116

S. Pedersen

m[©]

[26] B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416.

[27] M. Takesaki, Theory of Operator Algebras I, Springer, New York 1979.

MATHEMATICS INSTITUTE AARHUS UNIVERSITY 8000 Aarhus C, Denmark

> Received October 1, 1986 (2219) Revised version April 22, 1987

Added in proof (January 1988). After having finished the work on this paper, the author learned that the norm-continuous case of Theorem 3.1 was handled in: A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.

STUDIA MATHEMATICA, T. XC. (1988)

The universal right K-property for some interpolation spaces

by

MIECZYSŁAW MASTYŁO (Poznań)

Abstract. Under some conditions on a Banach couple \overline{A} and the parameter Φ of the K-method we show that the couples $(\overline{A}_{L^{\infty}}, \overline{A}_{\Phi}), (\overline{A}_{\Phi}, \overline{A}_{L^{\infty}_{L^{\infty}}})$ have the universal right K-property if and only if $\Phi = L^{\infty}_{l/p}$, where φ is the fundamental function of the space Φ . These results are used to obtain a characterization of some symmetric spaces E on $(0, \infty)$ such that the couple (E, L^{∞}) has the universal right K-property. Moreover, it is proved that the couple (L^1, E) does not have that property.

1. Introduction. We recall some notation from interpolation theory (cf. $\lceil 4 \rceil$, $\lceil 13 \rceil$).

A pair $A = (A_0, A_1)$ of Banach spaces is called a *Banach couple* if A_0 and A_1 are both continuously imbedded in some Hausdorff topological vector space V.

For a Banach couple $\vec{A} = (A_0, A_1)$ we can form the intersection $A_0 \cap A_1$ and the sum $A_0 + A_1$. They are both Banach spaces in the natural norms $J(1, a; \vec{A})$ and $K(1, a; \vec{A})$, respectively, where

$$\begin{split} J(t, a; \vec{A}) &= \max(||a||_{A_0}, t \, ||a||_{A_1}), \quad a \in A_0 \cap A_1, \\ K(t, a; \vec{A}) &= \inf_{a = a_0 + a_1} (||a_0||_{A_0} + t \, ||a_1||_{A_1}), \quad a \in A_0 + A_1, \end{split}$$

for $t \in \mathbf{R}_+ = (0, \infty)$.

Let a Banach space A be continuously imbedded in $A_0 + A_1$. The space which consists of all limits in $A_0 + A_1$ of bounded sequences in A is called the Gagliardo completion of A with respect to $A_0 + A_1$ and denoted by A^{\sim} . The space A^{\sim} is equipped with the norm $\|a\|_{A^{\sim}} = \inf\sup_{n \geq 1} \|a_n\|_A$, where the infimum is taken over all sequences $\{a_n\}_{n=1}^{\infty}$ bounded in A such that $a_n \to a$ in $A_0 + A_1$. The closure of $A_0 \cap A_1 \subset A$ in A is denoted by A^0 .

Let $\vec{A} = (A_0, A_1)$ and $\vec{B} = (B_0, B_1)$ be two Banach couples. A linear operator acting from $A_0 + A_1$ into $B_0 + B_1$ will be called a linear mapping from the couple \vec{A} into the couple \vec{B} , written $T: \vec{A} \to \vec{B}$, if T maps continuously A_i into B_i , i = 0, 1.

 \mathscr{F} is an interpolation functor if for any Banach couple \vec{A} , $\mathscr{F}(\vec{A})$ is a Banach space intermediate with respect to \vec{A} , i.e., $A_0 \cap A_1 \subset \mathscr{F}(\vec{A}) \subset A_0 + A_1$, and every operator $T: \vec{A} \to \vec{B}$ maps $\mathscr{F}(\vec{A})$ into $\mathscr{F}(\vec{B})$ for any two Banach couples \vec{A} and \vec{B} . In this case the spaces $\mathscr{F}(\vec{A})$ and $\mathscr{F}(\vec{B})$ are called interpolation spaces with respect to \vec{A} and \vec{B} .

Important families of interpolation functors are generated by the K-method. The interpolation functor K_{Φ} is defined by the formula

$$K_{\Phi}(\vec{A}) = \vec{A}_{\Phi} = \{ a \in A_0 + A_1 \colon ||a||_{\dot{A}_{\Phi}} = ||K(\cdot, a; \vec{A})||_{\Phi} < \infty \},$$

where Φ is a Banach lattice of (equivalence classes of) measurable functions on $(\mathbf{R}_+, dt/t)$ such that $\min(1, t) \in \Phi$.

Let \vec{A} and \vec{B} be two Banach couples. We say that \vec{A} has the Calderón property relative to \vec{B} if the condition

$$K(t, b; \vec{B}) \leq K(t, a; \vec{A})$$
 for all $t > 0$

implies the existence of an operator $T: \vec{A} \to \vec{B}$ such that Ta = b. If $\vec{A} = \vec{B}$ we say that \vec{A} is a *Calderón couple*.

We say that \vec{B} has the universal right K-property if every Banach couple \vec{A} has the Calderón property relative to \vec{B} (see [10]).

Conventions. We say that a positive function f on R_+ is dominated by another function g (notation: f < g or f(t) < g(t)) if there is a positive constant c such that $f(t) \le cg(t)$ for all $t \in R_+$. The functions f and g are equivalent $(f \sim g)$ if f < g and g < f. We denote by f^{-1} the inverse function of f (if it exists). Two Banach spaces A and B are considered equal (identically equal) if the linear spaces A, B are identical and their norms are equivalent (equal); we then write A = B ($A \equiv B$). The characteristic function of a set e is denoted by $\mathbf{1}_e$.

