kyleZ, 121
- bu—y) is a block, then B(k, ) = (by, ..., by+1-1) for

O0<k<n—1, 1 <I<n—k We write B(k) instead of B(k 1). If B

={bgy, ..., by—y) and C'=(cy, ..., ¢;m_,) are blocks, then the block BC is

defined by : ‘
‘ C =(bos -, bu1, Coroevr Commy)-

Let B+g denote the block (by+g, ..

.y by—1+g) for ge G. Now we can define
the block B xC as follows: :

W  BxC=(B+co)...(B+cp_y).
The symbol w+g (weQ, geG) will denote the sequence such that
(w+g)k—a)k+g for ke Z.

Takmg now a sequence of blocks (b)%, over G such that each b
contains every symbol from G and b'(0)=0 for t =0, 1, ..., and putting

=...((b° xb") xb?) x

we obtain a one-sided sequence (|b| = A, > |G]|). Aperiodic sequences of this
form -are called generalized Morse sequences. Since the operation (1) is
associative we shall write

2 x=b"xb! xb?x

It is well known ([6]) that if x is a generalized Morse sequence, then there
exists an almost periodic point weQ with w{n) = x(n) for n=0, 1, 2, .

Now, let x be a fixed generalized Morse sequence over G and Jet a)eQ
be an almost periodic extension of x. We denote by Q. the orbit-closure of w
under T (it is independent of ).-In this way we obtain a topologlcal
dynamical system (Q,, T) which we call a- Morse flow.
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We start with a description of the set Q,. Let 4 = (4,)% (4 = |bY]). Let
Ht 023, (Z, is the cyclic group of order n) be the group of l—adxc

1ntegers and let S(z) = z+1, where ze 4 (1) and 1“(1 0,0,..). If zeA(i)
and

z = (ig, iy, I3, -- 1),
we put

Zo =1lg, 2z, =ig+ijne+...+in-, fort>0,

where n, = dy'..."4,.

Let ¢, =b°x...xb", t=0,1,..
symbols.

Let A be the subset of A(4) obtained by removing the orbit of
0=(0,0,..) under S. It is obvious that z,,, =z for any zed(l), and
the condition z €4 is equivalent to

. The blocks ¢, +g, ge G, will be called ¢-

z,—o00 and m—z,—0© ast—oo.

We shall need the following two lemmas proved by Martin in [6].

Lemma 1. For any t >0 there is a k > 0 such that whenever x(n k)
= x(m, k), then m =n (mod n,).

Lemma 2. There is a flow homomorphism f: (2., T)— (4 (), S) such thar

if z=(iq, iy, ...)e4(%), then f(n) =z iff n(—2z, 1) is a t-symbol for every t
= 0. For geG, f(n+g) = f(n). Furthermore, if zeAd and nef~'(z), then
f7H@) = In+g; geGj.

In the remainder of this paper the symbol f will denote the flow
homomorphism from Lemma 2.

Lemma 2 describes exactly the set f~!(d) = 2,. Now we describe the
remaining elements of Q. It is enough to examine the set f (D).

Let

x'=b'xbtx
and let N, <G, t=0,1,..., be the set of all elements of the form
a—b+teyte +...+e
such that the pair (a, b) appears in x'*! and
e =b'(1~—1)

If a pair (a, b) occurs in x'*' then the palr (a+e, b) occurs in X', so
N;+1 © N,. Let

e =0, fori=1 ot

N= (NN,

t=0
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Remark 1. Observe that |N| = 2. Indeed, by the above there is a ¢,
> 0 such that N= N, for t > ty, so |N| =|{a—b; (a, b) appears in x'°+1}|.
But x is by our assumption aperiodic so AR aperiodic too. Moreover,
every element of G appears in x'°"' Hence at least |G|+1 different pairs

must appear in %0, Thus |IN| = 2 because at most |G| different pairs may
have the same difference.

Now we construct sequences ne f~*(0) such that 7(n) = x(n) for n = 0.
Take he N and define # = ¢, (h) as follows:

n(—n, ) =c,+h

where

ho=h, h=h—(e;+...+¢) fort>0.

