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Extensions and selections of maps with
decomposable values

by

ALBERTO BRESSAN (Boulder, Colo.) and GIOVANNI COLOMBO (Trieste)

Abstract. Let X be a separable metric space and E a Banach space. Let u be a nonatomic
probability measure on a measurable space T, and let L' = L (T} E) be the Banach space of u-
integrable lunctions u: T— E. A subset K of L' is decomposable if, for any p-measurable set
A& Tand all u, veK, one has u y,+v x4 €K. Using the property of decomposability as a
substitute for convexity, the analogues of three theorems by Dugundji, Cellina and Michael are
proved.

1) A continuous map f [rom a closed set ¥ < X into a decomposable subset K of L' can
be continuously extended to a map /% X — K.

2) An upper semicontinuous multivalued map F: X — 2t with decomposable values has a
continuous g-approximate selection, for any ¢ > 0,

3) A lower semicontinuous multifunction G: X -2+ with closed decomposable values
admits a continuous selection,

The compactness assumption on X, which appears in previous papers, is here never used.
From 1) it follows that, if L' (T; E) is separable, then any closed decomposable subset K < L' is
a retract of the whole space, hence it has the compact fixed point property.

1. Introduction. Consider a measure space (T, %, i), where # is a o-
algebra of subsets of T and p is a nonatomic probability measure on &#. If E
is a Banach space, let L' (T; E) be the Banach space of all functions u: T — E
which are Bochner u-integrable [17]. According to [10], a subset
K = [}(T; E) is decomposable if, for every measurable set 4e &,

(1.1) uxato yruckK  Vu,vek.

In several cases, the property of decomposability is a good substitute for
convexity [15]. Three classical theorems, which make use of a convexity
assumption, will be considered here.

Tureorem 1 (Dugundji [6, p. 188]). Let A be a closed subset of a metric
space X and let K be a convex subset of a Banach space Z. Then every
continuous map f: A— K has a continuous extension f: X — K.

¢ >
Tuporem 11 (Cellina [2, p. 84)). Let X be a metric space and Z a
Banach space. Let F: X — 2% be an upper semicontinuous map with convex
values. Then, for every ¢ > 0, F admits a continuous g-approximate selection,
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i.e. a continuous function f,: X — Z such that

graph(f,) < B(graph(F), ¢).
Here B(V, ¢) denotes the e-neighborhood of a set V.

THeoreM IIT (Michael [13]). Let X be a paracompact topological space
and Z a Banach space. Then any lower semicontinuous multivalued map F: X
— 2% with closed convex values admits a continuous selection.

Aim of the present paper is to establish the analogues of the above
results when Z is the Banach space L!(T;E) and, in the assumptions,
convexity is replaced by decomposability.

The first result concerning the existence of a continuous selection, for a
continuous multifunction with decomposable but not necessarily convex
values, is due to Antosiewicz and Cellina [1]. Their selection theorem yields
the existence of solutions for the differential inclusion %e F (¢, x) with Haus-
dorff-continuous right-hand side, by means of a classical fixed point argu-
ment. These results were extended to the lower semicontinuous case by
Bressan [3] and Lojasiewicz [12]. More recently, Fryszkowski stated a
general selection theorem for lower semicontinuous maps with decomposable
values [7]. Approximate continuous selections for upper semicontinuous
maps with decomposable values were constructed in [5]. We remark that the
proofs of Theorems I-III rely on the paracompactness of the space X. In the
decomposable case, however, all known results require that the space X be
compact. This unnatural assumption-is motivated only by a technical difficul-
ty, which' will be removed in the present ‘paper.

In the analysis of decomposable sets, instead of taking convex combina-
tions, one can continuously .interpolate between different points following a

well-established procedure. Consider an increasing family {4,; 1¢[0, 1]} of
measurable subsets of T with the property that u(d,) = - u(T) for every A.
The existence of such a.family is proved in [9], Lemma 4. Let u,, .. . U, be
elements of a decomposable set K = L' (T E), and let 4,, .. » 4, be nonnega-
tive numbers which add up to 1. Setting n, =0, 5, = 11 +o+A
=1,..., p), a combination of the u; with the J; as parameters is given by

v
(1.2) : T, )= Z W Ky,

-1

As in the case of convex combinations, the right- hand side of (1.2) lies inside
K and varies continuously with each u; and A,. Moreover, T(u, )=y
whenever A; = 1. Together with these analogies there is, however, a major
difference. In Banach spaces, the metric and the algebraic structures are
linked together by the fact that balls are convex. On the other hand, balls in
L}(T; E) are not decomposable. The failure of this basic property is a
primary source of.technical difficulties. If teI! and llu;—i]] <o for all
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ief{l, ..., p}, without additional as‘;umptlons on the sem A4, the only avai-
lable ‘estimate for (1.2) is '

(1.3) I {u, )i} < p

This bound can be improved if the sets A; are more carefully chosen: In [7]
the author defines the measures y; by qettmg

W) = [ly—alsdu (4e .
A ‘ .

