icm°®

STUDIA MATHEMATICA, T. XC. (1988)

On a class of weighted function spaces and R
related psendodifferential operators ‘ .
by v l

HANS TRIEBEL (Jena)

Abstract. The paper deals with weighted spaces of type Bj, and F}, on a bounded domain
in R", including equivalent quasi-norms and lift properties. Related c]dsses of weighted pseudo-
differential operators are mtroduced a.nd studied.

1. Introducnon

The two scales B}, (R") and F5,(R" of quasi-Banach spaces on .the
euclidean n-space R" cover many classical function spaces: Sobolev spaces, .
Bessel-potential spaces, Holder-Zygmund spaces, Besov-Lipschitz spaces and
Hardy spaces. The usual approach, currently, to these spaces, where — o0,
<s <00, 0 <p< oo (with p< oo in the case of the F-spaces), 0<g< o, 1s_
based on Fourier-analytic decomposition techniques which go back to J.
Peetre. A systematic study of these spaces on this basis is given in [Tri2]. On
the other hand, the well-known direct definitions of the Sobolev spaces,
Hblder spaces etc. show the local-global nature of these spaces: local as far
as the differentiability conditions are concerned, whereas global refers to. the
usual 'L, (R"-norms. Moreover, all the spaces B oa (R and F5 (R" have this .
local-global nature. Unfortunately, the Fourler—analytlc approach hides. this -
fact completely. This causes a lot of trouble and makes some proofs (e.g. of
the invariance of these spaces under diffeomorphic maps of R" ‘onto itself)
difficult, imnatural and cumbersome. These shortcomings can be remedied by
the approach given in [Tri3] which’ on the one hand preserves the advan-
tages of the Fourjer-analytic techniques but on the other hand allows local
considerations in the above sense. On this basis we dealt with spaces of B},
F}, type on complete Riemannian manifolds (with bounded geometry and
posmve injectivity radius) and on Lie groups ([Tri4, 5, 6]). Furthermore,
based on [Tri3] we gave in [Tri7] a short and natural proof of the following
result due to L. PHivirinta [P4]: Recall that H6rmander’s symbol class §% ,

“with —0 <p <0, 0<8 <1, is the collection of all a(x, f)eC‘“(R"xR")

with
(ERY IDED%a(x, &) < Cop (14|~ al +olA1
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for all multi-indices o, f and all xeR" ¢eR" Then the corresponding
pseudodifferential operator a(x, D) maps F”“(R”) continuously into F3,(R")
and Bjs*{(R" continuously into B}, (R"), where s, p, ¢ obey the above
conditions.

The present paper follows this path. Its aim is twofold. First, we furnish
a given bounded domain 2 in R" with a Riemannian metric g such that the
resultidg manifold has the properties mentioned -above. In this special
situation, compared with what has been done in [Tri4, 5, 6] much more can
be said about the corresponding spaces F5, (2, g) and B3}, (€, g). This will be
done in Section 2 of this paper where we occasionally use some recent results
from Riemannian geometry. Secondly, in Section 3 we introduce some global
classes of weighted pseudodifferential operators connected with (€, g). The
main aim is to give a convincing definition and to prove a mapping theorem
which is the counterpart of the above-mentioned resuit for the Hormander
class Sf s in R" Furthermore, we deal with algebraic properties of these
¢classes and with parametrices of the corresponding elliptic pseudodifferen-
tial operators.

The paper is organized as follows. Sections 2 and 3 contain all defini-
tiong dnd, results accompanied by the necessary remarks and comments. If
the results can ,be proved by modifications of previous proofs we restrict
ourselves -to outlines and references. All longer proofs are shifted to Section
4, A peculiarity should be mentioned. It will be cohvenient for us, and it
seems to be of independent interest, to use a characterization of some spaces
B}, (R") and F},(R") via variable differences. This is.covered by [GT] as far
as the spaces By, (R") are concerned. For the spaces F},(R") we formulate
the cotresponding assertion in the appendix of Section 2 and prove it in
detaﬂ in 4.1.

2. Welghted spaces

-2.1. Basic spaces on R". First of all we have to define the unweighted
spaces F},(R") and B/ (R") on the euclidean n-space R". We give a descrip-
tion which is especially well adapted to our later purposes and which is an
outgrowth of [Tri3]. Let B be the unit ball.in R". Let k, and k be functions
defined on the real line such that both k() = ko (ly)) and k'(y) = k(lv|) with
veR" are C* functions on R" with

. ¢+ supp kg < B,

supp k' < B.
Let
®)(0)#0, (k) (»)#0 for all yeR",
where (k)  and (k)" stand for the Fourier transforms of ky and k',
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respectively. If N is a natural number then we put
n al N
k; =( -—) k'
" ’j; ax}

=ky(yl) with yeR" is also rotation-invariant. If N '
. then we introduce the means

21 ky(6, () = [ kn() f (x+1y)dy,
”

Of course, ky(y)
=0,1,2,..

xeR" t>0.

This is a local procedure which makes ‘sense for any tempered distribution
feS'(R" (under appropriate interpretation). If b is a real number then we
put b, = max(b, 0). Let

22 B Ly RO = (] IhCoP )™

0< p<
. R" )
with the usual modification if p = co. Finally, (-, -)s, stands for the real
interpolation method of quasi-Banach spaces (see [BL] or [Tril]).

2.1.1. Derinirion. (i) Let ky be the function defined above. Let 0 < &
<o, 0 <r<o and —o0 <s <o0. Let either 0 <p <oo and 0 <g < o,
or p=qg=o00. Let N be a natural number with 2N > max(s n(l/p 1)4).
Then .

23)  F5 (R fflfes'(R" ), 1S 1 F5y (RS- -

= Ilko (e, )1 Ly (RO +( gt-sqlkn(i,f)( Jiedefi) | L, (RY| <0}

(with the usual modification if' g = o0). .

(ii) Let, —o0 <so<s5<s < o, 5=(1-6)so+0s;, 0<p<co and
0'<'q < . Then A
(2.4) - Bf,q(R”) —( (R” (R")),, -

2.1.2. Remark. As we have sald .the above deﬁmtion is a consequence
of [Tri3]. The preference given to F5, over B}, has its origin in the theory of
these spaces on Riemannian mamfolds and Lie groups ([Tri4, 5, 6]); it will
also become clearer later in this paper.

2.13. Remark. The theory of these spaces has been developed in
[Tri2]. They are all quasi-Banach spaces, independent of the functions kg
and k, and of the numbers ¢, r, and N (up to equivalent quasi-norms). They
cover many classical function spaces on R" (Sobolev, Bessel-potential,

Holder-Zygmund, Besov—Lipschitz, Hardy). In particular,
(2.5 WrR) =Fj,R), l1<p<ow,m=0,1,2,...,

are the usual Sobolev spaces.
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2.2. Weight functions. We always assume that @ stands for a bounded
cohnected domain in R" (no smoothness assumptions are required).

2.2.1. DeriNmioN. An admissible weight is a positive C™* function g(x) on
Q which satisfies the following conditions:

(i) There exists a positive number ¢ such that
(2.6) U= {ylyeR% y—xl <c/g(x)} = Q
for every xeQ. .

(ii) There exist positive numbers ¢, and ¢, such that

(2.7) ¢ gx)<g(y) €eg(x)  if xeQ and yeU,.

(iii) For every multi-index y there exists a positive number ¢, with

(2.8) DYg(x)) < ¢,g" M (x)  for every xeQ.

22.2. Remark. By (2.6) we have

(29) g(x) = c/d(x)  with d(x) = dist (x, ).

Furthermore, by (2.7) and (2.8) the weight g is slowly varying,
2.2.3. Exampre. There exists a C* function 0(x) on @ with

cd(x) < o(x) S Cd(x) for every xeQ,

mhere ¢ and C are appropriate positive numbers (independent of xe ), such
at

g(x)=07%(x), xeQ,

is an admissible weight if and only if %> 1 (see [Tril, 3.2.3] for some
details). The necessary restriction x > 1 comes from (2.9)

2..‘2.4A LOOEMMA (Resolution of unity). There exists a uniformly locally finite
coveritig | );=, U ;= by balls of the type (2.6) and a resolution of ’unity
l@;}i21 with the following properties:

(i) Every ¢; is a C™ function in © with

(2.10)

supp; < U, j=1,2,...

(i) For every multi-index o the Xists iti i
y re exists a positive number ¢, with

(2.11) D" 0; (%) < e, g™ (), xeQ and i=1,2 ..
(iii) We have
(2.12) So)=1 for xeQ.
i=1
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2.25. Remark. Recall that “uniformly locally finite” means that there
exists a natural number L such that any fixed ball U, has a nonempty

intersection with at most L of the balls (U ,}:Z,;. The existence of such a

covering and of the corresponding resolution of unity can be proved by
elementary arguments ([Tril, 3.2.3]). On the other hand, after introducing
normal geodesic coordinates the above resotution of unity coincides with the
resolution of unity used in [Trid, 5, €] (see the next subsection).

