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Groups of isometries on operator algebras
by
STEEN PEDERSEN (Aarhus)

Abstract. Let ¢ be a Cy-group of isometries on a unital C*-algebra 4. If u(t) = o(t) 1 and
aft)a = u(ty*o(r)a, then o(t)a =u(t)a(t)a, « is a Coy-group of *-automorphisms on A and u is
a unitary I-cocycle. We study this decomposition of g; as a consequence we obtain
a classification of the generators of Cy-groups of isometries on A.

Introduction. In [18] Kadison proved that an isometry of a unital
C*-algebra A4 onto itself can be decomposed into a C*-homomorphism
followed by multiplication by a unitary. We study the consequences of
applying this decomposition to a strongly continuous isometric representa-
tion ¢ of 4 topological group on 4. We prove that the C*-homomorphic
part of ¢ is a strongly continuous group of *-automorphisms and that ¢ is
norm-continuous if 4 is a von Neumann algebra. We establish conditions,
global as well as local, which are satisfied by ¢ if and only if it is a group
of #-automorphisms. :

Using perturbation theory for s-automorphism groups we prove that
if ¢ is a one-parameter group of isometries on A with generator 6, then
there exist (y, v, h), where y is the generator of a one-parameter group of
*-automorphisms on 4, v is a unitary in 4 and & is a selfadjoint element of
A, such that 2(8) = v* 2(y) and

6 (a) = v* y(va)+iv* hva

for a in & (8). Using this we give local and global conditions equivalent to
the fact that the unitary part of ¢ is a group.

In the next part of the paper we specialize to the case where o is
a one-parameter group. We observe that in some representations of 4, ¢(t)a
=u(tyav(t), where u and v are strongly continuous unitary groups.
We study the generators of (semi-) groups of this form.

This study was motivated by applications to quantum mechanics (e.g.
[15], [22], [25]) and partially inspired by the corresponding problems for
a one-parameter semigroup on a Hilbert space if each element of the
semigroup is polar decomposed [11], [12].

2 - Studia Mathematica XC.2
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§0. Notation. If X is a Banach space, then B(X) denotes the algebra of
all bounded linear maps from X into X. If G is a topological space and o
is a map from G into B(X), then ¢ is strongly continuous if g-— o(g) f is
a continuous map from G into X for each fin X.

If G is a group; then a map g from G into B(X) is called a representation
of Gon X if g(e) =1 and g(gh) = ¢(g)o(h) for g and h in G, where e is the
unit in G and 1 is the identity on X. A representation of the additive group
of real numbers will sometimes be called a one-parameter group.

Let R, denote the set of nonnegative real numbers. A strongly (resp.
weak*) continuous semigroup on X (resp. X*) is a map ¢ from R, into
B(X) (resp. B(X*)) such that ¢ is strongly continuous, ¢(0) = 1 and g(s+1)
=0(s)o(t) for s and ¢ in R, (resp. there exists a strongly continuous
semigroup ¢, on X such that o(t) = g, (¢)* for t in R,). If ¢ is a strongly
continuous semigroup, then the generator § of ¢ is defined by

5(f)=1ri113(9(1)f—f)/£,

the domain 2 (J) of § being the fin X where the limit exists. If ¢ is weak*
continuous, then the generator of ¢ is the adjoint of the generator of g,. If ¢
is a strongly (weak*) continuous semigroup with generator §, then we write
¢(t) = exp(t6).

If ¢ is a representation (resp. semigroup), then g is an isometric (contrac-
tion etc.) representation (resp. semigroup) if each g(g) is an isometry (contrac-
tion etc.).

Let A be a C*-algebra with unit 1. Denote by U(A) the unitary group in
A. For b in A denote by L(b) (resp. R(b)) the element in B(A) defined by
L(b)a = ba (resp. R(b)a = ab).

Fix o in B(A). « is called a C*-homomorphism if o (1) = 1, o (a*) = a(a)*
for a in A, and o(a? = a(a®) for selfadjoint a in A. « is a (x-) homomorphism
if (a(a*) =a(a)* and) a(ab) =a(a)a(b) for ¢ and b in A. « is an anti-
homomorphism if o (ab) = a(b)a(a) for a and b in A.

Let § be a linear (unbounded) map on A4, with domain % (). Then § is
symmetric if a €Z(8) implies a* €2 (8) and §(a*) = 6(a)*, § is a derivation if
a, be %(6) imply abe Z(6) and d(ab) = 6(a)b+ad(b). A symmetric deriva-
tion is called a *-derivation.