By Lyapunov's Convexity Theorem [9], one can then choose a famll,y of sets
A; satisfying the additional conditions o ‘

(A =Aw(T),  (Ae[0, 1], i=1,..., p).

If these special sets are used in (1:2), the stronger. estimate ||[F(y, A)—ill < ¢
holds. So far, this technique has been applied only in the case.of finitely
many functions u;. Indeed, Lyapunov’s theorem does not. hold for an infinite
family of measures g [11]. In order to extend the results given in [5] and
[7] from the compact to the paracompact case, ‘one has to-construct
continuous combinations for an infinite family of functions u;, taking advan-
tage of the fact that only a finite number of w; enter'in a combination at-any
given time.

To do this, ‘our key technical tool’ ' Lemma 170§ 4 It comams an
extension of Lyapunov’s theorem, valid for a countable ‘set of measures;
which is precisely fit for our purpose. Using this lémma; we can' prove the
analogues of Theorems I-III for the decomposable case, in a quite general
setting. Indeed, a separability assumption is the only. additional requirement.
The statements of our main results are collected in-§ 3. . R

An interesting consequence of the extension theorem is that, ln a
separable space L!(T; E), any closed decomposable subset ‘K’is a retract of
the whole space. Therefore, K has the compact fixed point property [16, p.
33]. This provides a further generalization of the fixed point thegrems of
Cellina [4] and Fryszkowski [8], wh1ch holds for L1 spaces over -any abstract
measure space (T, &, w). ‘ T (TP

2. Notation and basic definitions. Throughout this paper, (T 7, M) de-
notes a measure space, whete & is a o-algebra Of subsets of T ‘and ;'is a
nonatomic. probability measure on &, Given, a. p-integrable function. f: T
~ R, we write f-u for the measure having density f wirt. . We denote, by,

o{d # Ae A} the o-algebra generated by a family of measurable sets A F.
If E is a Banach space with norm ||-||g, L (T E) denoles the chdch space of
Bochner p-integrable functions u: T — E

= [, lullg dpe leen two metric spaces XY wnh dlsldnces dy, dy respectlve—
ly, the distanée ‘on their product ‘is d“y ='dy+dy. The open ‘¢ nelghbor-
hood of a set § g;X ns B (s, r)-— IXeX: d(»c 9 <ah The dmmetcr df S 1<
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diam(S) = sup {d(x, x); x, x'eS}. The set-theoretic difference between two
sets A, B is written 4\ B; their symmetric difference is 4 A B = (4 \ B) U(B\ A).
¥4 stands for the cardinality of the set 4, while y, is the characteristic
function of A4.

Following [10], we now introduce the main concept discussed in this
paper.

DeriNimioN. A set K < L' (T; E) is decomposable if

uxa+v-xraekK  whenever u,veK, Aec 7.

The collection of all nonempty decomposable subsets of L*(T; E) is denoted
by D(L!'(T; E)). For any set H < L}(T; E), the decomposable hull of H is

dec[H] =\ {KeD(L!(T;E)); H =K.

Clearly, dec[H] represents the smallest decomposable set which contains H.

At last, we recall two basic properties of multivalued mappings [2]. Let
X, Y be metric spaces. A multifunction F: X — 2 is lower semicontinuous
(Isc) iff the set {xeX; F(x) =C) is closed for every closed set C <Y
A map F: X —2' is Hausdorff-upper semicontinuous (H-us.c.) iff, for every
xpeX and every &> 0, there exists a neighborhood ¥V of Xo such that
F(x) € B(F(xo), ¢) for all xeV.

3. Statement of the main results. Our first result is the counterpart of
Dugundji’s extension theorem, for maps taking values in a separable L'
space, with the convex hull replaced by the decomposable hull. -

THEOREM 1. Ler A be a closed subser of a metric space X. If either X or
LNT;E) is separable, then every continuous mdp f: A= IMNT,E) has a
continuous extension f: X — LMT; E) such that f(X) < dec [f(A)]

CORVOLLARY 1. If L'(T; E) is separable, then every closed decomposable
subset K < L'(T; E) is a retract of the whole space.

Following [16, p. 33], we say that a topological space K has the
compact fixed point property if every continuous map f: K — K with relati-
vely compact image has a fixed point. Theorem 1 yields a general fixed point
theorem, which is valid for I! spaces over any abstract measure space
(T, #, w) with a nonatomic probability measure U

CorOLLARY 2. Every closed decomposable set K < LY(T; E) has the com-
pact fixed point property. '

Indeed, if [MT;E) is separable, then Corollary 2 is an immediate
consequence of Corollary 1. To cover the case where LNT; E) is not
separable, let f: K — K be a continuous map whose image is relatively
compact, and let X be the closure of the convex hull of Sf(K). Since X is
compact, it is obviously separable. Using Theorem 1, extend the identity map
1on XNK to acontinuous map : X — K. The composition f oT maps X
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into X N K. By Schauder’s theorem, it has a fixed point Xe X N K, which is
then a fixed point of f.