2.3. The Riemannian background. As above, let Q@ be a bounded con-
nected domain in R" equipped with an admissible’ weight g. We equip (@, g)
with the Riemannian metric
(2.13) o ds? =g%(y) Y= y)eQ.
J

(dy)?,
1

s

2.3.1, TueoreM. (R, g) with the metric (2.13) is a connected complete
Riemannian manifold with bounded geometry and positive injectivity radius.

2.3.2. Remark. We explain briefly what is meant by this theorem and
refer for more details to [Tri4]. A Riemannian manifold is complete if it is

' complete as a metric space. (By the Hopf-Rinow theorem this is equivalent

to the assertion that any geodesic is infinitely extendable with respect to its
arc length.) Let exp, with xe@ be the exponential map from the tangent
space T,Q (identified with R") into. Q. If r >0 is small then exp, is a
diffeomorphism from .

(2.14) B(r)= |X|XeR" ||X|]| <r} onto exp,B(r),

where ||X|| stands for the Riemannian metric. Let r, be the supremum of all
numbers r with this property. Then ry = infr, is called the injectivity radius
where the infimum is taken over all xe Q. Finally, bounded geometry means
that the curvature tensor and all its covariant derivatives are bounded on Q.

2.33. Rematk. In our special situation all these things can be simpli-
fied. Instead of exp,B(r) from (2.14) we use the (euclidean) balls U, from
(2.6). Furthermore, we repldce exp; ! by the dilations

(2.15) :
y= Y = H(y) = g(x)(y—x) from U, onto ¥, ={Y[YeR" |Y| <c},
where ¢ comes from (2.6). (Of coutse, H, does not coincide with expy 1in

general) We have

with G,(Y) = g(y)/g (x).

(2.16) ds* = GZ(Y) Z (@) >
i=1
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From (2.7) and.(2.8) it follows that .
(217) G, (Y C >0, IDVG (Y < ¢,

where C. and ¢y are 1ndependent of YeV and er

' YE V.,

2.34. Proof of Theorem 23.1. The cotnpleteness of: (Q g) follows
from (2.6) and (2.13).: The' considerations .in" Rermark - 2:3.3 . show" that -all
geometric -quantities e.g. the curvature tensor and. its derivatives, .can be
estimated uniformly. with respect. to x E.Q Hence, (€2, g) has bounded geome-
try. Finally, the nontrivial fa,ct that (2, g) has a posmve lll_]CC[lVlly radlus
follows' now from Theorem 4.7 in [CGT].

2.3.5. Our method. The above theorem shows that the wexghled spaces
F5,(Q, g) and B3, (8, g) treated in this paper and defined.in 2.4 are special
cases of the spaces considered in [Tri4, 5]. However, we prefer a more direct
approach which yuslds much better results: reduction, of the welghted spaces
to the spaces F3 q(R" via Lemma 224. However occaswnal]y we shall use
some technicalities elabotated in [Tr14] “Then wé restrict oufrselves to
references, alsorin those-cases whére the résults from [Tri4, 5] can be taken
over without ‘any-changes (e.g: the lifting property from:2.7). Then (and only
then) Theorem 2.3.1 will be needéd. Farthermeore, oecasionally we need some
deeper results-from :differential geometry, in'‘particular'in Section -3 which
deals’ with’ pseudodlfferentxal operators Our: main :source here' is [CGTJ.

2.4. Definitions and basic resiilts.'Recall that @, 9 stands for 4 bounded
connected domain in R" furnished with an admissible weight in tHe' sensé of
Definition 2.2.1. Let ¢ = {¢;}/2, be given by Lemma 2.24 and let H ! be
the inverse function of H, from (2.15). Recall that (-, ). denotes real
interpolation.

2.4.1.°DerFNiTION. (i) Let ~ o0 <.s < 00. Let-either 0:<p < o ‘ahd- 0
< g & o0, or p=¢=0c0. Then

(2.18)  F3,(Q,9) = {f|feD (@),
11 Fa (@ e = 32 il £) o H M [P (RO <
j=1 5

(with the usual modification if p = ¢ = o). o
(i) Let ~o00 <sg <s'<s. <00 and.s =(1—0)se+0s,. Let 0 <p< o0
and 0 < ¢ < o0. Then
(2.19) U B(Q, 9) = (FR (2, 9), Fpl®, 9
24.2. Remark. As usual, D'(Q) is the collection of all complex-valued
distributions in Q. Furthermore, (¢; /)0 H ! in (2.18).is an element of D'(V,)
(see (2.15)) extended by zero outside ¥, and hénce it may be considered as an
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element of S'(R"). Now (2.19) is the natural way to incorporate the spaces
B3, (2, g) in this theory, in contrast to the situation in R”, where (2.4) can be
replaced by direct definitions of Bj, (R") without using F;,(R") as a vehicle.

2.4.3. Motivation. We wish to shed some light on the construction (2.18).

Let ¢ be a C'* function on R" with compact support, and let

Y elx+j)=1 if xeR",

jezh
where Z" stands for the lattice of all points in R" with mteger-valued
components. Then
(220) 11 Fo(RYP ~ 3 Ml () [ | Fog (R

Jez .

(with the usual modification if p = g = cc). But (2.20) with B3, (R"), p # g, is
wrong. In other words, (2.18) looks reasonable, but not its counterpart with
B:,(R"), p # ¢, instead of F3,(R"). Furthermore, (¢; f) o H_;' is our simplified
version of (p; f)oexp_;* in the more general context of complete Riemannian
manifolds (see [Tri4, p. 310]). What we really need-is the fact that {&;(Y)};Z,
with
(2.21) &;=g;0H;, j=1,2,...,

is a bounded set in C*(¥,) (see (2.11) and (2.15)). Finally, we mention that
some of the spaces F3, (R, g), s >0, 1 <p < co, are closely connected with
weighted spaces of HS type introduced in [Tril, 3.2.3]. But we shall not
stress this point in the sequel.

2.4.4. ProposiTION. (i) F3, (2, g) is a quasi-Banach space (Banach space*if

> 1, g = 1), independent of the resolution of unity {cpjif;l (and the under-
lvmq decomposition. Q = J;Z, Uy

(ii) By,(£2,9) is a quast-BanaCh space (Banach space if p=1, ¢ = 1),
independent of the numbers s, and s,.

(ii) For all —o0 <s < o0 and 0 <p< oo, Fy,(Q,9) = B;,(2, g).

245. Proof of, Proposition 244. The proof of (i) is based on the
fact that {@;}/2, is a bounded set in C*=(¥). Otherwise one can proceed as
in [Trid, Theorem 1{i) and its proof in 4.1]. The proof of (i) and (iii) is based
on the well-known techniques of interpolation theory. We refer to [Tri4, 4.6]
for details.

2.4.6. Remark. In particular, the above proposition justifies the defini-
tions given in 24.1.

24.7. Sobolev spaces. Let 0 < p < oo. Then L,(22, g) is the collection of
all complex-valued locally integrable functions f in @ with

(222 L1 Ly (2, )l “(!If JPg" (x)dx)""” < oo
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(with the usual modification if p = o). Of course, L,(Q, g) is ‘a quasi-Banach
space -(Banach space if p>1). Let 1 <p <co and m=1,2,... Then by
definition ) : : T

(223)  Wr@,9={f1/eD@), _ :
I 1@, 9l =( % llg™™ DL, (2, 97" < 0}

la| €m
Let W(Q, g) = L,(2, g).
24.8. TueorEM. Let 1 <b <o and m= 0,1, 2, ,T,h,en'
(2.29 Fr(Q,9)=W(Q, g)

249. Proof of Theorem 24.8. On the one hand, we have (2.5). On
the other hand, standard arguments yield

(with equivalent norms).

1@l ~ (5 oy o B3 | W Rp)

Jj=1

(2.25)

(see (2.15) and (2.21)). Then (2.24) is “a consequence of (2.5) and (2.18).