For background material on C*-algebras, representations and semigroups,
we refer the reader to [3], [8], [24] and [27].

§1. Groups on C*-algebras. We introduce the polar decomposition of an
isometric representation ¢ of a group G on a unital C*-algebra A, and we
investigate some of its basic properties.

The following result is an immediate consequence of [18, Theorem 7]
and [26, Corollary 2].
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Tueorem 1.1. Let A be a unital C*-algebra and let ¢ be a bounded
linear map on A. If ¢ is surjective, then o is an isometry if and only if
e(U(A) = U(4). If ¢(U(A)) S U (A) then ¢ = L(u)a, where u is in U(A) and
a is a C*-homomorphism; the decomposition is unique. )

DEerINITION 1.2. The decomposition ¢ = L(w)o in Theorem 1.1 will be
called the polar decomposition of p, because it is analogous to the polar
decomposition of Hilbert space operators.

If ¢ is a map from a set G into B(4) and ¢(g) U(4) < U(A) for each g
in G, then we define u: G—U(A4) and a: G— B(A4) by the requirement
that o(g) = L(u(g))a(g) is the polar decomposition of g(g) for each g in G.
We call u (resp. «) the unitary (resp. positive or C*-homomorphic) part of o,
and the pair (u, o) is called the polar decomposition of g. Note that (u, o) is
determined by

u(g)=0(g)1eU(4), «lg)=L(u(g)*)alg)eB(4)

for g in G. In the following two results we study the continuity properties
of u and «a.

ProposiTION 1.3. Let G be a topological space and let go: G — B(A) be
strongly continuous. Assume that ¢(g) U(A) < U(A), and let (u, o) be the polar
decomposition of 9. Then g — u(g) is a continuous function from G into A, and
o is strongly continuous.

Proof. u(g)=e(g)1 is continuous by assumption. Since
lle(g) a—a (R} all < [lu(g)—u(h)illlall +lle(g)a—e(h) all
for g, h in G and a in A we conclude that a is strongly continuous.

THEOREM 14. Let G be a connected topological space, and let a be a
strongly continuous map from G into the surjective C*-homomorphisms on a
unital C*-algebra A. If there exists e in G such that o.(e) is a *~homomorphism,
then a(g) is a x-homomorphism for each g in G.

Proof. We only need to prove that a(g) is a homomorphism for each g
in G. Let = be an irreducible representation of A, and let G,(rn) (resp. G, (7))
be the set of g in G for which ma(g) is 2 homomorphism (resp. anti-
homomorphism). By [19, Theorem 2.6], G is the union of G, (n) and G,, (%).
We will prove that G = Gy (n). It is easy to see that both G,(rn) and G,, (%)
are closed. If the intersection of G,(n) and G,, (n) is empty, then the proof is
complete. Choose g in the intersection of Gy(n) and G,,(n). Since ma(g) maps
A onto m(A) the existence of such a g implies that n(4) is abelian, hence G
= G, (n) = G, (n). Since the direct sum of all irreducible representations of A
is faithful, each a(g) is a homomorphism, and this completes the proof of the
theorem.
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The following formula is the major tool used in the case where ¢ is an
isometric representation of a group.

LemMA 1.5. Let g be an isometric representation of a group G on a unital
C*-algebra A. If (u, a) is the polar decomposition of ¢, then u is a l-cocycle
wrt. a, ie.

u(gh) = ulg) a(g)(u(h)
for g and h in G.

Proof. Since ¢ is a representation,
u(gh) = e(gh1 = e(@)(e(W1) = u(g)a(g) (u(h)
which proves the lemma.

The following theorem is the major consequence of the results obtained
above.

TueorReM 1.6. Let G be a connected topological group, A a unital C*-
algebra and ¢ a strongly continuous isometric representation of G on A. Let
u(g) = o(9)1 and a(g) = L{u(9)*)o(g). Then o is a strongly continuous repre-
sentation of G on A by x-automorphisms.

Proof. By Proposition 1.3 and Theorem 1.4 it is enough to prove that
o(gh) = a(g)a(h) for g and h in G. By .Lemma 1.5

u(gh)a(ghya = o(gh)a = o(g)(e(h)a) = u(g)a(g) (u (k) x (k) a)
= u(g)a(g) (u(h)a(g) (2 (h) a) = u(gh)x(g) (x (h) a)
for a in A. This proves the theorem.