The next two theorems are concerned with multivalued maps having
decomposable values. They provide the analogues of the selection theorems
by Cellina and Michael, respectively.

TueoREM 2. Let X be a metric space and let F: X — D(LY(T; E)) be a
H-us.c. multifunction with decomposable values. If either X or L*(T; E) is
separable, then for every & > 0 there exists a continuous map f,: X — L} (T, E)
such that

graph(f,) € B(graph (F), ¢).

Moreover, f,(X) < dec[F(X)].

TueorEM 3. Let X be a separable metric space, and let F: X
~ D(LXN(T; E)) be a Ls.c. multifunction with closed decomposable values. Then
F has a continuous selection.

Remark. For simplicity, the above results are stated in terms of a
probability measure g, but they all can be easily extended to the case where
¢ is any nonatomic, nonnegative, bounded measure on (7, #). For this
purpose, it suffices to consider the probability measure 7= [u(T)] ' pu,
which is equivalent to .

4. Three technical lemmas.

Lemma 1. Let (T, #, 1) be a measure space with a c-algebra F of
subsets of T and a nonatomic probability measure u on F. Let (g,),50 be a
sequence of nonnegative functions in I} (T; R) with g, = 1. Then there exists a
map ®: R x[0, 17— &F with the following properties:

(@) P(r, 4) SP(1, 43) if A < Ay,

(b) (B (r1, A) AP (13, a)) < [y — Ayl + 21y —14,

©) foxs9ndtt =4[ gudp Vn<re,

Jor all /103:, A,€[0,1], 7, 74,7, 2 0.

Proof. The lemma will be proved first in a special case, assuming that

4.1) fgndu=1 Vnz0.
3

By induction on n, we shall define a sequence of families of measurable
sets {4}, Ae[0, 1]}, n 20, and a decreasing sequence of g-algebras F#" < &
with the following properties:

(i) p(4)) =4,

(i) Ale #",

(il) 4%, =47, whenever 4, < 4,,

(iv) #F'=a{A}; 1e[0, 1],

(V) w(A) = [, g;di whenever e F", i < n.
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To do this, using Lyapunov’s theorem [9], construct a family of sets {49
such that (i) and (iii) hold for n =0, and let Z° be the c-algebra generated
by the sets A2. Let now A7 be defined for all Lef0, 1] and all m< n—1 so
that the properties (i}-(v) hold. Apply Lyapunov s theorem to the two
nonatomic measures yu and Mn =g, 4 on the measurable space (T, FY),
This yields a family of sets {4}; Ae[O0, 1]} such that (i), (11) and (iii) hold for
n. Define #" by (iv). We then have

u(d) = [godp (e F7),
A

because the equality holds whenever A = Aj for some 4, and the family of
sets {A}; Ae[0, 1]} is increasing and, by definition, generates #". If i < n,
then Ae %" implies Ae & = F", hence (v) is a consequence of the inductive
hypothesis.

We now define the sets &(r, l) as follows

If © is an integer, ®(r, 1) =

If £ = n+ 6 with n integer, 0 < b <1, we consider two cases: when.A < ¢
we set ®(z, A) = Ai*!; when 1> & we set (7, 4) = A5"! L 4}, where ¢ is
the smallest number in [0, 1] for which the equality u(A" "1y A = A holds.

Notice -that for any n, 6 the function

=Y (O =pn(A5* v 4y

is Lipschitz-continuous and nondecreasing, with ¥ (0) =46, (1) = 1. In the

case & <A < 1,theset {£€[0,1]; ¥ (&) = A} is nonempty, closed and connect-

ed, hence it contains a minimal element. The map @ is thus well defined.
The verification. of (a) is elementary. By construction, we also have

42) p(@@ ) =1 V=0, ielo, 1]

Observe that on #" the measures ¢, [, ..., g, u all coincide with p
=g, 1, because of (v). Since ®(t, A)e F" whenever © > n, (4 2) 1mphes (©). To
prove (b) notice that (a) and (4.2) together yield

(ml)z\_\mzz)) i=2s) Y, Ay, A

it suffices to prove the inequality
#(¢(Th }') A¢(T27 A)) S.

Therefore, to establish (b),
@3y

2y ”?2|-
Moreover, we can assume that t, <1, and that t,, 7, both be‘long' to the
same interval [n, n+1]. For i =1, 2, set §; = 1,—n and, if A > §;, let d(v;, 4)
= A3"* U A} Three cases must be con&dercd

1) If A < 8y <&,, then P(zy, ) = P(1,, ) = 41" and (4.3) holds tri-
vially.

i
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2) If §; £ 4 8,, then
p(® (g, D APy, D) < p(A5 U A )AA"“)+,u(A"“AA"“
=(A=8)+(0,—8;) € 2(5,=8,)

3) If 6, <3, < A, observe that 457! = Ajrt and §, 2 4%, Using these
relations, we obtain

(P (2, D\P (g, A)+u(®(ry, M\ S (15, 1))
u A:M 1 \AII"I L +/.l(d)(‘l'1, A.)\(A"’H ))
= (0= 00)+ (P (g, A)~ ~u(Ajrt o AL)
K (0 ~8)+A~[A—(6,—6,)] = 2|t; —14].
Here the last inequu]ity is deduced from the inclusion
(Anll \(AHH\AM-X (Ag+1
1
The above estimates complete the proof of Lemma 1 under the additional
assumption (4.1).