2.4.10. Exampre. Let d(x) be the distance function from (2.9). Then the
Weight_ed Sobolev spaces normed via -

(X 1 Def| L@, d P, 1<p<oo, x>1,
la| <m
are covered by our theory. This follows from 2.2.3 and Theorem 2.4.8. Spaces

of this type attracted much attention (see the theorem and reterences in
[Tril, 3.2.6]). o

. 2.5. Equivalent quasi-norms: means. We are looking fér intrinsic descrip-
thl’l.S qf the spaces F5, (2, g) and B (2, g). Let ky be the same as at the
beginning of 2.1. The counterpart of (2.1) reads as:follows:

(226 Kt N0 = [hy(W)S (x+97" (xty)dy, xeQ, 0<t <e,
R A L ;

where we may. assume that ¢ is the same as in ‘(2.‘6)‘». Recall that k‘N(|y|) is
suppqrted by the unit ball-in R". In particular; k% (t, f)(x) makes sense for
any feD'() (under appropriate interpretation) and it'is a C* function in Q.

25.1. Tueorem. Let c be the same number as in (2.6).

(1) Let —o0.<s <co: Let either 0 <p'< oo and 0 <g< o, or p=gq
= o0. If the natural number N is sufficiently large and if ‘&> 0-is sufficiently
small then .

@27) k(e f)] Ly (@, gll+ H(cf-t Tk (s
o . .

DO L@ 9

(modified if q = o0) is an eqz)ivaleni quasi-norm inkF',‘,;,(Q, ).
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(i) Let ~o0 <s<oo, 0<p<o0 and 0<g< co. If N is sufficiently
large and if & >0 is sufficiently, small then

4

1k (e, ) L (R, g5|1+(£f_5“lfk§’v(f,f)lLp(Q» gl dfe)'"

(2.28)

(modified if q = o0) is an equivalgnt quasi-norm iiz B3, (2, g).
25.2. Remark. Let M be the Riemannian manifold from Theorem

2.3.1. Let F5, (M) and B (M) be the spaces defined in [Trid, 5]. Then we
have .

(2.29) Foa(M) =F (@, g),

for all admissible values of s, p, g. This follows immediately from the above
Definition 24.1 and Definition 3 in [Tri4]. Then the above theorem is the
counterpart of Definition 2 and Theorem 2 in [Tri4]. In order to compare
these two representations we rewrite (2.26) as

(2.30) 56, N)(x) = [ kn(g() V) f Cc+29) g"(x) dy
' R

B, (M) = By, (2, 9)

= | ky(IYI)f(c+e¥)dY,  xeQ,
T,0 :

where ‘T, is the tangent space (identified. with R") equipped with the
Riemannian metric ||Y|| = g(x)|y| and ‘the' Riemannian volume element dY
= ¢"(x)dy. The means (2.30) differ from the corresponding means in [Tri4,
(21)] inasmuch as the rays x+tY, which have no invariant meaning for
general manifolds, replace the geodesics c(x, Y, f) with c(x, ¥, 0) = x and
(dc/dt)(x, Y, 0) = Y.

253. Proof of Theorem 2.5.1. By (2.29) and (2.30) one can follow the
arguments in [Tri4, 4.2, 4.5-4.8] where one has to replace the above
geodesics ¢(x, Y, ) by the rays x+tY. This even simplifies some calculations.
But even in this simplified situation we have to use Theorem 2.3.1 and the
lifting properties of the Laplace-Beltrami operator which will be described in

. 2.7.In this context we also refer to [Tri5, 3.8, 4.7, 4.8] where we proved these
" lifting properties in general (in contrast to [Tri4] where we needed an ugly

extra condition). )
"25.4. Remark. As for the natural number N we have in both parts of
Theorem 2.5.1 the estimate
(2.31) N > n(l/p—1); +max(s, S+ 2n/p)
(see [Tri4], where we also gave an estimate for ). Of course, (231) is not

natural. Maybe one can improve this estimate somewhat in our more special
situation. But it is very doubtful whether the natural estimate for N from

. Definition- 2.1.1(i) can be 'obtained.
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2.6. Equivalent quasi-norms: differences. Now we come to those parts of
the theory of the spaces from Definition 24.1 where substantial improve-
ments compared with [Tri4, 5] can be obtained. First we describe the
situation in R". Let heR" and m =1, 2, ... Then

_,m j
— ~ym-J 3 Eay X u,
jgo( ) (j )f(\c+m 1), xeR

are the usual differences of functions. Let ¢ > 0. If 0 <p <
s>n(l/p—1); and m > s then

(233) /1L, (RO +(| IJ' (B0 143f | L, (RO|I dhy| i)
hl<c

32 A1)

w, 0<gg

is an equivalent quasi-norm in B ¢ (R") (modified if ¢ = c0). If 0 <p <o,
0<g< o, s>nmax(l/p, 1/q) and m > s then

(234) IfIL R")u+|| AR )| L, (RY)|

is an equivalent quasi-norm in Fj, (R") (modified if ¢ = c0). We refer to [Tri2,
2.5.10 and 2.5.12] and [Tri3, Themems 5 and 6]. It is our ajm to extend
these assertions to the spaces F5, (@, g) and B, (2, g).

.2.6.1. Differences. Let again (Q, g) be a bounded connected domain in R
equipped. with an admissible weight g. Let heR" and m =1, 2, ... Then
(235) PIglS (0 = X (=1 (’;’)f (x+;fl~h.cr‘(x>)

i=o

are the differences of interest. If ¢ is the same as in (2.6) then A% [g]f(x)
makes sense for any: function / defined in @ provided that xeQ and [h < e.

© 2.6.2. Tueorem. (i) Let 0 <p < ao, 0 <g< 0 and s> nmax (1/p, 1/q).
Let m be a natural number with m > s and let b > 0 be small (in dependence on
S, pr g, m). Then

(236)  |If1L,(@, g||+|[ J/1|“"4|A Lol f C)ledhfinn"™ | L@, g)|

(modzhed if ¢ =o0) is an equwalent quasi-norm in F,(Q, g).
() Let 0 <p<on, 0<g<< oo and s > n (l/p——l . Let m be a natural
number with m > s and let b > 0 be small (in depemlence on s, p, g, m). Then

30 U ILy(@ M+ ( [ W47 [a1 /| Ly(2, gl ) "

| <
(modified if q = ) is an equivalen't quasi-norm in B (Q, g).

2.6.3. Remark. The proof of this theorem will be given in 4.2, The
spaces F9 . (Q,g) with s>0 are covered by part (ii) (see Proposition
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2.4.4(ii))). In this case we have
(238) S [ Fouul(, gl ‘Suplf(X)H sup -

xeQlh <
= suplf ()|+ - sup”

xeQg(x)|hl <c

Hence %°(Q, g) = F5,.(R,g) with s> 0 are weighted Hulder—Zygmund
spaces.

B =745 [g3 f ()]
g7 () A AR ().

2.6.4. Remark. We compare Theorem 2.6.2 and Remark 2.63 with
known results. Under -the same hypotheses as in Theorem 2.6.2(i), - the
expression (2.36) with L;(R") instead of L,(9, g) and with 4} instead of

#[g] is an equivalent. quasi-norm in F}, (R") Furthermore, under the same
hypotheses as in Theorém 2.6.2(ii) and after the just-mentioned replacements,
(2:37) is anequivalent-quasi-norm"in B§,(R"). We refer to [Tri2, 2.5.10 and
2.5.12]. On the other hand, we extended in [Tri5, 3.5] these results from R"

to -complete Riemannian-ménifolds with bounded geometry ‘and - positive

injectivity ~radius, where in general only an extension for the spaces F3,
can be expected. However, the:restrictions for:the above parameters s;'p, g
and m arg far from being optlmal For example, we obtained the equivalent
quasi-norm’ (2.38) only under thé unratural restriction s> 4 (see [Tri5,
Theorem 37]). .

- 2.7. Lifting propemes Lct agam M —(Q g) be the Rlemanman mam—
fold from Theorem 2.3.1. In thls special case the Laplace-Beltrami operator

4 is given by T
d
(2.39) o )Z ax( , axj>

Jj=1

(see e.g. [Trid, (36)] for the general case)

-2.7.1. THEOREM; Lel 0.<p < oo (with p < c0_in the case of the spaces
Fi(Q, g)) 0<g< o and —o0 <5 < 0. There exists a nonnegative number
(Q g D.q) with the followzng property If 2>0(R,9,p,q) then f—rng
—Af yields an isomorphic map from F5,(2, g) onto Fs 2(Q, g) and from
B3, (Q, g) onto B3;*(9, g).

2.7.2. Remark. This is a spec1a1 casc of Theorem 7 in [Tr15] (see also
Theorem 6 in [Tri4]). We refurn to prob]ems of tlns typet in’ 3 5 where we
prove a’ more’ general assemon :

Appendlx o

As we said the reduction of Theorem' 2. 62 to the correspondmg results
in [Tri5] is unsatisfactory. We redugce this assertion to its euclidean counter-
part. But this causes some trouble. We overcome these difficulties with the
help of .variable, differences. Let &(x, k) be a continuously differentiable. map
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from
(A1) E, = {(x, h|xeR", heR" with |h < ¢}

» into R", where ¢ >0 is given, Let

(A2) s, M <O, 3

=1
for some & >0 and » > 0. Let xeR", yeR" and heR". Then

’e
&:(X m\<x, (x, WeE,

(A3) B fO) = 3 (=1 ("?)f (y +Lhrd e, h))
J m m

Jj=0
with y = x are the variable differences of interest (cf. (2.32) and (2.35)).