CoroLLARY 1.7. Let ¢ be a strongly continuous isometric representation of
a connected topological group G on a von Neumann algebra. If the topology on
G is metrizable, then ¢ is norm-continuous, i.e. |lo(g)—1|| — 0 as g —e.

Proof. « is norm-continuous by [10] or [20] hence g(g) = L(u(g))a(g)
is norm-continuous by Proposition 1.3.

The case where the von Neumann algebra is all of B(#) was considered
in [2]. Note that if a topological group G satisfies the first axiom of
countability, then the topology on G is metrizable [23].

Remark 1.8. We have the following converse of Theorem 1.6. Let G be
a group, u a map from G into U(4) and « a representation of G as *-
automorphisms of A. If u is a l-cocycle w.rt. «, then ¢(g) = L(u(g))a(g)
defines an isometric representation of G on A.with polar decomposition
(u, a).
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§2. The unitary part. Let G be a group and g an isometric representation
of G on a unita] C*-algebra 4. In this section we give global conditions
which make the unitary part of the polar decomposition (u, o) of ¢ a
representation of G.

The following result follows immediately from the cocycle property of
u (Lemma 1.5).

PropositioN 2.1. Fix g and h in G. Then u(gh) = u{g)u(h) if and only if
a(g)(u(h) = u(h).

ProposiTion 2.2. If G is a connected topological group and g is strongly
continuous, then the following three conditions are equivalent:

(1) u is a representation.

(2) The range of u is a subset of the fixed point algebra for the action of
G on A by a.

(3) L(u(g)) and a(h) commute for-all g and h in G.

Proof. (1)<« (2) is a trivial consequence of Proposition 2.1. Since « (k) is
a homomorphism (Theorem 1.4) we get

a(h) L(u(g))a = a(h)(u(g)x(h)a
for a in A. Using this it is easy to see that (2) and (3) are equivalent.

DeriNiTioN 2.3. Let ge B(A4) with oU(A4) < U(A) and let ¢ = L(u)a be
the polar decomposition of ¢. ¢ is said to be quasi-normal if L(u) and o
commute.

Remark 24. The term “quasi-normal” is chosen because a linear map
H on a Hilbert space is quasi-normal if and only if PU = UP, where H
= UP is the polar decomposition of H.

The following theorem is similar to [12, Theorem 2] (cf. also [11,
Theorem 6]).

THeEOREM 2.5. Let G be either the group of real numbers or the group of
complex numbers of modulus one. If p is a strongly continuous isometric
representation of G on a unital C*-algebra, then the following two conditions
are equivalent:

(1) ¢(g) is quasi-normal for each g in G.

(2) u(g)=re(g)1 is a representation of G.

Proof. (2)=(1) follows from Proposition 2.2
(1)=>(2). First we consider the case where G is the additive group of
reals. Since ¢ and «a are representations we get

L(u(nt))a(nt) = L{u())" a (n2)
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for t in G and n=1, 2, 3, ...; therefore
u(nt) = u(t)
for t in G and n=1, 2, 3, ...; in particular,
u(p/g+r/s)=u(1/(gs))™*" = u(p/g)u(r/s)
for p,q,r,s=1,2,3,...; by continuity
u(s+1t) =u(s)u(t)

for s, t = 0. Similarly one proves that u(s+t) = u(s)u(t) for s, t < 0. By these
equalities and the norm continuity of u

lim(e(t)1~1)/r and lim(g(f)1— 1)t
1|0 110

exist, hence 1€ 2(9), where & is the generator of ¢ [3], [8]. We deduce that
lim (u ()~ 1)/t = 6(1) = lim (u () — L)/z.
110 t10
Hence u(f) = exp(t(1)) for ¢ in G, in particular
u(s+t) =u(s)u(t)
for s and t in G.

If G is the multiplicative group of complex numbers of modulus one,
apply the result above to t — u(e"). This completes the proof.

Remark .2‘6‘ If T(r) is a strongly continuous one-parameter (semi-)
group on a Hilbert space and T(t) = U(t) P(¢) is the polar decomposition
of each T(r), then [12] U(Y) is a (semi-) group if P(¢) is a (semi-) group.

