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The universal right K-property for
some interpolation spaces

by
MIECZYSLAW MASTYLO (Poznat)

Abstract. Under some conditions on a Banach couple 4 and the parameter & of the
K-method we show that the couples (‘Z{Lw’ Ag), (Ag, A.L;!/Js) have the universal right K-property if
and only if ¢ = Lf,, where ¢ is the fundamental function of the space @. These results are used
to obtain a characterization of some symmetric spaces E on (0, c0) such that the couple (E, L®)
has the universal right K-property. Moreover, it is proved that the couple (L', E)
does not have that property.

1. Introduction. We recall some notation from interpolation theory
(cf. [41, [13]).

A pair A =(A4,, A;) of Banach spaces is called a Banach couple if Aq
and A, are both continuously imbedded in some Hausdorff topological
vector space V.

For a Banach couple 4 = (4,, 4,) we can form the intersection Ay ™ A,
and the sum A,+A,. They are both Banach spaces in the natural norms
J(1, a; ff) and K(1, a; X), respectively, where

acAyn Ay,

inf  (laollay+tllalla,),

a=ag+ay

J(t, a; A) = max(|jal 4y tldll4, ),

K(t, a; )= ac Ao+ A4y,
for teR, =(0, ©).

Let a Banach space A be continuously imbedded in Ay + A;. The space
which consists of all limits in 4,+ 4, of bounded sequences in A4 is called the
Gagliardo completion of A with respect to Ao+ A4, and denoted by A~. The
space A~ is equipped with the norm |ld|, ~ = infsup,s [la,ll4, where the
infimum is taken over all sequences {a,} 2, bounded in 4 such that a, —a
in 4,+4,. The closure of AynA, = A4 in A4 is denoted by A°

Let A=(A,, A;) and B = (B, B,) be two Banach couples. A linear
operator acting from Ao+ 4, into Bo+ B, will be called a linear mapping
from the couple A into the couple B, written T A—B, if T maps
continuously 4; into B;, i =0, 1.
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F is an interpolation functor if for any Banach couple A, F(A) is a
Banach space intermediate with respect to 4, i.e., Ay N A, = F(A) < Ao+ Ay,
and every operator T: 4 — B maps #(4) into #(B) for any two Banach
couples A and B. In this case the spaces F (/f) and # (E) are called interpola-
tion spaces with respect to 4 and B.

Important families of interpolation functors are generated by the
K-method. The interpolation functor K, is defined by the formula

Kold) = Ao = lac Ao+ Ay llalli =K (- ai Alllo < 1.

where @ is a Banach lattice of (equivalence classes of) measurable functions
on (R., dt/t) such that min(1, e ®.

Let A and B be two Banach couples. We say that 4 has the Calderon
property relative to B if the condition

K(t, b; E)sK(r, a; /T) for all t >0

implies the existence of an operator T* 4 ~ B such that Tu = b. If A = B we
say that A is a Calderén couple.
We say that B has the universal right K-property if every Banach couple

A has the Calderén property relative to B (see [10]).

Conventions. We say that a positive function f on R, is dominated by
another function g (notation: f<g or f(r)<g(t) if there is a positive
constant ¢ such that f(t) <cg(?) for all teR,. The functions f and g are
equivalent (f ~ g) if f <g and g < f. We denote by f ~! the inverse function
of f (if it exists) Two Banach spaces A and B are considered equal
(identically equal) if the linear spaces A, B are identical and their norms are
equivalent (equal); we then write 4 = B (4 = B). The characteristic function
of a set e is denoted by 1,.

2. The universal right K-property for the couple (JLQ, Ag). Let (2, %, p)
be a complete o-finite measure space and L° = L°(Q, £, u) the space of all
equivalence classes of u-measurable real-valued functions, equipped with
the topology of convergence in measure on u-finite sets. We will say that
a Banach space X is a Banach lattice (on (2, X, ) if X is a Banach
subspace of L° with the property that if xe X, yeL° and |y < |x| p-ae. on
Q, then ye X and ||y|ly < [xllx.