A.l. TueorREM. Let ¢ >0 and let | be a real number. Let e(x, h) be a
Sunction as above.

(i) Let 0<p<co, 0<g<oa and s>nmax(lfp, 1/g). Let m be a
n.arural number with m>s. If § >0 and x >0 in (A2) are sufficiently small
(in dependence on the given parameters) then

(A8 IS LL RN 4 £ G+ I | L, (R
hl<c N
(mod:jﬁed if q=o0)is an equivalent quasi-norm in F$,(R"),

(i) Let 0 <p< o0, 0<g< oo and s >n(l/p~1),. Let m be a natural

number with m >s. If 60 and » >0 in (A.2) are sufficiently small (in
dependence on the given parameters) then

(A3) IS TLy RN A( [ 1WAy oy f (B[ Ly (RO diy )

|h| <p
(modified if q = c0) is an equivalent quasi-norm in B, (R").

A:2. Remark. Part (i) of Theorem A.1 is essentially covered by [GT].
Part (i) will be pro_ved in detail in 4.1. The case /=0 is of independent
imterest. The extension to arbitrary real ! will be useful later for technical
reasons.

3. Weighted pseudodifferential operators

31 Diffgrentigl operators. First we single out a class of differential
operators which will later be covered by the more general class of pseudodif-
ferential operators treated in this paper. We always assume that € stands for

a bounded connected domain in R" equipped with an admissi i i
issible t
the sense of Definition 2.2.1. Let wehtgin

3.1 Af ()= Y a,(x)D*f(x), xe,

la| <m

where the coefficients g, (x) are complex-valued C* functions in Q.
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3.1.1. DEFINITION, Let m be a natural number. Then Z™(R, g) is the
collection of all differential operators (3.1) such that for every multi-index y
there exists a positive number ¢, with

(3.2) |D¥ a, (x)| < ¢, g" " (x)  for all xeQ,

where |x| < m.
3.1.2, Remark. We have
(3.3) 4e2*Q, g),

where 4 is the Laplace-Beltrami operator (2.39). This follows easily from
(2.39) and (2.8).

3.1.3. ProposITION. Let AsZ™(€, g)-

(i) Let 0<p<oo, 0<q<oo and —oo <s <. Then A yields a
continuous map from Fir™(Q, g) into F3,(Q, g).

(i) Let 0<p<oo, 0<g<o0 and —oC <s <00, Then A yields u
continuous map from B ™(Q, g) into By (2, g).

3.1.4. Remark. This proposition is covered by Theorems 3.3.1 and
3.3.5 and so we shall not give a detailed separate proof. The shortest way to
prove this assertion directly runs as follows. On the basis of (2.18) one
decomposes and transforms the operator A. The result is ‘a bounded set
{4;172, of differential operators on R" which can be estimated uniformly
with respect to j, Retransformation yields the desired result.

3.2. Preliminaries and definitions. Let a(x, &)e St ; with —oc < pu < oC,
0< 6 <1 (see the introduction, in particular (1.1}). Then the corresponding
pseudodifferential operators are defined via

(34) a(x, D)f(x) = | e*a(x, &) f(&)de,

R"
where /' stands for the Fourier transform of f. Let ¥P§(R") be the collection
of all these operators. We have the mapping properties mentioned in the
introduction, One of the main aims of this paper is to find a natural
counterpart of ¥%(R" for the manifold M =(Q, g) from 'Theorem 23.1.
Again the domain Q and the weight g are as above.

3.2.1. Basic assumptions, Let A be a linear and continuous map from
D(Q) into D' (). Then by Schwartz’s kernel theorem A4 can be represented as

BS) A=A N 0)g Wy, Alx 0eD(@xQ)
2
(with appropriate interpretation as distributions; see eg. [Tre, p. 10] or

[Ho1, 5.2]). It is convenient for us to incorporate the factor g"(y) in (3.5)
because ¢"(y)dy is the Riemannian volume element on M =(Q, g). Let o

4 ~ Studiz Mathgmatica 90.1.
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= {x, W (x, Y)e@xQ, x =y} be the diagonal of 2 xL. Then we assume

(3.6) ’ A(x, y)eC™(@Q@xQ-0),

ie. the kernel A(x, y) is a. C*® function off the diagonal in Q x€. This is
reasonable because we are looking for a class of pseudodifferential operators
(see [Tre, Theorem 2.1, p. 224] for the case of the classes ¥4(R").

3.2.2. Desirable properties. The classes P4(R") have some well-known
properties. It is desirable that possible global classes of pseudodifferential
operators on M = (L, g) have similar properties. We list some of them:

(i) The classes Z™(€2, g) of differential operators from Definition 3.1.1
should be covered.

(ii) Let 4 be the Laplace-Beltrami operator (2.39) and let I be the
identity. It is reasonable to expect that (o> I—A)* with x real and ¢ > 0is a
pseudodifferential operator belonging to the global classes we are looking
for.

(iii) It is desirable that compositions 4 0B can be described within these
global classes of pseudodifferential operators.

(iv) The parametrices of elliptic pseudodifferential operators of the
treated global classes should belong to corresponding global classes.

(v) However, our main aim is to find global classes of pseudodifferential
operators with mapping properties similar to those of the classes ¥5(R") (see
the introduction).

3.2.3. Geometrical preparations. In order to provide a better understand-
ing of the definition below some geometrical considerations ‘seem to be
useful. Let M = (R, g) be the Riemannian manifold from Theorem 2.3.1;
however, what follows is true for any connected complete Riemannian
manifold M with bounded geometry and positive injectivity radius. Let
d(x, y) be the Riemannian distance between xeQ and yeQ, where in our
case the Riemannian metric is given by (2.13). Let

(3.7 B. () =1{ylyeQ, d(x, y) <r}

be the geodesic ball centered at xeQ with radius r > 0. It seems to be a
known fact that there exist positive numbers ¢ and b such that

(3.8) vol B, (r) < ae®

for all xe€Q and all r> 0. Of course, volB,(r) stands for the Riemannian
volume of the ball (3.7). We outline a proof of (3.8). Assume by induction
that the ball B,(cj) can be covered by ¢* balls with Riemannian volume V,
where j is a natural number and ¢, ¥, b > 0. If ¢ and V are sufficiently small
and if b is sufficiently large then B,(cj+c) can be covered by, say, 2 balls
of volume V and hence by &™U*1 balls. This can be done uniformly with
respect to xeQ and by euclidean arguments, because -M has bounded
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geometry and a positive injectivity radius. This proves (3.8). Now, define
(3.9) G = inf h,

where the infimum is taken over all b for which there exists a with (3.8). We
have in general G >> (. Even more, the well-known volumes of balls in simply
connected Riemannian manifolds with constant negative sectional curvature
show that any G > 0 can be expected ([CGT, p. 22]).

Let Q=2 U
Lemma 2.24 and let ¢ = {¢;};/~, be the corresponding resolution of unity.
Let dy =d(U ;, U ,) be the Riemannian distance of U ; and U , measured
via (2.13). Let 4 be given by (3.5), (3.6). We introduce

(3.10)

3.2.4. Technical preparations. be a covering as in

Ap S (x) = \ Ay (x, ) (0 g"(ydy  with
£
A (x, ¥) = @;(x) A (x, ¥) @ (),

again interpreted in the sense of distributions ([Ho1, 5.2]). Of course,

> Ap

k=1

(3.11)

Furthermore, Ay (x, y) are C’ kernels if dy > 0. Finally, we need the
transformation of the operators Ay to the normalized coordinates from
(2.15), ie

(3.12) Apu = Aj,((uonk)oH_\fj‘, ue D(RY,

which can be interpreted as a linear and continuous operator either from
D(V) into D'(¥)) or from D(R") into D'(R") (see e.g. [Ta, I, § 5]). If we use
(3.10) then we have

(3.13)

Apu(X) = [Ap(H G (X), y)u(H 4 (1) g" (1) dy

n

. g"(H'(Y)
[ A (HS (X, H3 ()’))u()")-—(~»;*lf—~~) dy
e g(:
[ A4 (X, Y)u(Y)dY,
Nl

1l

I

where u(Y) and A% (X, Y) are extended by zero outside ¥, and ¥ x I,
respectively. By (2.7), (2.8) and (2.15),

jqn(H llY) l

Jie
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is a bounded set in D (V) and in D(R") (after appropriate extensions from V,
to R". In other words, except for these unimportant factors the kernels

(3.14) (X, V) and Ay (HZ'(X), HZ(Y)

coincide essentially in R" xR".