2. The universal right K-property for the couple $(\vec{A}_{L^\infty}, \vec{A}_{\Phi})$. Let (Ω, Σ, μ) be a complete σ -finite measure space and $L^0 = L^0(\Omega, \Sigma, \mu)$ the space of all equivalence classes of μ -measurable real-valued functions, equipped with the topology of convergence in measure on μ -finite sets. We will say that a Banach space X is a Banach lattice (on (Ω, Σ, μ)) if X is a Banach subspace of L^0 with the property that if $x \in X$, $y \in L^0$ and $|y| \leq |x| \mu$ -a.e. on Ω , then $y \in X$ and $||y||_X \leq ||x||_X$.

We say that a Banach lattice X on (Ω, Σ, μ) has the Fatou property if for every μ -a.e. pointwise increasing sequence $\{x_n\}_{n=1}^{\infty}$ of nonnegative functions in X with $\sup_{n\geq 1}\|x_n\|_X < \infty$, the function $x=\lim_{n\to\infty}x_n$ is in X with $\|x\|_X=\lim_{n\to\infty}\|x_n\|_X$.

Let X be a Banach lattice on (Ω, Σ, μ) and w a weight function $(\mu$ -a.e. positive measurable function on Ω). By X_w we shall denote the space of all functions x such that $xw \in X$ with the norm $||x||_{X_w} = ||xw||_X$.

In the sequel let Φ be a Banach lattice on $(R_+, dt/t)$ intermediate with respect to $\dot{L}^{\infty} = (L^{\infty}, L^{\infty}_{1/s})$, and let $\hat{\Phi} = \vec{L}^{\infty}_{\Phi}$. Moreover, for every function $f \in L^{\infty} + L^{\infty}_{1/s}$ let

$$P_u f = \overline{f} \mathbf{1}_{(0,u)}, \quad Q_u f = \overline{f} \mathbf{1}_{[u,\infty)} \quad (u > 0),$$

where

$$\bar{f} = \inf \{ g \colon g \geqslant |f| \text{ a.e., } g \colon \mathbf{R}_+ \to \mathbf{R}_+ \text{ concave} \}.$$

Note (see [5]) that for each $f \in L^{\infty} + L^{\infty}_{1/s}$ and all t > 0

(2.1)
$$\bar{f}(t) = K(t, f; \vec{L}^{\infty}).$$

Let $\vec{A} = (A_0, A_1)$ be a Banach couple and let \vec{A} be a Banach space intermediate with respect to \vec{A} . We say that \vec{A} is of the class $C_K(\psi, \vec{A})$ (cf. [11]) if

$$K(t, a; \vec{A}) \leq c\psi(t) ||a||_{A}, \quad a \in A,$$

and of the class $C_I(\psi, \vec{A})$ if

$$\psi(t) ||a||_A \leqslant cJ(t, a; \vec{A}), \quad a \in A_0 \cap A_1,$$

where the function ψ belongs to the set \mathcal{P} of all *quasi-concave* functions on \mathbf{R}_+ , i.e., $0 < \psi(s) \le \max(1, s/t)\psi(t)$ for all $s, t \in \mathbf{R}_+$.

Remark 2.1. By the concavity of the K-functional and the inequality $K(s, a: \vec{A}) \leq \min(1, s/t) J(t, a; \vec{A})$ for $a \in A_0 \cap A_1$ we infer that for the interpolation space \vec{A}_{Φ} we have

(2.2)
$$K(t, a; \vec{A}) \leq \varphi(t) ||a||_{\vec{A}_{\Phi}}, \quad a \in \vec{A}_{\Phi},$$

$$(2.3) \varphi(t) ||a||_{\vec{A}_0} \leq J(t, a; \vec{A}), a \in A_0 \cap A_1,$$

where

$$\varphi(t) = \varphi_{\Phi}(t) = 1/\|\min(1, s/t)\|_{\Phi}$$

Hence \vec{A}_{σ} is of the class $C_K(\varphi, \vec{A}) \cap C_J(\varphi, \vec{A})$. In the sequel we often write φ instead of φ_{σ} for a given Φ .

A function ψ in $\mathscr P$ is said to belong to $\mathscr P^{+-}$ if $\min(1, 1/t)s_{\psi}(t) \to 0$ as $t \to 0$, ∞ , where $s_{\psi}(t) = \sup_{u \ge 0} (\psi(ut)/\psi(u))$. If we introduce the numbers

$$\alpha_{\psi} = \sup_{0 < t < 1} \frac{\ln s_{\psi}(t)}{\ln t}, \quad \beta_{\psi} = \inf_{1 < t < \infty} \frac{\ln s_{\psi}(t)}{\ln t},$$

then $\psi \in \mathscr{P}^{+-}$ if and only if $0 < \alpha_{\psi} \leqslant \beta_{\psi} < 1$.

Let $\psi \in \mathscr{P}$ and $p = \infty$, or $\psi \in \mathscr{P}^+$ and $1 \le p < \infty$. Then for $\Phi = L^p_{1/\psi}(\mathbf{R}_+, dt/t)$ the interpolation space \vec{A}_{Φ} is denoted by $\vec{A}_{\psi,p}$. If $f(t) = t^{\theta}$ $(0 < \theta < 1)$, then we write $\vec{A}_{\theta,p}$.

By the equivalence theorem (see [11], Theorem 2.2) the proof of the following proposition is standard (cf. [4], p. 66).

PROPOSITION 2.2. If a Banach space A is of the class $C_J(\psi, \vec{A})$ with $\psi \in \mathscr{P}^+$, then $\vec{A}_{\psi,1} \subset A$ with continuous imbedding.