We say that a Banach lattice X on (Q, %, y) has the Fatou property if
for every p-ae. pointwise increasing sequence {xp)® , of nonnegative
functions in X with sup,s|x,/lx < o0, the function x = lim, .,y x, is in X
with ”x”X = limn—*wnxn”X'

Let X be a Banach lattice on (@, Z, 1) and w a weight function (u-a.e.
positive measurable function on Q). By X,, we shall denote the space of all
functions x such that xwe X with the norm Ix|1x,, = llxwll .
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In the sequel let & be a Banach lattice on (R.,, dt/t) intermediate with
respect to L* =(L®, LY), and let & = LF. Moreover, for every function
SEL=+ LG let

Pof =l  Quf =y (u>0),

where

f=inflg: g >|f| ae, g: R, — R, concave}.
Note (see [5]) that for each feL™+L%, and all t >0
Jin =K. f: L™

Lel A =(A4y, 4,) be a Banach couple and let 4 be a Banach space
intermediate with respect to A, We say that A is of the class Cx (¥, A)
(cf. [11]) if

(2.1

‘ Kt,; <y llally, aeAd,
and of the class C,(y, 4) if
VO llala<cI(t, a; A), aedonAy,

where the function ¥ belongs to the set .# of all quasi-concave functions on
R, ie, 0 <y (s) < max(l, s/t)iy(t) for all s, reR,. '

Remark 2.1. By the concavity of the K-functional and the inequality
Ki(s.a: A)< min(1, s/r)J (t, a; A) for ae Ao A; we infer that for the inter-
polation space A, we have

22 Kt,a; ) <o@lali, acd,
@3 POllallip< I, a3 A),  acdon 4y,
where

o (1) = 0o (1) = 1/limin(1, s/1)l|o-
Hence /Im is of the class Cg (@, A) N C; (¢, A). In the sequel we often write ¢
instead of ¢g for a given &.
A function ¥ in 2 is said to belong to 2%~ if min(1, 1/f)s,() =0 as
t =0, oo, where s, (1) = sup,. o (¥ (ut)/y (). If we introduce the numbers

Ins, (1)
Int

In s, (t)
1<t<e Int

oy = sup s By =

o<t<1

>

then Y€ 2"~ if and only if 0 <ay, < B, <1.

Let €2 and p=oco, or ye"" and 1<p<co. Then for &=
Li;y (R, dt/t) the interpolation space Ay is denoted by Ay, If f)=1°
(0 <0 <1), then we write 4,,.

3 ~ Studia Mathematica XC.2
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By the equivalence theorem (see [11], Theorem 2.2) the proof of the
following proposition is standard (cf. [4], p. 66).

ProvposiTioN 2.2. If a Banach space A is of the class C,({r, A) with
YeP ", then Aw 1 © A with continuous imbedding.

Provrosition 2.3 (see [2], [15]). Let a Banach lattice @ be such that ¢ is
increasing and ¢ (Ry)=R,. Then

K(t, a; Ao, Ag) ~ t1IQ, K (-, a; Dlo
Jor each Banach couple A and all aeA0+§w, where u = ¢~ (1).
CoroLLary 24. Let a Banach lattice & be such that ¢ P ~. Then
K(t,f; L= &)~ /i
Jor f(s) =/ @(s).

Proof. By Proposition 2.2 and Remark 2.1 we get Lml = &. Since
& < ®, by Proposition 2.3 and equality (2.1) we obtain for u = ¢~ !(¢)

[K(s Quf, Lds _ %0,/ () ds

10.K (-, f3 L9y <

0 5 5 o) s
=LL} LI ds
s @ s
f(”) “ ! <t7uz,

v o

Consequently,

K(t,fi L®, &)< /L.
On the other hand,

K(t,fi L, &) > t10. K (-, f3 Lo = t|Qu [llo
> if () lmin(1, s/u)lle = tf W)/ (W) > \/t

and the proof is complete.