3.2.5. DerinTion. Let M = (€, g) be the above manifold and let G be
the number defined by (3.9). Let L, p, & be real numbers with

(3.15) L>G, 0<d <.

Then P%L(Q, g) is the class of all operators A given by (3.5), (3.6) with the
following properties:

(i) For every couple of multi-indices (, f) there exists a positive nurmber
Cap With
(3.16)

for all xeQ, yeQ and all natural numbers j, k with dy > 1.
(il) {A4j}7%=1 is a bounded set in ¥5(R").

—00 < u < o,

IDE D Ay (x, Y| < cge” g ()" (y)

3.2,6. Remark. These are the classes of pseudodifferential operators we
are looking for. From (3.6) and (3.10) it follows that (3.16) makes sense. By
(27), (2.15), (3.13) and (3.14) we have

(3.17) D% DE Al (X, V)| < cige”

provided that dj, > 1. It follows that the subfamily {Aj with dy =1} is a
bounded set in ¥~ (R", and hence also in P4(R". In other words, part (ii)
of Definition 3.2.5 is only for those j and k with d; < 1 of interest. In order
to make clear what is meant by this requirement we put

(3.18) Ay (X, Y) = By (X, X—Y).

Recall that A} (X, Y)eD'(R"xR") with support in ¥, x ¥ (see (2.15) and
(3.13)). Then By (X, Z)eD'(R" xR") has a support in ¥, x V5. In particular,
B (X, Z)eS'(R"x R" and F; B;, (X, -) makes sense, where F, stands for the
n-dimensional Fourier transform with respect to the second variable Ze R".
We put (3.18) in (3.13), apply F;'F, and obtain

(3.19) Apu(X) = [ e*F; By (X, )(£)d(&)de.

R”

This is the canonical form of a pseudodifferential operator in R" with symbol
Fy By (X, )(£) (see (3.4)). Hence Definition 3.2.5 (i) can be reformulated as

follows: For every couple («, f) of multi<indices there exists a positive
number c,; such that

(3.20) D& D F By (X, ) (8] < ey (L+ (&)1 2101

for all XeR", £cR" and all natural numbers j and k.
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3.3. Properties. We describe some properties of the classes wel(Q, g)
which cover more or less the desirable properties listed in 3.2.2. Recall that
the class Z™(€, g) has been described in Definition 3.1.1, whereas 4 is the
Laplace-Beltrami operator from (2.39). Furthermore, 1 stands for the identi-
ty, and G is defined in (3.9).

3.3.1. TueoreM. (i) Let m be a natural number. Then

(3.21) ™R, g) c Pk(Q,g)  for every L>G.

(ii) Ler p and o be real numbers with @ > G. Then
(3.22) (o*1—4)7 e PE2(Q, g).

3.3.2. Remark. We prove this theorem in 4.3. Part (i) is not difficult
and the corresponding Schwartz kernel in the sense of (3.5) has a support in
the diagonal @ of Q2 x Q. Part (ii) is deeper but essentially covered by [CGT].
If p=2m is even then (g”I—4)"eZ*"(R,g). This follows from (3.3) and
improves (3.22) (see (3.21)).

3.3.3. TueoreMm. Let Ac ¥

j’]‘" (R, g) and Be ‘P';B’LB (@, g), where py and

B
ug are real numbers,

(3.23) L;,>G, Lg>G, 0<d,-1, 0<0g < 1.
Let pe = pig+pg. 6c = max(dy, dp) and
1 1 1
— =t ith L, G.
(3.29) LI +LB with L >
Then .
(325 C=Ao0Be ¥, (Q, 9)-

334. Remark. We prove this theorem in 4.4. Here we shall need
essentially Ly > G and Ly > G. This explains the restriction L > G in (3.15).
Otherwise, Definition 3.2.5 makes sense for any L > 0 and, after this exten-
sion, (3.22) holds for all ¢ > 0.

3.3.5. THEOREM. Let — 0 < § < 00, —00 << | < OO and 00 < 1.

(i) Let 0 <p<oo, 0 g0 and
(3.26) AePrl(Q,g) with L> G max(1, 1/p, 1/q).

Then A yields a continuous map from Fiir(Q, g) into Fiy(£2, g).

(i) Leetw 0<p<o, O0<gs® and  AeWPPL(Q,g)  with
L> G max(l, 1/p). Then A yields a continuous map from B5;*(Q, g) into
B, (£, 9).

33.6. Remark. We prove this theorem in 4.5. The restriction for L in

(3.26) is essential. This assertion is one of the main results of this paper. It is
the extension of the mapping theorem mentioned in the introduction.
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3.4. Elliptic operators. Let 4 be an elliptic pseudodifferential operator in

Q. Then a pseudodifferential operator P in Q is called a parametrix for A4 if

(3.27) AoP—le¥W *(Q), Pod-Iec¥ ™(Q),

where I is the identity (see e.g. [Ta, I1I, § 1] or [H©2, Theorem 18.1.24] for
details). This is a local notion. It is our aim to find a global counterpart. For
this purpose we complement Definition 3.2.5. Let
(3.28) W@, g) = m PEhQ g = N YEHQ, ),
0

where the first equality is a definition and the second is an assertion which
follows easily from (3.20). Furthermore, we write Ae Wi ™(Q,g) if
Ae¥h(Q, g) for some L and

(3.29) =0 ifdy>1

(see (3.16)). Roughly speaking, 4 belongs to Wy (Q,g) il part (i) of
Definition 3.2.5 holds and if part (i) is replaced by the assumption that the
support of the kernel 4(x, y) from (3.5) is contained in a tube around the
diagonal of 2 xQ.

34.1. Derinmion. Let Ae W8(Q, ¢ g). Let a, (Y, &) be the symbol of 4 in
the normalized coordinates (Y, &)e V. x R" from (2.15) where xe £2. Then A4 is
called (@, g)-ellipric if there exist positive numbers ¢ and C such that

(3.30y 1 (0, ) = e (1 -+l

and for all xe Q.

Ajelx, y)

for all ¢e R with [ = C

34.2. Remark. This is the global version of the usual ellipticity condi-
tion (cf. e.g. [Ta, L §17).

3.4.3. Tueorem. Let Ae WEL(Q, ¢) be (Q, g)-elliptic. Then there exists a
parametrix Pe Wi*"(Q, g) with

(3.31) AoP—le¥ ™ *LQ,g), Pod—Ile¥ "L(Q, g).

34.4. Remark. We prove this theorem in 4.6; it is more or less a

simple consequence of known (local) results for pseudodifferential operators
and the above technique.

35. Fractional lifting properties. In 2.7 we mentioned a lifting property
which was simply a special case of a more general assertion for connected
Riemannian manifolds with bounded geometry and positive injectivity radius.
In our situation we can extend Theorem 2.7.1 to the fractional case.

35.1. Tueorem. Let 0 <p < oo (with p <o in the case of the spaces
'S .
Fro,(Q,9), 0<g< oo and —ow <5 < oo, There exists a nonnegative number
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0(2, g, p, q) with the following property: If ¢ > 0(Q,4g,p, q) and if uis a
real number then f — (0*I—Ay"f yields an isomorphic map from F5i*(82, g)
onto F5,(Q, g) and from B}/*(Q, g) onto B}, (2, g).

35.2. Proof of Theorem 3.5.1. We have (3.22). Hence we can apply
Theorem 3.3.5 provided that g is large enough. We need this assertion both
for u and —u. The rest follows from Theorem 3.3.3.

4. Proofs

4.1. Proof of Theorem A.1. First we prove the theorem in the appéndix
of Section 2.

4.1.1. If I = 0 in (A.5) then part (ii) of this theorem is completely covered
by Theorem 1 in [GT]. Let | be an arbitrary real number. Then one has to
replace A, f(x) on p. 425 in [GT] by dj4.wf(x+1h) and use the
translation-invariance of the Lebesgue measure in R". The rest remains
unchanged and one obtains part (ii) for all real L

4.1.2. In order to prove part (i) we have to modify the method from
[GT] essentially. First we recall the usual Fourier-analytic definition of
S(R"). Let @(£) be a C* function in R" with

(4.1) supp @ = {nllnl <2}, @) =1 if [g<1

Then we have the resolution of unity

(4.2) 1= 3 ¢(8) with ¢;(8) =277 8)—e27771E)
j=0

if j=1,2,... and {eR", where we put @, = ¢. Let

(43) 0, (D) f(x) = (F™ g, Ff)(x) = [ e o) f(D)dE

'Y
be the usual decomposition of feS'(R”) in entire -analytic functions,. j
=0,1,2,..., where F (as well as f) and F~' stand for the Fourier
transform and its inverse, respectively. Then F$,(R") can be defiried as the
collection of all feS'(R") such that
(“4) I1F 1 F5 RN = (X, EWWanWHme<w
(with the usual modification 1f q = co), where the parameters s, p, g are as in
Definition 2.1.1(i). We refer to [Tri2, 2.3.1] where this definition was taken as
the starting point.