Proposition 2.3 (see [2], [15]). Let a Banach lattice Φ be such that φ is increasing and $\varphi(R_+) = R_+$. Then

$$K(t, a; A_0, \vec{A}_{\Phi}) \sim t ||Q_{\mu}K(\cdot, a; \vec{A})||_{\Phi}$$

for each Banach couple \vec{A} and all $a \in A_0 + \vec{A}_{\phi}$, where $u = \varphi^{-1}(t)$.

Corollary 2.4. Let a Banach lattice Φ be such that $\varphi \in \mathcal{P}^{+-}$. Then

$$K(t, f; L^{\infty}, \hat{\Phi}) \sim \sqrt{t}$$

for $f(s) = \sqrt{\bar{\varphi}(s)}$.

Proof. By Proposition 2.2 and Remark 2.1 we get $\vec{L}_{\varphi,1}^{\infty} \subset \hat{\Phi}$. Since $\hat{\Phi} \subset \Phi$, by Proposition 2.3 and equality (2.1) we obtain for $u = \varphi^{-1}(t)$

$$\begin{aligned} \|Q_{u}K(\cdot,f;\vec{L}^{\infty})\|_{\Phi} & < \int_{0}^{\infty} \frac{K(s,Q_{u}f;\vec{L}^{\infty})}{\varphi(s)} \frac{ds}{s} = \int_{0}^{\infty} \frac{Q_{u}f(s)}{\varphi(s)} \frac{ds}{s} \\ & = \frac{f(u)}{u} \int_{0}^{u} \frac{s}{\varphi(s)} \frac{ds}{s} + \int_{u}^{\infty} \frac{f(s)}{\varphi(s)} \frac{ds}{s} \\ & < \frac{f(u)}{u} \cdot \frac{u}{\varphi(u)} + \frac{1}{\sqrt{\varphi(u)}} < t^{-1/2}. \end{aligned}$$

Consequently,

$$K(t, f; L^{\infty}, \hat{\Phi}) < \sqrt{t}$$
.

On the other hand,

$$K(t, f; L^{\infty}, \hat{\Phi}) > t \|Q_u K(\cdot, f; \vec{L}^{\infty})\|_{\Phi} = t \|Q_u \vec{f}\|_{\Phi}$$
$$\geq t f(u) \|\min(1, s/u)\|_{\Phi} = t f(u)/\varphi(u) \geq \sqrt{t}$$

and the proof is complete.

Now we give a simple example of a couple \vec{B} such that no couple \vec{A} has the Calderón property relative to \vec{B} . It is enough to note that if $(B_0 \cap B_1)^{\sim} \neq B_0 \cap B_1$, then \vec{A} does not have the Calderón property relative to \vec{B} (cf. [8]). Indeed, let $b \in (B_0 \cap B_1)^{\sim} \setminus (B_0 \cap B_1)$. Then from the equality $\vec{B}_{L^{\infty} \cap L_{1/8}^{\infty}} \equiv (B_0 \cap B_1)^{\sim}$ (see [3], [1]) we have

$$K(t, b; \vec{B}) \sim \min(1, t).$$

Let $0 \neq a \in A_0 \cap A_1$. Then

$$K(t, b; \vec{B}) \prec K(t, a; \vec{A})$$

However, b = Ta for no bounded operator $T: \vec{A} \to \vec{B}$ since $Ta \in B_0 \cap B_1$.

COROLLARY 2.5. If $\Phi = (L_{s-\theta}^{\infty})^{0}$, $0 < \theta < 1$, then no Banach couple \vec{A} has the Calderón property relative to (L^{∞}, Φ) .

Proof. It is easy to see that $\hat{\Phi} \equiv \Phi$ and $\varphi(t) = t^{\theta}$. We have

$$\begin{split} \Phi &= \big\{ f \in L^{\infty} + L^{\infty}_{1/s} \colon \lim_{t \to 0, \, \infty} t^{-\theta} \, K(t, f; \, \vec{L}^{\infty}) = 0 \big\} \\ &= \big\{ f \in L^{\infty} + L^{\infty}_{1/s} \colon \lim_{t \to 0, \, \infty} t^{-\theta} \, \vec{f}(t) = 0 \big\}, \end{split}$$

by Theorem 3.4.2(c) in [4] and equality (2.1).

For $f(s) = s^{\theta} \mathbf{1}_{(0,1)}$, we have $f \in L^{\infty} + \Phi$, $f \notin \Phi$ and

$$K(t,f;L^{\infty},\Phi) = K(t,f;L^{\infty},\hat{\Phi}) \prec t \|Q_{u}\bar{f}\|_{L^{\infty}_{s^{-}\theta}} \prec t \|s^{\theta}\|_{L^{\infty}_{s^{-}\theta}},$$

by Proposition 2.3. Therefore

$$||f||_{(L^{\infty}\cap \Phi)^{\sim}} = \sup_{t>0} \frac{K(t,f;L^{\infty},\Phi)}{\min(1,t)} < \infty.$$

This implies that $f \in (L^{\infty} \cap \Phi)^{\sim}$. Consequently, $(L^{\infty} \cap \Phi)^{\sim} \neq L^{\infty} \cap \Phi$ and the proof is finished.

In the sequel we shall need some further notation (cf. [19]).

A Banach couple \vec{A} is called K_0 -surjective if for every function ψ such that $\min(1, 1/t)\psi(t) \to 0$ as $t \to 0$, ∞ one can find $a \in (A_0 + A_1)^0$ satisfying

$$K(t, a; \vec{A}) \sim \psi(t).$$

For example, the couples $(L^{p_0}(\mathbb{R}_+), L^{p_1}(\mathbb{R}_+))$, $1 \le p_0 < p_1 \le \infty$, $(L^{\infty}, L^{\infty}_{1/s})$ are K_0 -surjective.