It is obvious that the sequences &, (h), he N, are well defined. Next put
¢, =¢(W+g  for heN, geG.
We show that
) F710) = (&, (®): heN, geG).

The inclusion > easily follows from the definitions of N and &, (k). By
Lemma 2, ne f~*(0) iff, for every ¢ = 0, 5(0, n) is a t-symbol. Let y< f~*(0)
and n(n) =x(n) for n> 0. Fix t > 0. We have

’7(07 n:) =6.

Sinqe (9., T) is minimal, every block which occurs in e Q, occurs in x. So
n(—m, 2m,) is a block in x. Take k satisfying Lemma 1 for t (we may assume
k =n, for some t' > 0). Hence the block 5(0, n,) may occur in x at the
places of the form In, (IeZ) only. Since n(—n,, n+n,) appears in x,
n(—n, n) is a t-symbol, say n(—n, n) = c,+h,. Moreover, the pair (h,, 0)
occurs in x'*. That implies h+e, +...+¢ €N,

. Applying this argument for t = 0, 1, 2, ... we obtain a sequence (h)2 .
It is easy to see that h, = h,, +e,,,, so h+ei+...+¢ = heN. In this way
we have shown that 5 = £, (h), he N. In the case ne f~1(0), 7(0, w0) = xX+g,
ge G, we proceed as above. This means that (3) holds.

Remark 2. Observe that from this description it follows that if nef,
and z =f(f7)' then n(—z,+kn, n) is a t-symbol for any t 20 and ke Z,
Moreover, if #(—z,+kn, 2m) = (c,+g)(c, +¢'), then

g—g +ey+e +...+¢€N,.
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II. Equicontinuous structure relation. Let S, denote the equicontinuous
structure relation in Q. ([2]). Martin [6] has shown that (Q,/S., T/S,) is
isomorphic to (4(2), S), where 1" = (rdo, Ay, A2, ...) and r is some divisor of
|G|. In this section we give a detailed description of S,. We start with some
definitions and facts.

We say that points 5, 8eQ, are proximal iff

inf d(Tn, T'0) =0,

ieZ
where
d(n, 0) = (14min {|#]; 7; # 6;})"*

is the standard metric in Q.

The proximal relation (not transitive) will be denoted by P. If #, 6 are
not proximal we say that they are distal. The smallest closed T-invariant
equivalence relation Sy such that any two different points in (2./S,, 7/S,) are
distal is called the distal structure relation. It is well known [2] that

@ Pcs, S,

Now, let H = G be any subgroup of G. We denote by 4y the equiva-
lence relation on @, defined as follows:

(n, O)edy iff either f(n) = f(0)ed, n=0+g and geH,
or f(n)=f0 =S5O, n=T(Mm),
6=T(, (), g—geH, hheN.

Remark 3. Each class of the relation 4y ci)ntained in f~1(4) has |H]
elements and each class contained in Q,\f~!(4) has |H|-|N| elements.

TrroreM 1. The relations A, and S, coincide on Q., where M is the
subgroup of G generated by N—N. (2./S,, TS,) is isomorphic to
(4(G/M[ " Ao, Ay, .., S).

Proof. First we show that 4, is the smallest T-invariant closed equiva-
lence relation which contains P. Then we give the homomorphism f; from
(Q,, T) onto (4(G/M|-Ag, Ay, ...), §) such that the relation given by it
and the relation 4,, coincide on Q. So by (4) we obtain 4, =S,.

To do this we describe the proximal relation P. Observe that (1, 0)e 4¢
iff f(n) = f(0). Since S, is the smallest equicontinuous relation, Lemma 2
and the inclusion (4) imply P < 4q. It is obvious that if #, Bef‘l(A) and
(n, 0)e P, then n = 0. Now, let #, 0 Q, be such that f(y) = f(0) = §'(0), ie.
n =T ((h+g)and 0 = T'(E (W) +¢'). If g = g', then (n, 6)& P because 1 (n)
=0(n) for n> —i. If gsg, then (n, O)eP iff g—g' = h'—h because #(n)
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=0(n)+g'—g for n> —i and n(n) = 0(M)+k —h+g —g for n < —i. So we
obtain:
(5) . (n, G)e P iff either n =0,
or f(n)=1(0)=80, n=T(®H),
6 =T\(, (¥) and g—g'e N—N.