To treat the general case; for each n= 0, set g, =1 if g, = 0 y-almost
everywhere; otherwise define g, = [[,. g,,clu] Vg, I 4{®(r, 1)} is a family of
sets which satisfy (a)-(c) for the sequence (g,), one can easily check that these
same sels satisly (a)-(c) for the sequence (g,) as well. m

Lemma 2. Let X be a separable metric space, and let ¢,: X — L'(T; R),
hy X =[0,17 (n21) be two sequences of continuous functions, with
QX)) 20 Vxe X, ViteT, and such that {supp(h,); n= 1} is a locally finite
(closed) covering of X. Then, for every ¢ >0 and every continuous etrzc.tly
positive function I: X — R, there exist u continuous function v: X — RY and

a map @: R* x[0, 1]~ & which satisfy conditions (a), (b) in Lemma 1
together with

(¢)  For all xeX, 2¢[0,1] and nz

|

D(x),A)

= 2|1, —1,].

U AL).

1, if h,(x)=1 then

@u(X)dp—2 [ @, (x) dy| < &/(41(x)).
T .
Proof. Let ¢ =0 and [ be given. For every xeX, choose an open
neighborhood U, of x which intersects the supports of finitely many func-
tions hn, so thal the set of indices I, = {n; U, nsupp(h,) # @) is finite. Set

Y () = hy(x) o, (x)e L (T} R) and define
(44) V= ¥ e U W (x) = ux)ll <e/(81(x) Vaely}.
The family {¥,; xe X} is an open covering of the paracompact separable

space X. Hence, there exists a sequence of functions k,,: X —[0, 1] such'that
the family {supp(k,); m = 1} is a countable nbd-finite refinement of [V} and
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the sets W, = 'xe X; k,(x) = 1! still cover X. For all m > 1, select x,, such
that W, = V, . Define the sequence (¢;);>0 in LM(T; R) by setting: ¢; = ¥,(x,,)
if j =273 for some integers m, n > 1; g; =1 otherwise. Moreover, set
(4.5) T(x) =Y, kuy(x)h,(x)2"3"
mnz1

The function 7 is continuous, because the summation in (4.5) is locally finite.
Using Lemma 1, construct a map ¢ which satisfies (a)-(c) for the sequence
(9))j»0- We claim that (¢') holds as well

To see this, fix xe X, n>1 and A€[0, 1]. For some index m, xe W,,. If
h,(x) =1, then

| I Pn (x) d:u_;l' [ P (x) du|
(x),A) T

< [ Wa—valxaldut] |

l//n(xm) d/"— A ‘ l//n (xm) d,u|
Bz(x),4) Pr(x),2) T

+2 j W’n (xm) ”]//n (x)l dp'
T

< ZHlpn(x)“Wn(xm)Hl'i_| ‘. g2m3nd“‘——i‘[.’:lzm3nd1u|'
r(x), 4} T

By (44), since xeV, , the first term of this last expression is less than

¢/(41(x)), while the second term vanishes because 7(x) = 2"3", by (4.5). =
Lemma 3. Let X be a paracompact topological space. For every xe X, let.

U, be an open neighborhood of x and let M(x) be an integer number. Then

there exists a continuous  function 1. X —R such that 1(x)
> min [M(x); xeU,} for every xeX.

Proof. Let {¥j; iel} be an open nbd-finite refinement of the covering
«, and let {p;(+); ieI} be a continuous pattition of unity subordinate to
}. For each i, select a point x; such that ¥, cU,. Define (x)

=Zisl pi(x) M (x;). Clearly, © is continuous. Moreover,
min {M(x); pi(x) # 0} = min {M (x); xeU,}

=
> min {M(x); xeU,}. =m

{
1
f
l

U
Vi
7(x)

5. Proof of Theorem 1. We assume first that L' (T; E) is separable, For
each xeX\ A, take an open ball B(x,r,) with radius r, <4d(x, 4). The
family {B(x,r,); xe X\ A} is an open covering of the paracompact space
X\ A, hence it admits an open nbd-finite refinement {V}; iel}. Here I is a
possibly uncountable set of indices. For each i, choose two points x;e ¥} and
yieA such that d(x;, y;) < 2d(x;, 4). Using the separability assumption,
select a countable subset D = {u,; n> 1} of f(4) which is dense in f(4).
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Define the sequence (gi)so in L'(T; R) by setting
Uy, (1) = u, (O]
it} = {u (= ()l