Next we indicate how one may construct a strongly continuous one-
parameter group @ of isometries on a unital C*-algebra 4 such that the
unitary part of ¢ is not a representation. The construction is carried out in
terms of the polar decomposition (u, x) of ¢ (cf. Remark 1.8).

Fix a strongly continuous one-parameter group « of x-automorphisms on
A. For each selfadjoint h in A4, the solution to

i u(s) = iu(s)o(s) h,

o u(0) =1

is a norm-differentiable unitary 1-cocycle w.rt. @ [1, Theorem 2]. It is easy
to see that .oc'(t)u(s) = u(s) (all real s and r) implies that a () H = h (all ¢); hence
by Proposition 2.1, u is a representation if and only if «()h = h for all .

§3. Generator results. In this section, we obtain a characterization of the
generators of isometric one-parameter groups on a unital C*-algebra. Special

icm
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attention is paid to the situation where the unitary part is differentiable.
Further, quasi-normal groups are classified in terms of their generators.

THEOREM 3.1. Let A be a unital C*-algebra and let 6 be a linear map on
A with domain 9 (). 0 is the generator of a strongly continuous one-parameter
group of isometries on A if and only if there exists a selfadjoint hin A and a
unitary v in A such that

(%) y(a) = v6 (v* a)—iha,

Jor a in D(y) =v2(5), is the generator of a strongly continuous one-parameter
group of w-automorphisms on A.

Proof. Let o(f) = exp(t5) be a group of isometries, and let (4, a) be the
polar decomposition of g. Since u is a 1-cocycle wrt. a, it follows from [6,
Corollary 4.4] that there exists v in U(4) and a (norm-) differentiable 1-
cocycle w such that u(t) = v*w(t)«(t)(v). By [1] and [6, Proposition 4.6], w
is the unique solution to the differential equation (d/dt)w(t) = iw(D)a(t)h,
w(0) = 1, where —i(d/dt)w(t),=o = h = h*c A. Hence, we get (x) and y is the
generator of a.

Conversely, assume that y is the generator of a group o of *-automor-
phisms on A. Let w be the solution to (d/df)w (t) = iw () a(t) (h), w(0) = 1; then
o(ha=v*w(t)a(t)(va) is a strongly continuous one-parameter group of
isometries on A. It is easy to see that the generator & of ¢ is determined by
(*). This completes the proof.

Remark 3.2. (a) The decomposition of & is unique in the sense that y is
the generator of the positive part of exp(t8) and for each unitary v* in 2(5),
there exists exactly one selfadjoint h in A4 such that (8, y, v, h) satisfy (+). In
fact, h = —ivd (v¥).

If (v*, w*) is a pair of unitaries in 2(8) and (h, k) are the corresponding
selfadjoint elements of A, ie. (v, h) and (w, k) satisfy (+), then i(k—h)
=y (ow¥).

(b) The above theorem is the infinitesimal version of the fact (Theorem
1.6) that all strongly continuous one-parameter groups ¢ of isometries on a
unital C*-algebra -4 are of the form o(t) = L(u ()} (), where a is a strongly
continuous group of x-automorphisms on A and u is a continuous unitary
1cocycle w.rt. a.

CoRrOLLARY 3.3. Let & be the generator of a strongly continuous one-
parameter group of isometries on a~unital C*-algebra. If 1 is in 9(0), then
9(8) is a *-subalgebra of A, 6(1)* = —5(1) and y=38—L(8(1) is a *-
derivation.
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Proof. Let h be the selfadjoint element of A corresponding to the
unitary 1€ 2(8). Then ih = (d/dt)u(0) = 6(1), hence é(1)* = —ih* = —§(1).
The other statements are part of Theorem 3.1. :

Our next result gives an algebraic characterization of the linear maps §
for which 6—L(8(1)) is a =-derivation.

ProposiTioN 3.4. Let A be a C*-alyebra and let 6 be a linear map on A
whose domain 7 (0) is a -algebra. Fix h in A and let y =8—L(h). The
Sfollowing two conditions are equivalent:

(1) (a) o(a*) = d(a)* + ha*—a* h*.

(b) 6(ab) = 6(a)b+ ad(b)—ahb.

(2) y is a *-derivation.

Further, if § satisfies (1), if A has a unit and 1e % (5), then h = §(1).