Let R be the smallest T-invariant equivalence relation such that P < R,
The relation P is T-nvariant, reflexive and symmetric, but not transitive. So
R is the transitive closure of P; but straightforward calculation using (5)
shows that

(6) (1, B)e R iff either 5 =0,
- or f(n)=1(0)=50), n=T(,M),
0 =T (& (K)) and g—g'eM.

Now, we show that the closure of R (denoted by R) is equal to 4,,.
From the above and from the definition of &, (h) it follows that if 5 % 0 and
(7, G)ER, then‘ there exist i€eZ and g, heM such that

0(n) =n(m)+g
0 =nm+h

Now, let (7, 6)i=; = R be a sequence such that (y,, 0)—(n, O)eR as k
— 0. Then there exist iy, gy, M, k =1, 2, ..., such that

B, (n) = 1 () + gy
O (n) = my (n)+ Iy,

for n>1i,

for n <.

for n =i,

for n <i,.

Taking a subsequence of (7, 6,)%, if necessary, we may assume g, =g, b
=h for some g, heM and k=1, 2,... The sequence (i), has either a
bounded subsequence, a subsequence tending to +o0, or a subsequence
tending to —co. In the first case, (1, f)e R; in the second and third, = n+g
and 0 =n-+h, resp_e_ctively. Therefore R < 4. Since the inverse inclusion is
obvious we have R = 4,,.

Now, let t, be such that N = N, and let o = &g(h) for some fixed
heN. From Remark 2 we have Ho (kmy, ne) =Gyt keZ, and g, —g;
+éote;+...+e, €N, So

Giv1—9)=(gi—gi-1)e M.

Tlrlus,Afor ieZ, [g,-ﬂ =9i]u = [c]p, Where [g], is the element of G/M which
contains g. Because every X', t > 0, contains every element of G, it follows
that G/M is cyclic and [c],, is its generator. By Lemma 2, if a sequence

@ ©® .
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T (o) converges, then for every i, j,, =ji, (mod ) for all sufficiently large

ky, k,. By the above we may in this implication write rn, instead of n,, where
r=|G/M|. So the map fi: Orbno— 4, =A@l A, 1,,..) given by
fi(T"(no)) = n1 has a unique extension to a continuous map fi from Q,
onto 4,. It is obvious that f; is a flow homomorphism. Analogously we can
construct a flow homomorphism f, from 4, onto 4y = 4 (4, Ay, -..) (Fo(n)
= nl, where the first unity is in 4, and the second in 4,). So we obtain

S I
Q.= 4,34,

By the construction, f, f; = f on the orbit of 5, ; therefore by continuity this
is true on all Q,. Let 4, denote the relation on £, given by fi!. Thus the

elements of 4; are unions of r elements of 4, .- : TR
From the construction. of f; it follows that if fj(n;) =f(y,), then
gl —gieM, keZ, where the gj’s are such that '

ﬂi(“'z,O‘{‘k”;o, nt()) = ct0+g;'c7 i= 17 23 Z= f(”l) = f(”lz) P
Thé lasf two conclusions give 4, = 4, and the proof is complete.

THL. prological conjugacy of Morse flows. Let x‘an-d‘ ¥ be fixed general-
ized Morse sequences over G and G’ respectively and ‘let

x=b0xh'x..y,  y=pxplx...
Fort=0,1,..., set i
b =A% B =A, ¢ =b"xblx..xb,
do= B xf .. xf |di| = n?,

.. t+1 o, .
X =bxbtix..., y=Fxp" .

led = nf,

Before the classification theorem we shall prove the following: -

Lemma 3. If @ (R, T)=(Q,, T) is. a flow isomorphism, then theré
exists a group isomorphism @: G =G’ such that the diagram . . .

g
2y - 2
') ’ [

P} . , .