1 otherwise.

whenever k = 2" 3" for some m, n > 1;

Applying Lemma 1 to this sequence, we obtain a family {®(z, 1)} of
measurable subsets of T with the properties (a)-{(c). For each iel, choose
u,pe D such that lu,g—f ()l <d(x;, y). Let \p(-); iel] be a continuous
partition of unity subordinate to the covering {V;]. For every n 2 1, define
the open set W, =1{J{V; v(i)=n} and let g¢,(x) =va=n1’f('\‘)‘ Clearly,
lg,(+): n= 1] is a continuous partition of unity subordinate to the locally
finite open covering {W,}. Construct a sequence ol continuous functions
(h)nz1 such that h, =1 on supp(q,) and supp(h,) € W,. For every xe X\ A,
define A,(x) =3 _ ga.(x), n0, and consider the function

nEn

T =T () hy(x) 273",

mnz1,

Notice that 7 is continuous on X\ A and that

(5.1) T(x) = 2"3" VY xesupp (g, Osupp(q,).

We can now extend the map f to the whole space X by setting

flx) if xeA,
O =Y u g, if xeX\4,

nz1
where

X (X) = Xapte(), 2,0\ @31, Ay 1 (6

It is clear that f maps X into dec[f(4)]. Moreover, 7 is continuous on
X\ A, because the functions () and 4,(:) (n=0) are continuous, the
characteristic function of the set @(r, A) varies continuously in L' (T; R) w.r.t.
the parameters ¢ and 4, and because the summation defining S is locally
finite.

To prove that [ is continuous on A, let aed and £>0 be given.
Choose 8 > 0 such that § <e/12 and || f ()~ (@), <&/2 whenever ye 4,
d(y, a) <128, If d(x,a) <& and xe¥] for some iel, then diam(V)) < 2,
d(x;, A) < 36 and d(x;, y) < 68. Therefore, p;(x) # 0 implies that d(y;, a)
<98, ||lf ) =f @l <2 and |luyg—f(a)ll, <& From the last inequality, it
follows that

(5.2) llu,~f (a)l, <& Vn such that g,(x)# 0.
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For any xe X\ A with d(x, a) <8, fix an integer j for which ¢;(x) # 0. Using
(5.1), (5.2) and the property (c) of the sets ®(z, ), we obtain the estimate
1/ (@) =7 Gollly < 11 (@) —ufly +llu; = (=)Ix

<&+ Z J.”uj_un”E Xn(x)d.u
n=1T

s

&+

]

{95550 ta(¥)dpt

n=1T

=g+

iMs

qn(x) j’gzjyld/‘l =&+ 21 q:;(x) Huj“unnl < 3e.
T n=

Since & was arbitrary, this completes the proof in the case where L!'(T; E) is
separable.

When X is separable, only minor modifications of the above arguments
are needed. Consider again the open covering {B(x,r,); xeX\A4} and a
locally finite refinement {¥; iel}. Notice that in this case the set I is
necessarily countable, since X\ A4 is separable. For each i, choose x& ¥,
yi€e A such that d(x;, y;) <2d(x;, A). It now suffices to define the countable
set. D = {f(y); iel} = I'(T; E) and arrange its elements into a sequence,
say ‘D = {u,; n > 1}. From this point on, the proof runs exactly as in the
previous case. ‘

6. Proof of Theorem 2. The following proof is an adaptation of the
arguments given in [5]. ‘

Assume first that L'(T; E) is separable. Fix ¢ > 0. For every xeX,
choose a number 4(x)e]0, ¢/6[ such that F(x') < B(F(x), £/6) whenever
x'€B(x, 8(x)). Let {¥;; iel} be an open nbd-finite refinement of the cover-
ing {B(x, 8(x)/2); xeX} of X. For each i, choose x;eX such that
V; € B(x;, 6(x)/2) and select weF(x;). For i,jel, choose also v €F(x)
such that

(6.0)  llw—y fly < of6+inf {lw—oll; ve F (%)} = e/6+d,, (w, F(x)).

Let D= {y,; n>1) be a countable dense subset of F(X). For every iel
select a y,qeD for which |ju,— Yvilli <&/6. The set D' of. all functions
geL‘(T; R) of the form g (2} = ||y, (t) —y, @), m, n > 1, is countable. Arrange
its e.lcments into a sequence, say D' = {g,; k> 1}. Let {p(+); iel} be a
continuous partition of unity subordinate to the covering {¥;}. For every n
2 1, define the open set W, = {V; v(i)) = n} and let g,(x) = ) pi().
Clearly, {g,(-); n> 1} is a continuous partition of unity subordinvz(tit): to the
nbd-finite open covering {W,}. Define

(6.2) In() =3 G (%)

m<n

(n=0, xeX).
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For every xe X, take an open neighborhood U, of x which intersects finitely
many sets V;. Setting [(U,) = liel; U NV, # @}, this of course means that
N(x) =#1(U,) is a finite integer. For every couple of indices i, jelI(U,),
choose a ;€D such that