Proof. It is easy to see that § satisfies 1(a) (resp. 1(b)) if and only if y is
symmetric (resp. a derivation).
If 1e 2(0) then 0 =y(1) = 6(1)—h, i.e. h = 5(1). The proof is complete.

CoroOLLARY 3.5. Let (8, h) satisfy (1) of Proposition 3.4, let w be a state on
A and let (#, m, Q) be the cyclic representation associated with w. If () is
dense in A and

w(8(a)) = w(ha)
for a in D(0), then there exists a symmetric operator H on # such that
DH) =n(20)Q n(&(a))f=i((H~—ih)7z(a)*1c(a)H)f

for a in P(8) and f in 2(H).
Further, 8 is closable if n is faithful.

Proof. By assumption y = 6 —L(h) is a »-derivation and o(y(a) =0 for
a in 2(y). By [3, Corollary 3.2.27], é is closable if = is faithful. By [3,
Proposition 3.2.28] there exists a symmetric operator H on 4 such that

n(y(@)f = i(Hn(a)—n(a)H)t

for a in 2(y) and f in @(H)=n(2()Q. From this the proof is easily

completed.

Remark 3.6. The study of linear maps & satisfying the conclusions of
Corollary 3.5 was proposed in [14], where a set of sufficient conditions are
stated. These conditions are very strong, m fact, they imply that disa
.derivation (ie. &= 0).

The next corollary should be compared with [13], where a similar result

is obtained for a strongly continuous one- parameter group of 2-positive
maps.
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CoroLLARY 3.7. Let G be a simply connected Lie group and let X, ..., X,
be a basis for the Lie algebra of G. Let ¢ be a strongly continuous isometric
representation of G on a unital C*-algebra and let &; be the generator of
t —olexptX)) for all j. If 1e%(8;) for all j, then the folowmg four condi-
tions are equwalenr.

(1) Each d; is a =-derivation.

(2) 8;(1) =0 for all j.

3) Q(g) is a =-automorphism for all g in G.

4) 0(g)1 =1 for all g in G.

Proof. (1)<(2) by Corollary 3.3.

(3)<=-(4) by the uniqueness of the polar decomposition.
(4)=(2) is trivial.

(2) = (4). Choose coordinates of the second kind

g =exp(t; (9) X,)...exp(ta(9) X,)
in a neighbourhood of the.unit e in G. Then

0(g) = exp(r;(9)8y)...exp (12 (9) 8a)-

Hence ¢ has the wanted property in a neighbourhood of e and therefore
everywhere [7]. The proof is complete.

Tueorem 38. Let ¢ be a strongly continuous isometric one-parameter
group on a unital C*-algebra, let (u, ) be the polar decomposition of ¢ and let
& be the generator of o. The following eight conditions are equivalent:

(1) u(s)u(t) =u(s+1) for all s and t.

(2) u(s) =oa(t)u(s) for all s and t.

(3) L(u(t)oe(t) = o () L(u(r)) for all t

4) 1e2(8) and u(t) = exp(r6(1)).

(5) 1e2(5) and (1) u(s)= ()(E(l)u(s)) for all s and t.
(6) 1€ 2(5) and 5(1) = 2(t)5(1) for all 1.

(7) u(s)e 2(8) and 5(u(9)}——6(1)u ) for all s.

8) 1e 7 (5), 5(1)e 7(5) and 62(1) = 5(1)2.

Proof. (1)<«(2) < (3) <>(4) by Proposition 2.2 and (the proof of) Theo-
rem 2.5, (5)=(6) is trivial.
(2)<>(7) and (6)<>(8) since y =86—L(6(1)) is the genmerator of x by
Corollary 3.3.
(2) =(5). Since (2) implies (1) and (4) we see that
0= 2u() = 2 2(hu(9 = T u~000u()

=u(~1)0(t)d (u(s)~d(u(—1)e()u(s)
=a(t)(6 (Du(s))— (1) u(s).
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© (6) =(4). Since
£ u) = 05(1) = RB(1)u()

the uniqueness theorem from semigroup theory [8, Theorem 1.7] implies

o

u(t) = exp(tR(S(D)u(0) = Y "8 (1)Y/n! = exp(t5(1)).

n=0
This completes the proof.

The equivalence (1) <>(8) in Theorem 3.8 can be formulated as follows:

CoRroLLARY 3.9. The one-parameter group exp(td) is quasi-normal if and
only if we may take v =1 in Theorem 3.1 and the corresponding h = h*
satisfies he 2(y) and y(h) = 0.