2 olg) A ' '

is commutative for any g €G, where h(y) =n+h neQ, [2,], heG [G'].
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Proof. For each yeG the map dy®~! is an automorphism of Q,. By
Theorem 10 from [6] we have

(7) Pgd™ ! = T (g),

where ¢(g) is some element of G’ depending on g, and k is an integer,
Let r(g) and r(¢(g)) be the orders of g and ¢(g) respectively. We put
s=r{g) r(¢(g)). Then by (7) we have

Idg, = @sg@™! = T*s:¢(g) = T
because Tip(g) = ¢(g) T on ,. Thus k=0 and dgd~' = @(g). Now it is
easy to see that ¢ is a group isomorphism from G onto G

Tueorem 2. The Morse flows (2., T) and (Q,, T) are topologically
isomorphic iff’ there exist blocks A over G, B over G', a generalized Morse
sequence z over G and a group isomorphism ¢: G — G’ such that |4] = |B|, x
=Axz and y = Bx@(2) (Cf)((zz)ii o) = (f(’(li))iio, z =(z)% o)

Proof. Let ¢: Q — Q, be a flow isomorphism. We shall find blocks A,
B, a generalized Morse sequence z and an isomorphism ¢ as in the theorem,
Since ¢ preserves the equicontinuous structure relation, the groups M for
both flows have the same order. By Lemma 3 the groups G and G’ also have
the same order. Hence by Theorem 1 and the criterion for two J-adic groups
to be isomorphic, the groups 4 (43, A7, ...) and 4(43, }, ...) are isomorphic.
Thus for every t > 0 there exists a ¢ such that
(8) ny divides n)..

Let weQ, be such that

%) w(n) =x(n for n>0,

and let # = &(w). Since P preserves the relation S, and the class of @ has
|M|-|N| > [M] elements (Remark 1), the class of n has |M|-|N| elements too.
Hence there exist mye Z and 4'e G' such that

(19 n=T"W) 7 =ym+g, n>0.

By Hedlund’s Theorem there exist I, koeZ, Iy>0 and ¥: G
that ® =y, T, ie. for every feQ,

((p(u))n = W(anow 0n+k0+10—!)a neZ.
By Lemma 3 it is easy to see that if C is an lo-block, then
(11 V(C+g) =y (O)+0(g),
Let t; > 0 be such that
(12

{
% G’ such

geG.

n:; > I’nO_kOl +10
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By (8) there exists t, such that

(13) ny, divides n?,.

Let s =n,/m; and

(14) Ay = wlknl,, n), keZ,

(15) Dy, = n(—mo+kni, nt), keZ.
Each of the D,’s is a f,-symbol in y, ie.

(16) Dy=dy,+h, MheG, keZ.

By (13) and (14) the blocks A, have the form
a” Ay=ChCY...Cy,

where the CPs are t;-symbols in x and have the form
(18) Ct=c, +gf, gfeG, keZ, i=0,1,...,s—1.

By (10), (15) and (16) we have g’ = hy and

(19) Y2 hg = (g, hy, b, ..
and from (9), (14)
(20) x=AgA;...
Now we are able to show that
(21) x=Aox¢ 1.

By (17)+20), in order to do this it remains to show that
(22) g—g? =0 (—hy), 0<i<s—1,k=0,1,...

First consider the case mp—ko < 0. By (12), —mgo+ko+1lo <n7 and we
have

(23) Y (Co{—mo+ko, 10)) = Dy (0),
(24) W (CHO, L)) = Dy (inf, +mo—ko), 1<i<s—1, k=0.
Hence

¥ ((c., +98) (= mo+ko, Io) = De(0) = Do (0)+h—ho
= l//((c,1+g8)(—m0+ko, l0))+ M= ho,
¥ (e, +95(0, o)) = Dy(inf; +mo—ko) = Dolini, +mo—ko)+hy—ho
=¥ (e, +90)0, L)+ h—ho, 1<i<s—1.
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Using (11) we have
(e, (—=mo+ko, lo)+ o (g5) = ¥ (e, +g8) (—mo+kq, 1))
=y (e, +90) (—mo+ko, L))+ I —hg

= (cey (—mo+ko, lo))+ @ (gd) + I —ho
and similarly ‘ ‘

¥ (e, O, l))+ o =y(c, 0, )+ o) +h—hy, 1<i<s=1, k>0.
Then - '
g—gd =9 '(h—hy), 0<i<s—1,k=0,1;...