(6.3) IYsg, 0 —tiils < &/(6N (x)).
Let M (x) be an integer so large that the set {g,; 1 < k < M(x)} contains the
finite set of functions {||yyg—Yyujulles i, je I{UL)} €D'. Applying Lemma 3
to the collection of neighborhoods {U,; xe X} and integers M (x), we get the
existence of a continuous function 7: X — R* such that
(64) (%) > min {M(x); xe U}

Recalling (6.2), the map f;: X — L'(T; E) can now be defined by, setting
(65) L) =T v a0, |

nx1 " '
Here {®(r, )} is the family of sets constructed in Lemma 1 relative to the
sequence (gy)x»; of elements of D', and '
X (X) = X @e(9, 2\ D), A 1 (30)° ; v

It i easily checked that f, is continuous and takes values inside dec[F )]

To show that f, is an ¢-approximate selection, fix xe' X and define I(x)
= {iel; p(x) %0}, J{x) = {n = 1; q,(x) + 0}. Notice that #J (x) <$I(x) <
+o0. Since I(x) is . finite, there exists an iel(x) such that o = 6(xp
=max {8 (x;); ieI(x)}. For every iel(x) we have x;eB(x;, 6), hence
(6.6) F(x) < B(F(xp), ¢/6).

Take a point ze X such that xe U, and M (z) = min {M(x); xe U,}. For
every neJ(x), select an index i,el(x) =I(U,) such that v(i,) = n. Define

W= Z bi,,,f‘Xn(x)‘

W= Z yv(i,,,f,:) *Xn (x):
nzl . nz1 )

Notice that w'e F (xp). For every neJ(x), using (6.1), (6.3) and (6.6) we optain

(67 (190 = Pyipialls S 1yt Jls g, = Vi lls 11000 = Yol s

: < o/6-+[8/6+dy, (u, F ()] +4/(6N (2) < de.

Relying on the properties of the sets P(r, 1) and recalling that by (6.4), t(x)

= M(z), from (6.7) we deduce the estimates

(68) =Wl = T (1= Srigiolls 103

nzl T

= Y d()Ys— Yol S 3,
nZ1 .
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(6.9) w=wly = 3 [Veie =0l 2. () dp
nz1T

¥J(x)-e #I(U,)¢
< Vi) " Uil S S = = /6.
ng}ﬂ”)’(n,.) ,,,”1 6N (2) 6N (z)

u
~—
I~

Putting together (6.8) and (6.9), one has
dy gt (06 £5), Gxp, )
Sdy(x, x)+ £ ) =Wl +]w—w|l; <&/6+2e/3+¢/6=¢.

Hence (x, f,(x))e B(graph(F), ¢). This completes the proof in the case where
L'(T; E) is separable.

When X is separable, a slight modification of the above arguments is
needed. The nbd-finite open covering {V; iel] of X is now countable,
because of the separability assumption. It is therefore possible to define the
countable set D = {u; iel} v {v;; i, jel} and arrange it into a sequence,
say D = {y,; n>1}. After this choice of the set D, the rest of the proof goes
exactly as in the previous case.

7. Proof of Theorem 3. In what follows, the main arguments are taken
from [7]. We list first some preliminary results.

Prorosition 1. For every family A" of nonnegative measurable functions
u: T > R™, there exists a measurable function v: T—R* such that

() v<u peae for all ue s,

(i) if w is a measurable function such that w <u p-ae. for all ue ¥,
then w < v p-ae.

Furthermore, there exists a sequence (u,) in ¥ such that

o(t) =inf {u,(t); n= 1) for ae. tin T.

If the family A is directed downwards (i.e. if for any u, u'e A there exists
we A" such that w < u and w < u' p-a.e), then the sequence (u,) can be chosen
to be decreasing.

For the proof, see Neveu [14, p. 121].

By (ii), the function v is unique up to p-equivalence. It represents the
greatest lower bound of %" in the sense of u-a.e. inequality, and is denoted
by essinf {u; ue A7),

Prorosition 2. Let K be a nonempty closed decomposable subset of
L'(T; E) and let (1) = essinf {||u(t)|lg; ueK}. Then, Sor every voe L'(T; R)
such that vo(t) > Y (t) p-ae., there exists an element uge K such that

(7.1) lug Mz <vo(t)  p-ace.
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Proof. Notice that the set # = {||u(')|lz; ueK) is a decomposable
subset ‘of L' (T; R). Therefore, it is directed downwards. Using Proposition 1,
take a sequence (u,),»; in K such that

lum@lle = llun@lle  Ym <n, teT,

V()= lim Ju, (@)l p-ae.

Let now v, be given, with vo(f) > ¥ (¢) u-a.e, and define the increasing
sequence of sets: To =@, T, = lte T |lu,(llr <vo(t)l, n= 1. Observe that
#(T\Unzo T) = 0. Define the sequence (w,) by setting .