It is not likely that one may take v # 1 in Corollary 3.9.

Remark 3.10. Note that [5, Lemma 2.1] is a trivial consequence of
Corollary 3.3, because if ¢ is constructed as in Remark 1.8, then the
assumption in [5, Lemma 217 is 1e2(6).

§ 4. Implemented groups. In this section we consider operators on
(subalgebras of) B(s#) of the form a— i(Ha—aK), where H and K are
operators on the Hilbert space 4. Our first result shows that the generator
of a norm-continuous one-parameter group of isometries is of this form, with
H and K bounded and selfadjoint.

THeEOREM 4.1. Let G be a connected locally compact abelian group or a
simply connected Lie group. If ¢ is a norm-continuous isometric representation
of G on a unital C*-algebra A, then there exist two norm-continuous unitary

representations U and V of G in A" (the enveloping von Neumann algebra of A)
such that

el@a=Ulg)aVig*
Jor all g in G and a in A.
Proof. Let (u, @) be the polar decomposition of o. By Theorem 1.6, « is
a norm-continuous representation of G on 4 by x-automorphisms, hence [9],
[24, Theorem 8.5.2] there exists a norm-continuous unitary representation V

of G in 4" such that a(g)a = V(g)aV(g)*. Let U(g) = u(g) V(9)*. Applying

Lemma 1.5 one proves that U is a representation of G. This completes the
proof.

Remark 4.2 If G is abelian then g — V(g)* is a representation of G.

&
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Let ¢ be a strongly continuous one-parameter group of isometries on a
unital C*-algebra A, and let (u,a) be the polar decomposition of g. By [21,
Theorem Al], A may be represented on a Hilbert space 2 so that « is
convariant, i.e. there exists a strongly continuous unitary group V on #
such that a(tya = V(t)*aV (). Let U(t) = u(r) V(1)*. Then g(f)a = U (t)aV (1),
where U and V are strongly continuous unitary groups on . If iH (resp.
iK) denotes the generator of U (resp. V), then there exists a unitary operator
¢ and a selfadjoint operator & on 4 such that 2(K)= ¢2(H) and Kf
= oHo* f+hf for f in @(K) (cf. eg. [6, Theorem 4.3]). The following
discussion is motivated by the observations above.

Derinimion 4.3, Let S and T be two densely defined unbounded linear
operators on . Denote by dg 1 the linear map on B(#) defined by 2(Js,1)
={aeB(#) | a2(T) < 2(S) and fe P(T)— (Sa—aT)f is bounded} and

Osr(@) f =i(Sa—aT)f

for fin &(T) and a in P (ds7). Let Dsr be the set of a in B(s#) for which
(f, 9 e 2(T) x2(S*) — (af, $* g)—(aT}f, g) is bounded.

LemMma 4.4. If S is closable with closure S, then @1 equals 2 (55.7)-

Proof. Fix a in Zgr and f in 2(T). By assumption, ge%(S*)
—{af, S* g) is bounded, hence afe Z(S) and therefore ae 2(65). The con-
verse inclusion is obvious.

Similarly to the proof of [3, Proposition 3.2.55] one proves

TueorReM 4.5. Letr exp(itH) and exp(—itK) be two strongly continuous
semigroups on the Hilbert space #, and let n be the weak* continuous
semigroup on B(s#) defined by

n(t)a = exp(itH) aexp(—itK)
Jor a in B(#) and t = 0. The generator of n is og .

COROLLARY 4.6. Let A < B(#) be a C*-algebra and let ¢ be a strongly

continuous semigroup on A. If g(t)a =n(t)a for all a in A and t > 0, then the

restriction 6, of dgx to the set of a in @y N A for which oy x(a)e A is the
generator of .

Proof Let 6 be the generator of ¢ and let § =0y It is obvious
that 6 =6, =6. Conversely, if ae%(5,), then (1—8)aeA, hence if b=
(1-8)"1(1—-5)a, then

(1—5)b=(1—_5)b=(1~5)a

and therefore a = be %(5). This completes the proof.
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ProrosiTioN 4.7. If S is closed, then dgr is both norm-norm and strong-
strong closed, and further

{aeB(#)| rana < 2(S), rana* < 2(T*)} < P (ds,r)-

Proof. Only the last assertion needs a proof. Fix g in %(S*) with
llgll <1, and let T,(f) =(af, S*g) for f in . Since |T,(f) < |ISafll, the
Banach-Steinhaus Theorem implies |(af, S*g)| < M |||l llgll for f in #, g in
Z(S*) and some fixed M > 0. Likewise |(aTf, g)l < M||f|l llgl| for fin % (T)
and g in . An application of Lemma 4.4 completes the proof.