Remark 2.6. If for a Banach couple \vec{A} there exists an element $a \in A_0 + A_1$ such that $K(t, a; \vec{A}) \sim \sqrt{t}$, then \vec{A} is K_0 -surjective (Yu. A. Brudnyi and N. Ya. Kruglyak-personal communication).

Let $\vec{X}=(X_0,\,X_1)$ be a couple of Banach lattices (on $(\Omega,\,\Sigma,\,\mu)$). The Calderón space (see [6]) of all $x\in L^0$ such that $|x|\leqslant \lambda |x_0|^{1-\theta}|x_1|^{\theta}$ μ -a.e. for some $x_i\in X_i,\,\,||x_i||_{X_i}\leqslant 1,\,\,i=0,\,1,\,$ and some $\lambda>0$ is denoted by $X_0^{1-\theta}X_1^{\theta}$. We put

$$||x||_{X_0^{1-\theta}X_1^{\theta}}=\inf \lambda.$$

Let X be a Banach lattice on (Ω, Σ, μ) and let $1 . The p-convexification of X, denoted by <math>X^{(p)}$, is defined as follows: $x \in X^{(p)}$ if $|x|^p \in X$.

We put

$$||x||_{X(p)} = ||x||^p ||x||^{1/p}.$$

It is easy to show the following

Proposition 2.7. Let X be a Banach lattice on (Ω, Σ, μ) and let w be a weight function. Then

$$X^{1-\theta}(L_w^{\infty})^{\theta} \equiv X_{w\theta}^{(p)}, \quad p = 1/(1-\theta),$$

for each $0 < \theta < 1$.

Theorem 2.8. Let a Banach lattice Φ with the Fatou property be such that $\varphi \in \mathscr{P}^{+-}$. Assume that a Banach couple \vec{A} is K_0 -surjective. If the couple $(\vec{A}_{L^\infty}, \vec{A}_\Phi)$ has the universal right K-property, then $\hat{\Phi} = L_{1/\varrho}^\infty$.

Proof. Choose $a \in A_0 + A_1$ such that $K(s, a; \vec{A}) \sim f(s) = \sqrt{\overline{\varphi}(s)}$. Then from the reiteration theorem (see [5], [18]) we infer that

$$K(t, a; \vec{A}_{L^{\infty}}, \vec{A}_{\Phi}) \sim K(t, K(s, a; \vec{A}); L^{\infty}, \hat{\Phi}) \sim K(t, f; L^{\infty}, \hat{\Phi}).$$

By Corollary 2.4 we obtain the inequality

$$K(t, a; \vec{A}_{L^{\infty}}, \vec{A}_{\Phi}) \leq K(t, x; \vec{L}^{\infty}),$$

where $x(s) = c\sqrt{s}$, with some positive constant c.

Now, by Proposition 2.7 and Theorem 2.1 in [20], $x \in L^{\infty}_{1/\sqrt{s}} = \langle \vec{L}^{\infty}; \ 1/2 \rangle$ (here $\langle \vec{X}; \theta \rangle$ is the \pm method due to Gustavsson-Peetre; see [12], [20]). So if the couple $(\vec{A}_{L^{\infty}}, \vec{A}_{\Phi})$ has the universal right K-property then

$$a \in \langle (\vec{A}_{L\infty}, \vec{A}_{\Phi}); 1/2 \rangle.$$

By the maximal property of K_{Ψ} (see [5]) we have

$$\langle (\vec{A}_{L^{\infty}}, \vec{A}_{\Phi}); 1/2 \rangle \subset \vec{A}_{\langle (L^{\infty}, \Phi); 1/2 \rangle}$$

with continuous imbedding. Since

$$\langle (L^{\infty}, \Phi); 1/2 \rangle \subset ((L^{\infty})^{1/2} \Phi^{1/2})^{\sim},$$

by Theorem 2.1 in [20], it follows that

$$\langle (\vec{A}_{L^{\infty}}, \vec{A}_{\boldsymbol{\phi}}); 1/2 \rangle \subset \vec{A}_{\boldsymbol{\phi}^{(2)}}$$

with continuous imbedding. Hence

$$||a||_{\vec{A}_{\phi(2)}} = ||K(\cdot, a; \vec{A})||_{\phi(2)} \sim ||\sqrt{\varphi(\cdot)}||_{\phi(2)} = ||\varphi||_{\phi}^{1/2} < \infty.$$

Consequently, $\varphi \in \Phi$. Therefore if $x \in L^{\infty}_{1/\varphi}$, then $\overline{x}(s) \leqslant \overline{\varphi}(s) \|x\|_{L^{\infty}_{1/\varphi}}$ and $\|x\|_{\hat{\Phi}} \leqslant c \|x\|_{L^{\infty}_{1/\varphi}}$. Hence $L^{\infty}_{1/\varphi} \subset \hat{\Phi}$.

On the other hand, by inequality (2.2) we have $\bar{x}(t) = K(t, x; \vec{L}^{\infty}) \leq \varphi(t) ||x||_{\hat{\Phi}}$ for all $x \in \hat{\Phi}$ and t > 0. Thus $\hat{\Phi} \subset L^{\infty}_{1/\varphi}$ and the proof is complete.

COROLLARY 2.9. Suppose that a Banach couple \vec{A} is K_0 -surjective. Then if a couple $(\vec{A}_{0,\infty}, \vec{A}_{f,p})$ with $f \in \mathscr{P}^{+-}$ has the universal right K-property it follows that $p = \infty$.