Thus (22) holds and consequently (21) is valid.
If mo—ky > 0, then instead of (23) and (24) we have

(23) CHO, lo) = Dy (in +mo— ko), 0<i<s—1, k>0.

By (12), 0 <inf +mo—ko < nf, for 0 <i<s—1, so (23) is correct. Now we
obtain (21) in the same way as in the first case. Taking

2=¢710""), A=4y, B=d,,
we obtain the result. :

The converse implication follows immediately from the fact that for each
BeQ, [Q,] there exists a unique p, such that 0<p, <|A]—1 and 0 (pg
+k|4], |A)) = A+g, [B+h] for every ke Z. This is a simple consequence of
Lemma 1. If we denote by 8 the sequence (g )i . [(hi=> 1, then, we

k= — 0
obtain the desired isomorphism &: Q_ — Q, as follows:

PO =6 iff py=p, and G(B) =4
Thus the prbof is complete. V :

CoroLLarY. If G = G' = Z,, then the unique giroup isomorphism is the
identity on Zy; so (2, T) and (2,, T) are topologically isomorphic iff there
exist blocks A, B with the same length and. a Morse sequence z over Z, such
that x =A xz and y = B xz.

-Remark 4. In the first part of the proof of Theorem 2 we have shown
that if (2., T) and (Q,, T) are isomorphic, then the groups 4 (1%, 1> ... and
A(4y, A, ...) are isomorphic. We shall use this fact in the proof of the next
proposition. : ‘

Note that if b=5%=b'=.._, then x =b xb x... is the sequence gene-
rated by the substitution ®(g) =b+g, geG, of constant length. In [5]
Markley has shown that if @ and W are substitutions of constant lengths |@),
|®] respectively, both over two symbols, and both in the normal form, then
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the flows generated by them are topologically isomorphic iff there exist
positive integers m, n such that |®|™ =|P|" and @™ = ¥". In the case of
Morse flows over two symbols, this means that if x =bxb x... and y =f
xfx..., then (2, T) is isomorphic to (Q,, T) iff there exist m, n > 0 such
that |b|™ = |p|" and

b":=bxbx...xb (mfactors) = f":= BxfB x...x B (n factors).
We show the analogous result for an arbitrary finite Abelian group G.
ProposriTioN. If
x=bxbx..., y=fxfx...

are generalized Morse sequences over G and G’ respectively, then (Q,, T) and
(Q,, T) are topologically isomorphic iff there exist integers m, n>0 and a
group isomorphism ¢@: G — G’ such that

b = 1B, ($®)" = "

where ¢(bo, ..., by-1) = (@ (bo), ..., @(bp-1)-

Proof. By Theorem 2, if (Q,, T) and (2,, T) are topologically isomor-
phic, then there exist blocks 4, B with the same length, a generalized Morse
sequence z over G and a group isomorphism y: G — G’ such that

(25) x=Axz, y=Bxy(2).

It is easy to see that if ¢ is a group isomorphism, then for any two blocks C,
D we have §(C xD) = g(C) xg(D), so

Pt =¥ B xz, OV =T BB x. .

Set

(26) Y=¥"'0), B =¢7'B), d=y'P.
Thus '
(27) y=dxdxdx...,

(28) Yy =B xz,

where |B'| = |B| = |A4| and |d| = |f]. ) :
By Remark 4 and (25), (27), (28) there exist blocks 4,, B; and integers
my, ny > 0 such that :

AxA, =b", BxBy=d"
Hence

AxAy xbxbx...=Axz, B xB;xdxdx...=B xz,
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and so
z=A; xbxbx...=B; xdxdx...
Thus by Remark 4 there exist a block B, and an m, >0 such that
B, xB, = A, xb"?,

and so
By xB; xbxbx...=B;xdxdx...
Then
(29) Byxbxbx...=dxdx...
Reasoning as above we find a block B; and an integer n, > 0 such that
(30) B, xBy =d"™,
and so

By xbxbx...=By,xByxdxdx...,
(31) bxbx...=Byxdxdx...
From (29) and (31) we obtain

bxbx...=ByxB,xbxbhx...

Easy induction gives

X=bxbx...=B3xB; xBy3xB, x...