413. Let m = m;+m, be a natural number where m, and m, are
nonnegative integers. Let heR" with 2~ I b <2771 Our first aim is to
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estimate
o
(4.5) A AV (x = 3 A"”Ah @4 (D) f (x+1R)
k=- o
K o0
=3 o+ 3.
k=- o k=K+1

with @, = 0if r <0 and & = ¢(x, h). The natural number K will be specified
later. Let k < K. By (A.2) and elementary calculations we have

(4.6) 14 43 0 i(D) f (x+1h)]

e M2 sup S D@ (D) S (.

|x—-y€eqa2 =i laf=m

where ¢, and ¢, are positive numbers independent of j, k and J. By (4.3) we
have

DX (D) f(y) = 20*Wl g (D) F( with (&) = 27 & g, (&)
see (4.2) (with the obvious modification if r = 0). We introduce the maximal

function

|(/7[u /(V)I

4.7) %, f(x) = su

ve R" T+ =
where a > 0 will be specified later. Then (4.6) yields

(4.8) }A;"IAZH((),M(D)]" x+Ih)| € cd™ 2 g QU kim (1 4. gka) Z PFe k0 (X)

la| = m

< cg™ 2km ok Y OFeialx).

o] = m

' Let £ > K. Then we have

(4.9)

my my
,/‘11 !

A7 ;D) f (%+Th) < €24 ot f (),
whete ¢} f is defined similarly to (4.7).

4.1.4. Now we estimate

(4.10) I)=( §

|njs2~L

]hlhwldz,lmdhlzf \+]hfq‘1h/[hj")
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where L is an integer. Let 0 < ¢ < 1. By (4.8) and (4.9) we have

@.11) I(x) < Z 2484 sup

=L 2uig st
o

b 4]
< Yy 2y sup

=1 k= ig g2t

|4 A2 f (x+ b))

4. A5 @4 (D) [ (x + [

o

Z YET] Z bmﬂ]zkqul\uq z (Pﬂfuaf(-\')

J= L L] focf = m

e Z s Z hkag (p*“kf(x)

Jj=L k=K1

<Oy g Y pHamom
r=0 k=K+1

o«

K
e T T M) 3 82k gk

la)=m r=0 k= -

Let ¢ > nmax(1/p, 1/q) in (47) and in the related maximal functions. Then
we have the maximal inequality

4.12)

H( ZO 2m q);’f;tl/( ' )) R“ ” “j I qu (RH)H

(see {Tri2, 2.3.6]) and the corresponding assertion with ¢} instead of ¢¥,. By
assumption we may assume m > s > a. Now we choose first K large and

afterwards 3 small. If m; 2 1 then the factors on the right-hand side of (4.11)
are small. Hence, il my 2 1 then we obtain from (4.10)-(4.12)

(4.13) (11 Ly (RIE< 1| Fog (RY)]

where # > 0 is at our disposal (of course d depends onpete) If 1 S¢g< o0
then small technical modifications yield the same result. Hence (4. 13) w1lh
(4.10) holds for all admissible s, p, ¢.

4.1.5. Now we finish the prool of part (i) of Theorem A.l as in [GT].
Let again ¢ = ¢(x, h). Then

(4.14) Moo S () s B (00— Rp(y
. F 1 I:(’m’-’—l '_en,'{h ():.,1 ]mrf V
=ATfO+ T 44T (v my b,

my 1
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We choose y = x+Ih. Now (4.14) and (4.13) yield

@15) || ] IR S (I AR Ly (RO
|| <€e
<l T 1mmsag £ G e dhf) " Ly RO+ 1L P (R,

[hl‘ﬁc

where we assumed (without restriction of generality) ¢ < co. Next we use the
fact that
(4.16) + e dh/|n") | L, (RY)|

ILf1L, R”)!H-II lh! “Apf o+

is an equivalent quasi—norm in F$,(R"). If | = 0 then this assertion is covered

by [Tri2, 2.5.10] and the corresponding assertions in [Tri3] (see also (2.34)).
The approach in [Tri3] is based on

Fap () = (€5~ 1)"Ff.
On the other hand,

FAmf +}h —_ elléh( ih 1)me

But the multiplication by €™* has no influence on the considerations in
[Tri3]. This shows that (4.16) is an equivalent quasi-norm in F},(R") not
only for [ =0 but for arbitrary real I. Then it follows from (4.15) that the
expression in (A.4) can be estimated from above by c||f] Fj, (R")].

4.1.6. Let A be the expression in (A.4). Then it follows from (4.16), (4.14)
with y = x+1h and (4.13) that
LF 1 Fpg (R < A+ {lf | Fo (RO,
where 1 is at our disposal. This proves the reverse inequality.

4.2. Proof of Theorem 2.6.2. We reduce the proof of Theorem 2 6.2 to
Theorem A.l.

4.2.1. We prove part (i) in several steps and begin with a preparation.
Let @ = &(Y) be one of the functions &; from (2.21). Similarly, let P{ )
= fO'H;jl (Y) for the same j and YeV,. In order to calculate 4} [g]o; f
from (2.35) we need

Y o
4:17 i ) T m— = i J T —
@.17) V“’Jf(” (y)) ‘””f(" WY

m g(x))

J ey, h))

- oF <Y+ih+is(Y, h)),
m m
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where
gy 0 . .
(4.18) e(Y, h) = (i/((l)) »1)/1 with Y = g (x/)(y — x/).

In particular,
(4.19) ATyl @ /) = APy PF(Y).
By (2.7) and (2.8) we have

(4.20) (Y, b < IcJ () ~g () < dly—x| g {x))|h]

for some number d independent of j. We may assume, without restriction of
generality, that

4.21) supp @ < ¥, (independent of j)

where ¢ is the same as in (2.6) and 1 > p > 0 is at our disposal. This follows
from a small modification of the resolution of unity descrlbed in Lemma

2.24. Hence we have by (4.21) and (2.15)
(4.22) le(Y, )| < S|hl, Yesupp &,

where 8 = 0 is at our disposal {in dependence on p). Furthermore, we obtain

from (4.18) and (2.8)

u (Y, h)
B

(l] !
(/y

(4.23)

Ih\‘ ‘édlh!

for some d > 0. In other words, if both u>0 and b with |h <b are
sufficiently small then (A.2) is satisfied. Hence we can apply Theorem A.l.

4.2.2. By (2.18), (A4) and the previous step we have

424) (1P gl ~ .'Z lpy S 0 HH | Ly (RO

(Nt dhAR ™ | L, (RO

F3 g

Jsd |'l|"ml

AR 0y f O H G

(with the usual modification if ¢ == o0 or p = o) with m > s. By (4.19) this is
near to the desired (2.36). But we must get rid of the ¢;s. We assume
temporarily that @ and F are as in step 4.2.1. We use the formula

m

(4.25) A (DF)( 2 Cm ALF(Y) A0 (Y4 1h)
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which can be proved by induction on m. First we assume additionally m
> 25, ie. m—[s] = s+ with » > 0. Then (4.25) yields
(4.26) |47 (PF) (V)] < cy [WT* sup  |F(2))

|Z-Y|<ey

m

+e Y

I=[s]+1

We‘ replace h in (4.25) and (4.26) by h-+e(Y, h) and identify @F with
@;foHZ', where we now write ®; instead of @ and F; instead of F. Then
we have by (4.24)

(427) I 1F(@, 9P < C 3 119, F;| L, (R

j=1

|43, F (V)] [,

I

+C Yl sup [@;(Z) F3(2)| L, (RII”

j=1 1Z=-scy -

m=—1 o . PR
+C X BT T

I=[s]+1j=1 |h&b -

|45 s B3 F5 VN dby ™ | L (RO

Y (UL S Fy()edfin) " | L, (V"
j=1  |W'<b '
where we may assume that V,, is the same as in (2.15) and (4.21). Let

(4.28)

s> o > n max(1/p, 1/g).
Then we have
(4.29) ”|z sup |95 F(Z)|| L, (R")| < c | F;| Fpg (RM]|
~<es : .
S ANPLE | Frog (R + ;| B, F 1L, (R,

where A > 0 is at our disposal. The first inequality comes from [Tri2, 2.5.9,
end of the proof of Corollary 1]. The second is a-known multiplicative
inequality which can also be derived easily from (4.16). By the same argument
the third terms in (4.27) can also be estimated from above by the right-hand
side of (4.29). As for the last terms in (4.27) we use (4.19) with F; instead of
@F = ¢, F;. Now (4.27) yields !