Proof. The Banach lattice $\Phi = L_{I/f}^p(\mathbf{R}_+, dt/t)$ has the Fatou property and it is easy to show that $\varphi \sim f$. Hence $\varphi \in \mathcal{P}^{+-}$. From Theorem 2.8 we obtain $\hat{\Phi} = L_{I/f}^{\infty}$, so $||f||_{\hat{\Phi}} \sim ||f||_{\hat{\Phi}} < \infty$ and this implies $p = \infty$.

From Theorem 2.8 and Theorem 4.2 in [10] we get the following result:

Theorem 2.10. Let a Banach lattice Φ with the Fatou property be such that $\varphi \in \mathscr{P}^{+-}$. Assume that \bar{A} is a K_0 -surjective Banach couple such that the couple $(L^{\infty}, L_{1,\varphi}^{\infty})$ has the Calderón property relative to $(\bar{A}_{0,\infty}, \bar{A}_{\varphi,\infty})$. Then $(\bar{A}_{L^{\infty}}^{\times}, \bar{A}_{\varphi})$ has the universal right K-property if and only if $\bar{\Phi} = L_{1/\varphi}^{\infty}$.

Remark 2.11. By Theorem 4.2 in [10] it is easy to see that if a Banach couple \vec{A} has the universal right K-property, then so does the couple $(\vec{A}_{0,\infty},\vec{A}_{f,\infty})$ for each quasi-concave function f. The couples with the universal right K-property include $(L^{p_0,\infty},L^{p_1,\infty})$ (i.e., "weak L^p " spaces) and $(\text{Lip}(\psi_0),\text{Lip}(\psi_1))$ for $\psi_0,\psi_1\in\mathscr{P}^{+-}$. In fact, all known examples of such couples can be subsumed under the general results in [5], [18] which imply that the couple $(\vec{B}_{\psi_0,\infty},\vec{B}_{\psi_1,\infty})$ where $\psi_0,\psi_1\in\mathscr{P}^{+-}$ has the universal right K-property for any Banach couple $\vec{B}=(B_0,B_1)$.

3. Further results and remarks. Now we give a theorem about the universal right K-property for a couple (L^1, E) of symmetric spaces. In order to obtain this result we introduce some further notation.

The associated space X^1 of a Banach lattice X on (Ω, Σ, μ) is the collection of all measurable functions $x \in L^0$ for which

$$||x||_{\chi^1} = \sup_{\|y\|_{\chi} \le 1} \int_{\Omega} |x(t)y(t)| d\mu < \infty.$$

A Banach subspace E of $L^0(R_+, m)$, where m is the Lebesgue measure, is said to be symmetric on R_+ if for each $y \in E$ and all measurable functions x such that $x^*(t) \leq y^*(t)$ for t > 0, we have $x \in E$ and $||x||_E \leq ||y||_E$ (cf. [13]). Here x^* denotes the nonincreasing rearrangement of |x|.

The fundamental function of a symmetric space E on \mathbb{R}_+ is defined for t > 0 as $\psi_E(t) = ||\mathbf{1}_{(0,t)}||_E$.

For each symmetric space E on \mathbf{R}_+ with fundamental function ψ_E the following continuous inclusions are valid (see [13]):

$$(3.1) \Lambda(E) \subset E \subset M(E),$$

where

$$\Lambda(E) = \left\{ x \in L^0 \colon \|x\|_{A(E)} = \int_0^\infty x^*(s) \, d\psi_E(s) < \infty \right\},$$

$$M(E) = \left\{ x \in L^0 \colon \|x\|_{M(E)} = \sup_{t > 0} \left(\frac{\psi_E(t)}{t} \int_0^t x^*(s) \, ds \right) < \infty \right\}.$$

Let Φ' be the dual Banach space to Φ with respect to the bilinear form

$$(f, g) = \int_{0}^{\infty} f(t)g\left(\frac{1}{t}\right)\frac{dt}{t}.$$

By J_{Ψ} we denote the *J-method* (see [5], [10], [18] for more details).

Note that $K_{\Phi}(\vec{X})$ and $J_{\Psi}(\vec{X})$ are Banach lattices if $\vec{X} = (X_0, X_1)$ is a couple of Banach lattices.

THEOREM 3.1. Assume that (X_0, X_1) is a couple of Banach lattices on (Ω, Σ, μ) . Then:

(a) $J_{\Psi}(X_0, X_1)^1 = K_{\Psi'}(X_0^1, X_1^1)$.

(b) If $\Phi \equiv \widetilde{\Phi}$ and $\Phi \cap L^{\infty} \neq L^{\infty} \cap L^{\infty}_{1/s}$, $\Phi \cap L^{\infty}_{1/s} \neq L^{\infty} \cap L^{\infty}_{1/s}$, then $K_{\Phi}(X_0, X_1)^1 = J_{\Phi'}(X_0^1, X_1^1)$.

Proof. This follows by applying the results of Lozanovskii [14] and a modification of the proof of Theorem 10.1 in [5].

THEOREM 3.2. Let E be a symmetric space on \mathbb{R}_+ with the Fatou property such that the fundamental function $\psi_E \in \mathscr{P}^{+-}$. Then the couple (L^1, E) does not have the universal right K-property.

Proof. Since E has the Fatou property, E is an interpolation space with respect to (L^1, L^∞) (see [13], Theorem 4.9, p. 142). But (L^1, L^∞) is a Calderón couple (see [7]) so $E = K_{\Phi_0}(L^1, L^\infty)$ with some $\Phi_0 \equiv \hat{\Phi}_0$, by the results of [5]. It is easy to see that $\varphi_{\Phi_0}(t) = t/\psi_E(t) \in \mathscr{P}^{+-}$.