THeOREM 4.8. Let T be a densely defined linear map on a Hilbert space
and let & = 6q .

(a) & is a derivation if T is symmetric.

(b) & is symmetric if T is closed.

(¢} T is symmetric if' & is a #-derivation and T is closed.
In particular, if T is closed, then T is symmetric if and only if 6r ¢ is a
s-derivation.

Proof. (a) Fix a and b in

Z(T*) =a2(T) = Z(T) and

i(Tab—ab T*) f = iTabf +a(d(b)—iTh) f = d(a) bf +ad(b) f.
(b) If f and g are in £(T*) and a is in %(), then the formula
(@*f, T*g)—(a*T* f, g) = (f, aT* g)—(T* f, ag)
%(0) and 6 (a*) = b(a)*.

(c) Fix a and .b in. 2(0) and let f and g be in
derivation we get :

(Tubf, g)—(abT* f, g) = (aTbf, g)—(abT* f, g)—(bf, Ta*g)+(bf, a* T* g).
Hence (aThf, g) = (bf, Ta* g), and therefore bf is in Z(T*) and (Tbf, a*g)
=(T* bf, a*g). Choosing a and b suitably one gets ¥(T) < ¥(T*) and

Tf = T* f for fin Z(T). Assertions (a) through (c) combined prove the last
assertion of the theorem.

() and f in 2(T*). We have

shows a*e

2 (T*). Since 6 is a *-

Finally, we briefly discuss the extension problem for the s-derivations
85 = Og,¢+. Trivially § = Timplies 85 < 67. Hence, if S is symmetric and T is
a maximal symmetric extension of S, then either §; or —d, = d_y is the
generator of a weak* continuous semigroup o of *-homomorphisms on
B(). It is clear that « cannot be extended to a one-parameter group unless
T is selfadjoint. Note that g = adS < g; this gives a connection with the
extension problem as formulated in [4], [16] and [17].
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learned that the norm-continuous case of Theorem 3.1 was handled in: A. M. Sinclair, Jordan
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The universal right K-property for
some interpolation spaces

by
MIECZYSLAW MASTYLO (Poznat)

Abstract. Under some conditions on a Banach couple 4 and the parameter & of the
K-method we show that the couples (‘Z{Lw’ Ag), (Ag, A.L;!/Js) have the universal right K-property if
and only if ¢ = Lf,, where ¢ is the fundamental function of the space @. These results are used
to obtain a characterization of some symmetric spaces E on (0, c0) such that the couple (E, L®)
has the universal right K-property. Moreover, it is proved that the couple (L', E)
does not have that property.

1. Introduction. We recall some notation from interpolation theory
(cf. [41, [13]).

A pair A =(A4,, A;) of Banach spaces is called a Banach couple if Aq
and A, are both continuously imbedded in some Hausdorff topological
vector space V.

For a Banach couple 4 = (4,, 4,) we can form the intersection Ay ™ A,
and the sum A,+A,. They are both Banach spaces in the natural norms
J(1, a; ff) and K(1, a; X), respectively, where

acAyn Ay,

inf  (laollay+tllalla,),

a=ag+ay

J(t, a; A) = max(|jal 4y tldll4, ),

K(t, a; )= ac Ao+ A4y,
for teR, =(0, ©).

Let a Banach space A be continuously imbedded in Ay + A;. The space
which consists of all limits in 4,+ 4, of bounded sequences in A4 is called the
Gagliardo completion of A with respect to Ao+ A4, and denoted by A~. The
space A~ is equipped with the norm |ld|, ~ = infsup,s [la,ll4, where the
infimum is taken over all sequences {a,} 2, bounded in 4 such that a, —a
in 4,+4,. The closure of AynA, = A4 in A4 is denoted by A°

Let A=(A,, A;) and B = (B, B,) be two Banach couples. A linear
operator acting from Ao+ 4, into Bo+ B, will be called a linear mapping
from the couple A into the couple B, written T A—B, if T maps
continuously 4; into B;, i =0, 1.
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