H{uk(t) if teT\ T, k=1,...,n—1,
W= it reT\ U T,
k<n

Since K is decomposable, each w, belongs to K. Moreover, the sequence
w,(t) is eventually constant for a.e. te T, and ||lw,(t)l|g < |Juy (Dl x-a.e.; hence,
by the Dominated Convergence Theorem, w, converges in L'(T; E) to some
function wug. Clearly, uye K because K is closed. Finally, if te T,\T,-, for
some n, then |jug(?)|lg = ||, ()llg < vo(t). Therefore, u, satisfies (7.1‘). B

PROPOSITION 3. Let X be a metric space and let F: X — D(L'(T; E)) be
Lsc. map with closed decomposable values. For all xe X, set Y.(r)
=essinf {|ju()lg: ueF(x)}. Then the multivalued map P: X —I}(T; R) de-
fined as

(7.2) P(x)= e L'(T; R); v(t) > (1) prae.)
is lower semicontinuous.

Proof. Let C be an arbitrary closed subset of L'(T; R). It suffices to
show that, if P(x,) < C for some sequence (x,),», converging to X, then also
P(xy) © C. To this purpose, fix any vye P(xq) and take, by Proposition 2, a
function uge& F(xg) such that |lug(t)lg <vo(t) m-ae. Because of the lower
semicontinuity of F, there exists a sequence u,e F(x,) such that u, — u, in
LT, E). Then, for every n 2 1, the function v, = ||u,lg+vo —luoll belongs
to P(x,) which is contained in C. Since the sequence (v,) converges to vy in
the norm of L'(T, R) and C is closed, this implies voeC. =

ProvositioN 4. Let X be a metric space and let G X —*l)(l,l‘('l“; E)) be
d Ls.c. map with closed decomposable values. Assume that g: X — L' (T: E) and
@ X — LN(T; R) are continuous functions such that, for every xe X, the set

H(x) = {ue Gx); [u{)—~gx) e < @(0)() p-ae]

is nonempty, Then the map H: X mrD(L‘(T; E)) is ls.c. with decomposable
values.

6 - Studin Mathematicn 90.1,
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Proof. For every xe X, H(x) is the intersection of two decomposable
sets, hence it is decomposable. To check the lower semicontinuity of H, let C
be any closed subset of ['(T; E). It suffices to show that, for any sequence
(x,) in X converging to a point x,, if H(x,)eC for all n > 1, then H(x,) < C.

To this purpose, fix any uge H(x,). Because of the lower semicontinuity
of G, there exists a sequence u,e G(x,) such that u, —u, in L' (T; E). By
possibly taking a subsequence, we can assume that u,(t), g(x,) (1), @{(x,)(t)
converge to ug (1), ¢(xo)(t), @{xo)(t) respectively, p-ae. in T Applying Ego-

_rov’s theorem to these sequences w.r.t. the measure @(xXo)-u for each iz 1
we obtain a measurable set T, = T such that u,, g(x,) and @(x,) converge
uniformly on T, and [py, @ (xo)du < 1/i. For each k> 1, consider the sets

T = {te T {uo () —g (xo)(llz < ¢ (x0} () —1/k}.

Notice that {J,»; ¥ = T; and T*¥ = T**'. Hence, for every i >

a k(i) such that

1, there exists

[ o(xo)du <.
PRV

Define T;' = T*". The sets T have the following properties:

(7.3) [ olxo)du <2/,
T\T;
(74) lluo (1) =g (xo)(Ollz < @(x0)~1/k() VteT.
By (7.4) and by the uniform convergence on T}, for all i = 1 there exists some
n; such that
(7.5 lu, (=g (x)De < @(x)(&) VteT, nzn

We can also assume that the sequence (n;);5, is strictly increasing. For each
n, choose an arbitrary w,e H(x,) and set, for m, <n <n,,

Uy = Uy X1} + Wy dr\Tp
i t

Since H(x,) is decomposable, v,e H(x,). We claim that v, — u, in L'(T: E),
which implies uye C.
Indeed, for n, <n <ny,, (7.3) and (7.5) yield

loa—uolly < | lwa—gxMledu+ [ lig(%)—g o)l dut
T\T} T\T}
+ | llgCeo)—vollg dut [ [lu,—uollg dp
T} T

<TJT () du+llg (x)—gXolly+ [ ¢ (xo) dpu-t|[u—tto|| 4
T TiT]

S [+l (x) = @ (ol 11+ 11g (%) — g (eoly +2/i |ty — gl -

As n— +o0, we also have i — 400, hence our claim is proved. w
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The next result, concerning the existence of approximate selections, is
the core of the whole proof of Theorem 3.

ProrosiTioN 5. Let X be a separable metric space and let G: X
=D (L'(T; E)) be a Ls.c. map with closed decomposable values. Then, for every
&> 0, there exist continuous maps f,: X — L'(T; E) and ¢@,: X — [} (T; R)
such that f, is an c-approximate selection of G, in the sense that, for each
xe X, the set

(7.6) G, (x) = {ueG(x); lu)—£,(x) Ol < ¢ (x)(1) p-ae)

is nonempty, and |l¢,(x)||; <& Moreover, the map x= G, (x) is ls.c. with
decomposable values.