Moreover, observe that $\Phi_0 \cap L^\infty \neq L^\infty \cap L^\infty_{1/s}$ and $\Phi_0 \cap L^\infty_{1/s} \neq L^\infty \cap L^\infty_{1/s}$. Indeed, if for example $\Phi_0 \cap L^\infty = L^\infty \cap L^\infty_{1/s}$, then $\Phi_0 \subset L^\infty_{1/s}$ and $\varphi_{\Phi_0}(t) \leq c\varphi_{L^\infty_{1/s}}(t) = ct$, so

$$\lim_{t\to 0}t^{-1}\,\varphi_{\boldsymbol{\phi}_0}(t)\leqslant c<\infty\,.$$

On the other hand,

$$\lim_{t \to 0} t^{-1} \varphi_{\Phi_0}(t) = \lim_{t \to 0} 1/\psi_E(t) = \infty$$

and we get a contradiction.

Since $E = E^{11}$, it follows from Theorem 3.1 that

$$E=K_{\Phi}(L^1,\,L^{\infty}),$$

where $\Phi \equiv \Phi_0''$. Obviously, Φ has the Fatou property. Since $\varphi_{\Phi}(t) \sim t/\psi_E(t)$ we have $\varphi \in \mathcal{P}^{+-}$. Therefore if the couple (L^1, E) has the universal right K-property, then so does the couple $(K_{L^{\infty}}(L^1, L^{\infty}), K_{\Phi}(L^1, L^{\infty}))$. Hence by Theorem 2.10 we deduce that $\hat{\Phi} = L_{1/\varphi}^{\infty}$ and consequently

$$\begin{split} E &= K_{\phi}(L^{1}, L^{\infty}) = K_{\hat{\phi}}(L^{1}, L^{\infty}) = (L^{1}, L^{\infty})_{\phi, \infty} \\ &= (L^{1}, L^{\infty})_{l/\psi_{E}(l), \infty} = M(E). \end{split}$$

But the couple $(L^1, M(E))$ does not have the universal right K-property (see [9]). Thus the proof is complete.

Remark 3.3. If a symmetric space E does not have the Fatou property, then in general (L^1, E) is not a Calderón couple. For example, this is the case if E is the closure of $L^1 \cap L^{\infty}$ in M_{α} , $0 < \alpha < 1$, where $M_{\alpha} = (L^1, L^{\infty})_{1-\alpha,\infty}$ (see [17]).

4. The universal right K-property for the couple $(\bar{A}_{\Phi}, \bar{A}_{1, \infty})$. We give some results for the couple $(\bar{A}_{\Phi}, \bar{A}_{1, \infty})$.

PROPOSITION 4.1 (see [2], [15]). Let a Banach lattice Φ be such that the function $\varphi_*(t) = t/\varphi(t)$ is increasing and $\varphi_*(\mathbf{R}_+) = \mathbf{R}_+$. Then

$$K(t, a; \vec{A}_{\Phi}, A_1) \sim ||P_u K(\cdot, a; \vec{A})||_{\Phi}$$

for each Banach couple \vec{A} and all $a \in \vec{A}_{\Phi} + A_1$, where $u = \phi_*^{-1}(t)$.

COROLLARY 4.2. Let a Banach lattice Φ be such that the function φ is in \mathscr{P}^{+-} . Then

$$K(t,f;\hat{\Phi},L_{1/s}^{\infty})\sim\sqrt{t}$$

for $f(s) = \sqrt{s\varphi(s)}$.

The proof is similar to that of Corollary 2.4.

COROLLARY 4.3. If $\Phi = (L_{s-\theta}^{\infty})^0$, $0 < \theta < 1$, then no Banach couple \vec{A} has the Calderón property relative to $(\Phi, L_{1/s}^{\infty})$.

Proof. Similarly to the proof of Corollary 2.5 it can be seen that the function $f(s) = s^{\theta} \mathbf{1}_{[1,\infty)}$ is in $(\Phi \cap L_{1/s}^{\infty})^{\sim}$ but not in $\Phi \cap L_{1/s}^{\infty}$.

Theorem 4.4. Let a Banach lattice Φ with the Fatou property be such that $\varphi \in \mathscr{P}^{+-}$. Moreover, let \vec{A} be a K_0 -surjective Banach couple. If the couple $(\vec{A}_{\Phi}, \vec{A}_{1,\infty})$ has the universal right K-property, then $\hat{\Phi} = L^{\infty}_{1/\Phi}$.

Proof. Choose $a \in A_0 + A_1$ such that $K(s, a; \vec{A}) \sim f(s) = \sqrt{s\varphi(s)}$. Then from the reiteration theorem (see [5], [18]) we get

$$K(t, a; \vec{A}_{\Phi}, \vec{A}_{1, \infty}) \sim K(t, K(\cdot, a; \vec{A}); \hat{\Phi}, L_{1/s}^{\infty}) \sim K(t, f; \hat{\Phi}, L_{1/s}^{\infty})$$

By Corollary 4.2,

$$K(t, a; \vec{A}_{\boldsymbol{\phi}}, \vec{A}_{1, \infty}) \leq K(t, x; \vec{L}^{\infty}),$$

where $x(s) = c\sqrt{s}$, c > 0.