On the other hand, by (30) we have
Y =dxdx...=B, xByxB; xB; x...

Write D = By xB, and D’ = B, xBj, so that

(32) x=DxDx...,
(33) Yy =D xD'x...,
(34) D] =D/

‘Using Remark 4 and (25), (32) and (28), (33) we find blocks A’, B” and an
integer ny > 0 such that
AxA' =D, B xB'=D",

(Existence of one ny for both equalities follows from (34) and from |A] ={B'].)
So

ER) (4] = |B"|.
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Hence A xz=AxA xDxDx... and B'xB’ xD'xD'x...=B xz, s0O
z=A'xDxDx...=B"xD'xD' x...

Now from (34) and (35) we obtain A’ = B” and D = D'. Thus

(36) x=y.

Note that if we put ¢ =y, then by (26), (36) and by the obvious equality
@(x) =@ (b) x@(b) x... it suffices to show that there exist m, n > 0 such that
(37) 1bl" = |d|™.

By (36), Remark 4 and the criterion for two Z-adic groups to be
isomorphic we deduce that |b| and |d| have the same prime divisors. Suppose
that (37) does not hold. Thus if p,, ..., p, are all distinct prime divisors of [b|
or |d|, then

bl = pi Pl =P
and the vectors (yy,...,7) and (6y,...,8,) are not proportional. So the
numbers y;/d;, 1 <i <k, are not equal (k must be > 1 and y; # 0# §;). Let
1 <iy < k be such that

Yig/01y = lliliil:k Vil S;.

Then |d/"*° divides b|"® and these numbers are not equal. So by (27) and (36)

we obtain

b0 = d"xc  for some block c.
Hence
dOxexbxbx...=dxdx...

Thus
exbxbx...=dxdx...=bxbx...

Easy induction gives
cxXex...=bxbx...

But |¢] = jh|6'."/|dfy"°, so p;, does not divide |¢f. This contradiction implies (37)
for some m, n > 0. The converse implication is obvious by Theorem 2.
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An isomorphic Banach-Stone theorem
“ by
EHRHARD BEHRENDS (Berlin) and MICHAEL CAMBERN (Santa Barbara, Cal)
Abstract. For a givén Banach space Y let Ao(Y) denote the infimum of the Banach-Mazur

distances between the two-dimensional subspaces of Y and the two-dimensional I!-space Ii.
It is shown that eévery Banach space X such that 1,(X’) is greater than one satisfies the

following isomorphic vérsion of the classical Banach-Stone theorem: there is-a 6 > 0 such that

two locally compact Hausdorff spaces K and L are necessarily homeomorphic provided that
there is an isomorphism: T' between Co (K, X) and Co(L, X) with. || T[T < 1+6.

. This result properly includes all isomorphic Banach-Stone theorems now existing in the
llteralurc It is obtained by means of the description of small- bound isomorphisms between
certain L!-direct sums of Banach spaces.

. 1. Introduction. For a locally compact Hausdorff space K- and a Banach
space X we denote by Co (K, X) the space of X-valued continuous functions
on K which vanish at infinity, providéd with the supremum norm. If X is the
scalar field K (where K= R or K = () this space is denoted by CoK

The classical Banach-Stone theorem states that if C,K and C,L are
isometrically isomorphic, then K and L are homeomorphic. Various authors,
beginning with M. Jerison [10], have considered the problem of determining
geometric properties of X which allow generalizations of this theorem to
spaces of continuous vector-valued functions,Co(K, X). A compil,ation of
results of this nature may be found in [3].

A second kind of generalization deals with scalar-valued functlons, but
replaces isometries by isomorphisms T with ||T||[|T Y| close to one [1],
(5] 6]

These two directions have been combined in [7] and [9] where it is
shown that a small-bound theorem is obtainable for spaces of vector-valued
functions Cy (K, X) for certain X.

Here we prove a theorem which strictly contains the results in [7] and
[9]. To state this theorem we need the following definition: for any Banach
space Y we denote by Ao(Y) the number ’

Ao(Y):=inf d(Y,, 13),

1980 Mathematics Subject Classification: 46E40, 46E15, 46B20.
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