(430) (S F Q. 9lI" S 3|1 F3 (2, glIP+¢ i ll®; Fy| Ly (RM]|P
j=1

+ell( [ 1T AR L) £ (e dh/ R | L (2, g)|"

|h| <k

This proves that [|f|F;,(Q, g)l| can be estimated from above by the quasi-
norm in (2.36).
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4.2.3, We have to remove the restriction m 2= 25 and assume now m > s.
The critical point is (4.26). The l-summands with m—1I2 s and | = m cause
no trouble and can be treated as above. As for the remaining summands of
interest we have
4.31)
where now terms 4} F(Y) with [ < s cannot be excluded. In other words, we
have to modify the considerations for the third terms on the right-hand side
of (4.27). Recall the formula
(4.32) AR F(Y) = 27 AL F(Y)+ Y ap AT F (Y4kh),

where 3 is a finile sum and the ¢’s are some constants ([Tri2, 2.5.9, formula
(44)]). We apply (4.32) to the third terms on the right-hand side of (4.27) with
h+e(Y, hy instead of h and &, F; instead of F. Then we have

mz > s—=m+l=>0,

@33) (] VAl @ By dhR) | Ly (RY)|
[n %h
< 2- 1 28 SR “( l' “,’! (g i g

|n| = 20
X14L o @ F3 (AR Ly (RY)|+ .

where ... indicates the terms with Abhy 4 @) F;(Y+kh+ke) (see (4.32)). Of
course, 27120 m* < |, Furthermore, we split |4 < 2b in the first term on the
right-hand side of (4.33) into [h| < b and b < |h| < 2b. The latter part can be
estimated as in the second term on the right-hand side of (4.27). Altogether,
we can estimate the left-hand side of (4.33) by the terms +... and the just-
mentioned additional term. We repeat this procedure and arrive at terms of
the type djy oy D F; (Y+ki-+ke). However, these terms can be expressed as

434) A Ay @) Fj(Y+kh)+ A7, D F (Y4 Kh).

For the terms resuliing from the first term in (4.34) we have (4.13), (4.10), and
those resulting from the second term in (4.34) are covered by (A.4) with s—2x
for some % = 0 instead of s. This shows that also in this case the third terms
in (4.27) can be estimated from above by the right-hand side of (4.29), where
A is at our disposal. The rest is covered by the previous step. Hence

/] F5, (€2, @)l can be estimated from above by the quasi-norm in (2.36).

4.2.4. The roverse direction is not so complicated. Let {¢;} be the
resolution of unity from Lemma 2.24. Then the pth power of the quasi-norm
in (2.36) can be estimated from above by (a constant times)

(435) E Il(pj/| L,,(Q, g)“[!
J=

RN S RO EACNY

J=1 s
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We use (4.19) and (A4). Then it follows that (4.35) is equivglent to |

IF1F (2, g)lI. But this is just the desired expression. The proof of part (i)
is complete.

4.2.5. We prove part (ii) and reduce (2.37) to (A.5). How to reduce the
spaces B}, (£, g) from (2.19) to the spaces B}, (R") via the resolution of unity
{o;] from Lemma 2.24 has been treated in [Trid, 4.7] even in a more general

case. It turns out that one can use similar arguments to those in the case of

the spaces F, (9, g), where now (A.4) must be replaced by (A.5). We omit the
details, but one point should be mentioned explicitly which is different. Now
s is restricted by s> n(l/p—1), and the counterpart of (4.28) is for small
admissible s simply not true. However, in the case of the spaces B, (RY it is
sufficient to estimate (4.25) by

(4.36) 4P (@R (YN < ¢y [WF**Y F(Y+kh)

+c; Z

I=[s]+1

|4, F (V)[R

where ) is a finite sum. In the case of the spaces By, (R") one has first the
integration [|®F (-+kh)| L,(R"||, where kh does not play any role. But in the
above arguments one has to deal with the more complicated situation

(4.37) @ F(-+kh+ke (-, h)|L,(R")|.

It turns out that this quasi-norm is equivalent to ||@F [L,(R")]||. Here one has
to use the assumption about 0¢/0x; from (A.2). We discussed this point in
detail in [GT]. With these modifications in mind and based on the techni-
ques from [Tri4, 4.7] one can carry over the above arguments for the spaces
Fpq to the spaces Bj,. As a result we obtain part (ii).

4.3. Proof of Theorem 3.3.1.

4.3.1. We prove part (i). Let
(4.38) Al (x) =Y a,(x)D*f (x),

lz| €m

xXef,

be the differential operator from Definition 3.1.1. Then A can be represented
by (3.5) with

(4.39) Al y) = 3 b (x)D35,()),

|z} €m

(x, Vel xQ,

where the b, (x)'s are appropriate C* coefficients and d.(y) i the d-distribu-
tion in R" equipped with y-coordinates, with x as the singular point, In
particular, 4 (x, y) =0 if dy =1, and (3.16) is satisfied for every L. Lel Aj,
be given by (3.10) and (3.12). In order to check property (i) from Definition
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3.2.5 we may assume j = k. Then

@40 Au(X) =Y a(X)e0Die N, X =g(d)(x—x),

x| <m

with f(x) = u(X) (see (2.15). Then we have
(4.41) Ayu(X)= Y A4}(X)Dyu(X),

la| €m

where the coefficients 4%(X) are linear combinations of
(4.42) ag(Xg™ " (x)+ x!) g ()

multiplied with smooth functions supported near the origin. By (3.2), {4](X)}
is a bounded set in C*™(R"). Hence part (ii) of Definition 3.2.5 with u=m
and § = 0 is satisfied (see also (3.19), (3.20)).

4.3.2. We prove part (ii). By Theorem 2.3.1 we can apply the correspond-
ing assertions from [CGT]. Now let 4 = (o*>T—4)"* and let Aj and A, be
the same operators as in 3.24. Let dy < 1. Then we can apply Theorem 3.3
in [CGT] with f(4) = (02+1%"? (in the notation used there). It follows that
{Aj with dy <1} is a bounded set of pseudodifferential operators in ¥4 (R")
(see (3.22) and part (i) of Definition 3.2.5). Let d;, = 1. We wish to prove
(3.16) with L = g. Let again f(z) = (¢*+z**2 Then (3.16) with |a| = |B] = 0
follows from [CGT, Definition 3.1, (3.44) and (3.45)]. In order to extend this
assertion to the derivatives of Ay (x, y) one has to replace f(z) above by
S (2) = (1424 (0¥ +2z*y? with k = 1,2, ... Then it follows again from [CGT]
and the symmetry of 4 (x, y) with respect to x and y that (3.16) holds for all
o and f. This completes the proof of (3.22).

© 4.3.3. Remark. The restriction ¢ > G in Theorem 3.3.1(ii) comes from
(3.15) and has nothing to do with the results from [CGT] which we used and
which work for all ¢ > 0.

4.4. Proof of Theorem 3.3.3.
4.4.1. We use the decomposition (3.11), i.e.

o o
(4.43) A=Y Ay, B= Y B,
e

IVEE s

Then we have

(4.44) C=A0B= 3} AyoB,= ZIC"“
ks Jis=
with
el
(4.45) ij—_— Z AjkOBks+--~
k=1
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where +... indicates similar terms with supp ¢, "supp@, # @. It is clear
that we may assume that the Cj's are the pseudodifferential operators in the

sense of the decomposition (3.10) with C .instead of 4. Furthermore, we may .

restrict our attention to the terms explicitly written down in (4.45). We have,
at least formally,

@46 Cuf(=[3 Apx )| B0 21 (219" 214" 1) s dy
k=1
= [Culx, 2) f(Z)g (z)dz
I3
with
(447) Calx.2)= Y [ Ay, 1) Bsly, 209" () dy

k=10
In the normalized form, based on (3.12) and (2.15) we have

Y [ Ax(X.Y)Bi(Y, Z)dY.

k=1V,

(4.48) (X, 2) =

If both dy =1 and d,; > 1 then the corresponding integrals make sense in
the usual way. Otherwise the above calculations must be understood as
compositions of the corresponding pseudodifferential operators.

44.2. Let dj, > 1. Then we split )" in (4.48) as
(4.49) Ci(X,2)=Y ...+Z”...
X !

where Z collects all k with min(dj, d,;) > 1 and Z the remaining k’s. Then
Y, is a finite sum (the number of terms can be estimated from above
independently of the parameters) and the typical term is

(4.50) [ Aj(X, Y)Bi(Y, Z)dY.