We have $x \in L^{\infty}_{1/\sqrt{s}} = \langle \vec{L}^{\infty}; 1/2 \rangle$ by Proposition 2.7 and Theorem 2.1 in [20]. So if $\vec{X} = (\vec{A}_{\phi}, \vec{A}_{1,\infty})$ has the universal right K-property, then $a \in \langle \vec{X}; 1/2 \rangle$ with $||a||_{\langle X; 1/2 \rangle}$ bounded by some positive constant. Since $\langle (\phi, L^{\infty}_{1/s}); 1/2 \rangle \subset (\phi^{1/2}(L^{\infty}_{1/s})^{1/2})^{\sim}$, by Theorem 2.1 in [20], it follows that

$$\langle (\vec{A}_{\boldsymbol{\phi}}, \vec{A}_{1,\infty}); 1/2 \rangle \subset \vec{A}_{\langle (\boldsymbol{\phi}, L_{1/s}^{\infty}); 1/2 \rangle} \subset \vec{A}_{(\boldsymbol{\phi}^{1/2}(L_{1/s}^{\infty})^{1/2})^{\sim}} = \vec{A}_{F}$$

with continuous imbeddings by Proposition 2.7, where $F = \Phi_{s^{-1}/2}^{(2)}$. Hence we obtain

$$||a||_{\vec{A}_F} = ||K(s, a; \vec{A})||_F \sim ||(s^{-1/2} f(s))^2||_{\Phi}^{1/2} = ||\varphi||_{\Phi}^{1/2} < \infty.$$

Consequently, $\varphi \in \Phi$. This implies that $\hat{\Phi} = L_{1/\varphi}^{\infty}$, which finishes the proof.

COROLLARY 4.5. Let \vec{A} be a K_0 -surjective Banach couple. If a couple $(\vec{A}_{f,p}, \vec{A}_{1,\infty})$, where $f \in \mathscr{P}^{+-}$, has the universal right K-property, then $p = \infty$.

Theorem 4.6. Suppose a Banach lattice Φ has the Fatou property and $\varphi \in \mathscr{P}^{+-}$. Let, for a K_0 -surjective couple \vec{A} , the couple $(L_{1/\varphi}^{\infty}, L_{1/s}^{\infty})$ have the Calderón property relative to $(\vec{A}_{\varphi,\infty}, \vec{A}_{1,\infty})$. Then the couple $(\vec{A}_{\varphi}, \vec{A}_{1,\infty})$ has the universal right K-property if and only if $\hat{\Phi} = L_{1/\varphi}^{\infty}$.

Corollary 4.7. Assume that a Banach lattice Φ has the Fatou property and $\varphi \in \mathscr{P}^{+-}$. Then the couple $(\hat{\Phi}, L^{\infty}_{1/s})$ has the universal right K-property if and only if $\hat{\Phi} = L^{\infty}_{1/\varphi}$.

THEOREM 4.8. Let E be a symmetric space on R_+ with the Fatou property and let the fundamental function $\psi_E \in \mathscr{P}^{+-}$. Then the couple (E, L^{∞}) has the universal right K-property if and only if E = M(E).

Proof. Assume that the couple (E, L^{∞}) has the universal right K-property. Then by Theorems 3.1 and 4.4 we obtain E = M(E) (the proof is similar to the proof of Theorem 3.2). On the other hand, the couple $(M(E), L^{\infty})$ has the universal right K-property if $\psi_F \in \mathcal{P}^{+-}$ (see [9], [22]).

It is possible to give a direct proof of Theorem 4.8 (see [16]). We present it for the sake of completeness.

Since $\psi_E \sim \bar{\psi}_E$, we get $\bar{\psi}_E \in \mathscr{P}^{+-}$, so $\bar{\psi}_E(\mathbf{R}_+) = \mathbf{R}_+$ and $\bar{\psi}_E$ is increasing. Then

$$\begin{split} K(t, \, y; \, E, \, L^{\infty}) & < K\left(t, \, y; \, \varLambda(E), \, L^{\infty}\right) \\ & \leq \int\limits_{0}^{\infty} (y \mathbf{1}_{(0, \bar{\psi}_{E}^{-1}(t))})^{*}(s) \bar{\psi}_{E}(s) \frac{ds}{s} \leq \int\limits_{0}^{\bar{\psi}_{E}^{-1}(t)} \bar{\psi}_{E}(s)^{1/2} \frac{ds}{s} < \sqrt{t} \end{split}$$

by (3.1) for $y(s)=\overline{\psi}_E(s)^{-1/2}$ and by the formula for $K\left(t,\,x;\,\varLambda\left(E\right),\,L^\infty\right)$. Consequently, we have

$$K(t, y; E, L^{\infty}) \leq K(t, x; \vec{L}^{\infty})$$
 for $x(s) \sim \sqrt{s}$.

By a result of Ovchinnikov (see [21]) and Proposition 2.7, the spaces $E^{1/2}(L^{\infty})^{1/2}=E^{(2)}$ and $(L^{\infty})^{1/2}(L^{\infty}_{1/s})^{1/2}=L^{\infty}_{1/\sqrt{s}}$, intermediate with respect to (E,L^{∞}) and $(L^{\infty},L^{\infty}_{1/s})$ respectively, are interpolation spaces with respect to (E,L^{∞}) and $(L^{\infty},L^{\infty}_{1/s})$. Therefore if the couple (E,L^{∞}) has the universal right K-property, then $(L^{\infty},L^{\infty}_{1/s})$ has the Calderón property relative to (E,L^{∞}) . Hence there exists a constant c>0 such that

$$||y||_{E^{(2)}} \le c ||x||_{L^{\infty}_{1/\sqrt{s}}} < \infty.$$

Hence $\psi_E(\cdot)^{-1} \sim \overline{\psi}_E(\cdot)^{-1} \in E$. Since $x^*(t) \leqslant \psi_E(t)^{-1} ||x||_{M(E)}$ for each $x \in M(E)$ and t > 0, we have

$$||x||_E = ||x^*||_E \le ||\psi_E(\cdot)^{-1}||_E ||x||_{M(E)} < \infty,$$

and so $M(E) \subset E$. Consequently, E = M(E) by (3.1).