Proof. Fix & > 0. For every Xe X and e G(X), the multivalued map Q
defined as

(77 Q)= ve L'(T: R); v(t) = essinf {||u(t)—#(0)lg; ue G(x))

for ae. teT)

is Ls.c. with closed convex values.

To see this, define F(x) = {u~ii; ue G(x)}. Then the map F is also ls.c.
with closed decomposable values. By Proposition 3, the multivalued map P
defined in (7.2) is ls.c. Hence Q is also ls.c., because Q(x) is the closure of
P(x), for all xe X.

It is therefore possible to apply Michael's theorem to Q and obtain a
continuous selection ¢g; such that ¢g;(x)eQ(x) for all xe X and g z(X)
=0. The family of sets

{(xe X; llpsall; <e/d); Xe X, TeG(%)}

is an open covering of the separable metric space X, therefore it has a
countable nbd-finite open refinement {¥,; n > 1}. Let {p,(*)} be a conti-
nuous partition of unity subordinate to the covering {¥,} and let {h,(:)} be a
family of continuous functions from X into [0, 1] such that h, =1 on
supp(p,) and supp(h,) < ¥,. For every n>1, choose x,, u, such that
V, & 4x5 oy, (), <e/4} and set ¢, = ¢, . The functions ¢, have the
following properties:

(78) Pu(X)(1) 2
(79) ' pn(x)”(pn(x)lll

essinf {[ju(t)—u, (Ol ueG(x),
< py(x)-e/4  (xeX, nz1).
Lemma 2, applied to the sequences {¢p,} and {h,}, and to the function I:

I(x) =3 ., hy(x), yields a continuous function 7: X —R* and a family
{®(x, ) of measurable subsets of T satisfying (a), (b) and (c¢).
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It is now possible to construct the functions f, and ¢,. Set 4,
:st,,Pm (x), and define

L) =3 uxl®),  0u(x) =2/44 Y 04(x) 24 (),

nz1 nz1

= 01 ,1" (X)

where

Xa(X) =

Clearly, f, and ¢, are continuous, because the above summations are locally
finite.

Let G, be defined by (7.6). To check that the values of G, are nonempty,

fix any xe X. For every n> 1, use Proposition 2 and select uye G(x) such
that

(7.10) It (1) —

K (3, Ay NAB(E(X), Ay — 1 () *

un (t)llg < &/4+ess inf {||u(t) —u, (@)l|s; ueG(x))

p-a.e. in T. Then

Uy = Z u;‘c’Xn(x)
nz1

lies in G(x), because G (x) is decomposable. We claim that u, & G, (x). Indeed,

(7.8) and (7.10) yield

lhex (O =£, () O)le < X 150~ 4y Ol 20 (3) (1)

nz1

<@, (x)(t) p-ae in T
Hence G,(x)# Q. Being the intersection of two decomposable sets, G, (x)
is also decomposable. The lower semicontinuity of G, follows from Proposi-
tion 4.

To conclude the proof of Proposition 5, it now suffices to show that
llps (), <& for every x. Set I(x) ={n>1; p,(x) >0} and notice that
1<#$1(x) < l(x). From (¢) in Lemma 2 and (7.9) we deduce

lloa()lly = e/4+ 3 I(Pn(x) Xn(X) du

nz1T

<efd+ 3 [P llon(¥)ls +¢/(21(0)]

nel(x)

<efd+ [c/4 ﬁﬂi‘%f J <e

At this stage, everything is ready for the completion of the proof of
Theotem 3.
. Let the function F be given. Construct two sequences of continuous
maps f,: X — L'(T; E) and ¢,: X — L}(T; R), and a sequence of Ls.c. multi-
functions G, with decomposable values, such that, for all xe X and n3 1,
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(i) Gy(x) = {ueF(x); II“ H=La()(Olls < @a(x) (1) prae} = O,
(i) 11, 0) (O~ 1 DOz < @a( O+ ey (X)) pae. in T (03> 2),
(i) |, (x)lly <277

To do this, define f; and ¢, by applying Proposition 5 with G = F, ¢ = 1/2.
Let now fn, ¢, and G, be defined so that (i)-(iii) hold for all m =1,
n—1. To construct f, and ¢, apply again Proposition S5 with ¢ = 2',
defining G(x) to be the closure of G, (x), for all x. By induction, the maps
Jw @n and G, can be defined for all n 2 1. By (ii), the sequence (f,),», is
Cauchy in the L'-norm, hence it converges uniformly to some continuous
function f: X — L'(T; E). By (i) and (iii), d,; (f,(x), F(x)) <27". Since F(x)
is closed, this implies that f(x)eF(x) for all xe X, hence f is a selection of
F.w»
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