Ve

However, first we estimate Z; By (3.17) we have

(4.51) IZ' <c 27: e'LAdjk'LBdks

k k=1

where ¢ stands for an appropriate constant not necessarily the same as in
(4.48) or (4.50). Let L,dy 2 Lyd,,. Then

(4.52) Ledjs < Le(dy+dy+ )
1 1 ,
< Lo Lydy L LB tc'=Lidy+c.
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We have a similar estimate if Lpdy, > L,d;,. Consequently,

(4.53) |Z’| < ce” Fs z (™ Fa%ks | g™ Ladiy
[

k=1

Let B (r) be the ball centered at x* with geodesic radius r (see (3.7)). Then
(3.8) and (3.9) yield

oL

)

-, Lad o =Lyl ~ Lgl+ (G +
(4.54) Y ey e vol B () S Y e ETe

k=1

I=1 1=1

for any ¢ > 0. Because Ly > G this sum converges. Similarly for the second
sum in (4.53). Then we have the desired estimate

(4.55) ] < ce™ %,
3
In order to estimate Z;’ we must handle compositions of the type Aj; 0B
with dj, = 1 (see (4.50)). By (3.17),
(4.56) "5 By}, is a bounded set in ¥~ *(R").
Furthermore, {A’” is a bounded set in ¥ (R”) (see part (ii) of Definition
3.2.5). By [Ta, II Theorem 4.47,
(4.57) ("% 45,0B),),, is a bounded set in ¥~ *(R").

The corresponding Schwartz kernels are C*® functions ([Tre I, Corollary
2.3]). Because Lc < Ly we have (4.55) with Zk instead of Zk Altogether, we
have

(4.58) ICjs(X, Z) < ¢

Let o and f be arbitrary multi-indices, Then D% Dg «(X, Z) is given by
(448) with the kernel D% Aj (X, Y)DE B, (Y, Z). On the other hand, we have
(3.17) and we can repeat the above arguments without any changes. We
obtain

(4.59) ID% D Cjy(X, 2)] <

Retransformation yields the counterpart of (3.16).

~Ledjs.

- Led;
g€ I

443. Let dj; < 1. The typical case is j =s. We again use the splitting
(4.49), now with j = 5. The terms with dj, > 1 can be treated in the same way
as above. The typical remaining term is A}, o Bj;. However, by part (i) of
Definition 3.2.5 and the composition formula for pseudodifferential operators
([Ta, 1I, Theorem 4.4]),

{4);0Bj;}; is a bounded set in ‘Pf,‘,f}x*:ﬁ‘:f,,,ﬂ,(R").

The proof is complete.
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44.4. Remark. We used essentially Ly > G and Ly > G (see (4.54)), but
not Lo > G.

4.5. Proof of Theorem 3.3.5. v

. 45.1. The proof of, part, (i) follows immediately from part (i) and the
interpolation property (see (2.19)). Here we shift the case p = ¢ = co- from (ii)
to (i) (see Proposition 2.4.4(iii)).

45.2. We prove part (i) including the case p =1j= co. Let A4 be the
pseudodlfferentlal operator from (3.26). By (2.18) we have

(4 60) HAf | Fe(@, ) = Z I @jAf)OH;,-lIFiq(R")II”
=1

(with the usual modification if p = ¢ = c0). We decompose 4 by (3.11) and
(3.12):: Let min(p, g) > 1. Then we have, .

(4.61) IJ(P,AfoH i Fa ( CZ”AJk((/)k fOkal)IF (R”)H+

where +.. mdlcates similar terms w1th nelghbourmg @r's (W1th respect to (p !
and- ¢;) which can’be treated in the same way. Now we use

(4.62) NAG U Fog (B < cq d"‘LHUIF”"(R”)H ‘

(see [P4] or [Tri7]), where .c is independent of j; k and L. The estimate for
the norm. of the ‘operator comes from (3.17). We put (4.62) in.(4.61) and
obtain .

(4.63)  llg; Af oH 3| Fyp (R

Sc(Tllonf oHZH | Fyyt(Rojjre™ )7 (5 e~ ey

k

with yl/p-i—"l/p =1. Because L> G the last sum converges (see (4.54)). We
take the pth power of (4.63) and sum over j. Then (4.60) yields the desired
estimate

(4.64) IAf [ Fog (@, gl < cllf | Fog (2, g)ll-

1. Then we repldce (4.61) by, )
IIQDJAfOH,J lFiq(R")II“ LZ”Ajk(q)kaHAJcI)IF (R)[1e+...

Let g = mm(p, 9 <
(4.65)

(see (2.3)). Let o=p. Then it follows from (4.65) and (4.62) tﬁat
(4.66) ll@; Af o H* | F5, (ROIP < Y o f OHZ! | Foph(R|Pe™ ™55
k v
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We have pL > G. Hence summation of (4.66) over j yields (4.64) by the same
argument as above. Finally, let ¢ =g. Then (4.65) and (4.64) yield
@.67)  llo; Af on, | Fog (R
<cXlloef O HZ Pyt (RYlF et ..
k

<c( g f OHG [ Foit(RO||P e P (3 ¢ a4t~y
k k

We have gL > G, hence the last sum converges. We take the (p/g)th power of
(4.67) and sum over j. Then we obtain (4.64).

4.6. Proof of Theorem 3.4.3.

4.6.1. First we decompose A into

(4.68) A=A+4, =Y A;+3" 4,
ik Jik
where Z is the sum over all j and k with d;, < 1, and Z collects the

remammg Aka (see (3.11)). Then A, is properly supported and A, is an
operator with C™ kernel (see also [H&2, Proposmon 18.1.22]). Let
Pe 'If‘, #2(Q, g). Then we claim that

(4.69) A, oPe¥ ™ *(Q,g), PoA,e 'I’" oL (!2, 9).

We use (4. 44) and (4.45) with 4, and P instead of 4 and B. In our case the
sum in (4.45) reduces essentially to 4}, 0 P, where d;, > | (and similar terms).
The rest is covered by step 4.4.2 (see in particular (4.56)).

4.6.2. By the previous step we have to find an operator Pe W;**(Q, g)
with

A OP—Te¥ ™L(Q g), Pod,~Ie¥P =L@, q).

However, locally (and uniformly with respect to j and k) such an assertion is
covered by [Ta, I, Theorem 1.3]. How to glue together these local
parametrices may be found in [Tre, 1, 5, Appendix]. The proof is complete.
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Extensions and selections of maps with
decomposable values

by

ALBERTO BRESSAN (Boulder, Colo.) and GIOVANNI COLOMBO (Trieste)

Abstract. Let X be a separable metric space and E a Banach space. Let u be a nonatomic
probability measure on a measurable space T, and let L' = L (T} E) be the Banach space of u-
integrable lunctions u: T— E. A subset K of L' is decomposable if, for any p-measurable set
A& Tand all u, veK, one has u y,+v x4 €K. Using the property of decomposability as a
substitute for convexity, the analogues of three theorems by Dugundji, Cellina and Michael are
proved.

1) A continuous map f [rom a closed set ¥ < X into a decomposable subset K of L' can
be continuously extended to a map /% X — K.

2) An upper semicontinuous multivalued map F: X — 2t with decomposable values has a
continuous g-approximate selection, for any ¢ > 0,

3) A lower semicontinuous multifunction G: X -2+ with closed decomposable values
admits a continuous selection,

The compactness assumption on X, which appears in previous papers, is here never used.
From 1) it follows that, if L' (T; E) is separable, then any closed decomposable subset K < L' is
a retract of the whole space, hence it has the compact fixed point property.

1. Introduction. Consider a measure space (T, %, i), where # is a o-
algebra of subsets of T and p is a nonatomic probability measure on &#. If E
is a Banach space, let L' (T; E) be the Banach space of all functions u: T — E
which are Bochner u-integrable [17]. According to [10], a subset
K = [}(T; E) is decomposable if, for every measurable set 4e &,

(1.1) uxato yruckK  Vu,vek.

In several cases, the property of decomposability is a good substitute for
convexity [15]. Three classical theorems, which make use of a convexity
assumption, will be considered here.

Tureorem 1 (Dugundji [6, p. 188]). Let A be a closed subset of a metric
space X and let K be a convex subset of a Banach space Z. Then every
continuous map f: A— K has a continuous extension f: X — K.

¢ >
Tuporem 11 (Cellina [2, p. 84)). Let X be a metric space and Z a
Banach space. Let F: X — 2% be an upper semicontinuous map with convex
values. Then, for every ¢ > 0, F admits a continuous g-approximate selection,


GUEST