On the other hand, the couple $(M(E), L^{\infty})$ has the universal right K-property if $\beta_{\psi_F} < 1$ (see [9]). Thus the proof is complete.

References

- [1] N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. 68 (1965), 51-118.
- [2] I. U. Asekritova, On the K-functional of the couple $(K_{\phi_0}(\dot{X}), K_{\phi_1}(\dot{X}))$, in: Theory of Functions of Several Variables, Yaroslavl'. Gos. Univ., 1980, 3-32 (in Russian).
- [3] H. Berens, Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachräumen, Lecture Notes in Math. 64, Springer, Berlin 1968.
- [4] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer, Berlin 1976.
- [5] Yu. A. Brudnyi and N. Ya. Kruglyak, Real Interpolation Functors, book manuscript, Yaroslavl'. Gos. Univ., 1981 (in Russian).
- [6] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190.
- [7] -, Spaces between L^1 and L^{∞} and the theorem of Marcinkiewicz, ibid. 26 (1966), 273-299.
- [8] M. Cwikel, Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), 213-236.

- [9] M. Cwikel and P. Nilsson, Interpolation of Marcinkiewicz spaces, Math. Scand. 56 (1985), 29-42.
- [10] M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50.
- [11] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289-305.
- [12] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math. 60 (1977), 33-59.
- [13] S. G. Krein, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Nauka, Moscow 1978 (in Russian; English transl.: Amer. Math. Soc., Providence 1982).
- [14] G. Ya. Lozanovskii, Transformations of ideal Banach spaces by means of concave functions, in: Qualitative and Approximate Methods for the Investigation of Operator Equations, Yaroslavl'. Gos. Univ., 1978, 122-148 (in Russian).
- [15] M. Mastyło, The K-functional for quasi-normed couples (A₀, (A₀, A₁)^K_E) and ((A₀, A₁)^K_E, A₁), Funct. Approx. 15 (1986), 59-72.
- [16] -, On some questions concerning the real interpolation method for symmetric spaces, in: Qualitative and Approximate Methods for the Investigation of Operator Equations, Yaroslavl'. Gos. Univ., 1986, 47-57 (in Russian).
- [17] -, On the K-monotonicity of symmetric spaces, in: Theory of Functions of Several Variables, Yaroslavl'. Gos. Univ., 1986, 49-55 (in Russian).
- [18] P. Nilsson, Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura Appl. 132 (1982), 291–330.
- [19] -, Interpolation of Calderón pairs and Ovčinnikov pairs, ibid. 134 (1983), 201-232.
- [20] -, Interpolation of Banach lattices, Studia Math. 82 (1985), 135-154.
- [21] V. I. Ovchinnikov, Interpolation theorems resulting from an inequality of Grothendieck, Funktsional. Anal. i Prilozhen. 10 (4) (1976), 45-54 (in Russian).
- [22] J. Peetre, Generalizing Ovčinnikov's theorem, technical report, Lund 1981.

INSTYTUT MATEMATYKI UNIWERSYTETU im. ADAMA MICKIEWICZA INSTITUTE OF MATHEMATICS, ADAM MICKIEWICZ UNIVERSITY Mitejki 48/49, 60-769 Poznań, Polan

> Received December 1, 1986 (2251) Revised version April 15, 1987

On the ergodic power function for invertible positive operators

by

RYOTARO SATO (Okayama)

Abstract. Let T be an invertible positive linear operator on L_p , $1 , of a <math>\sigma$ -finite measure space, and suppose T^{-1} is also positive. For $1 < r < \infty$, the ergodic r-th power function $P_r f$ of $f \in L_p$ (with respect to T) is defined by

$$P_r f = \left[\sum_{k=0}^{\infty} |T_{k+1,0} f - T_{k,0} f|^r + |T_{0,k+1} f - T_{0,k} f|^r \right]^{1/r}$$

where $T_{n,k}f = (n+k+1)^{-1}\sum_{i=-n}^k T^i f$ with $n,k \ge 0$. In this paper it is proved that if $T_{k,k}$ are uniformly bounded operators on L_p then $||P_rf||_p \le C||f||_p$ for all $f \in L_p$. This generalizes a recent result of F. J. Martín-Reyes. An application is also given.

1. Introduction and the theorem. Let (X, \mathcal{F}, μ) be a σ -finite measure space and T an invertible linear operator on $L_p = L_p(X, \mathcal{F}, \mu)$, with 1 . If both <math>T and T^{-1} are positive, then, as is well known (see e.g. [3]), T and T^{-1} are Lamperti operators, and there exists an invertible positive linear operator S acting on measurable functions such that S is multiplicative and S1 = 1, and a sequence $\{g_i\}_{i=-\infty}^{\infty}$ of positive measurable functions on X such that for each integer i. T^i has the form

(1)
$$T^{i} f(x) = q_{i}(x) S^{i} f(x).$$

It is immediately seen that

(2)
$$g_{i+j}(x) = g_i(x) S^i g_j(x) \quad \text{a.e. on } X.$$

Further, by the Radon-Nikodym theorem there exists a sequence $\{J_i\}_{i=-\infty}^{\infty}$ of positive measurable functions on X such that

(3)
$$\int J_i(x) S^i f(x) d\mu = \int f(x) d\mu \quad \text{for each } i \text{ and } f \in L_1.$$

Clearly,

(4)
$$J_{i+j}(x) = J_i(x) S^i J_j(x)$$
 a.e. on X .