Now we give a simple example of a . couple B such that no couple 4 has
the Calderén property relative to B. It 'is enough to note that if
(BonB,)~ # By By, then A does not have the Calderén property relative
to B (cf. [8]). Indeed, let be(By N By)~\(Bo N B;). Then from the equality
BLwnLﬁs =(BynBy)~ (see [3], [1]) we have

K(t, b; B) ~min(1, #).
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Let 0 aecAynA;. Then
K(t, b; B)<K(t, a; A).
However, b = Ta for no bounded operator T: 4 — B since TaeB, N B,.

CoRroLLARY 2.5. If @ = (L2)°, 0 <6 <1, then no Banach couple A has
the Calderén property relative to (L=, @).

Proof. It is easy to see that & = & and ¢(t) = . We have
={feL®+L§: lim ™ °K(,f; L“’)—O}

t—0,00
={feL®+Ly: lim t™°f() = 0},
t—0,m
by Theorem 3.4.2(c) in [4] and equality (2.1).
For f(s) = s"1,y,, we have fe L*+ &, f¢d and
K(t,f; L, @) =K(t.f: L, &) <tl|Qu fll, = <111l
by Proposition 2.3. Therefore

K(t,f; L®, @)
1fllgron - = SUP= = < 0
>

min(1, )
This implies that fe(L® n®)~. Consequently, (L* N"®)~ % L* & and the
proof is finished.
In the sequel we shall need some further notation (cf. [19]).
A Banach couple A is called K o-surjective if for every function  such
that min(1, 1/t)y(t) = 0 as t— 0, oo one can find ac(d,+ 4,)° satisfying
K(t, a; A) ~ ¥ (o).

For example, the couples (L7°(R.), L"*(R.)),
are K,-surjective.

1 <pO <P1 < 0, (Lm: Lﬂx)

Remark 2.6. If for a Banach couple 4 there exists an element ae A,
+A4, such that K (¢, a; A) ~ \/; , then 4 is K-surjective (Yu. A. Brudnyi and
N. Ya. Kruglyak—personal communication).

Let X =(X,, X,) be a couple of Banach lattices (on (2, Z, y). The
Calderén space (see [6]) of all x€L® such that |x| < Alxg* ~°|x,|® u-ae. for
some x;€X;, ||xllx, <1, i=0,1, and some 4 >0 is denoted by X5 x4,
We put ]

lIxllxy~0xg = inf 4. »

Let X be a Banach lattice on (@, Z, ) and let 1 <p <oo. The p-

convexification of X, denoted by X, is defined as follows: xe X if |x|Pe X .
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We put
1l gy = 111171157
It is easy to show the following

ProrosiTioN 2.7. Let X be a Banach lattice on (2, Z, p) and let w be a
weight function. Then

X1O(LgY = X9,
Jor each 0 <6 < 1.

p=1/1-6),

TueoreM 2.8. Let a Banach lattice @ with the Fatou property be such that
(peg’“L Assume that a Banach couple A is K-surjective. If the couple
(AL,,, o) has the universal right K-property, then & = L.

Proof. Choose ae Ao+ A, such that K (s, a; 4) ~ f(s) = /@(s). Then
from the reiteration theorem (see [5], [18]) we 1nfer that

K(t,a; A, 4, Ag) ~K(t, K(s, a; A); L, &) ~ K (t, f; L=, $).
By Corollary 24 we obtain the inequality )
K(t, a; Ay, Ag) <K (1, x; L),

L©°

where x(s) = c\/; , with some positive constant c.

Now, by Propgsition 2.7 and Theorem 2.1 in [20], xell s
= (L%; 1/2) (here {X; ) is the &+ method due to Gustavsson-Peetre; see

[izj, [20]). So if the couple (ALw, A,) has the universal right K-property
then

2 € (A, Ag); 1/2).
By the maximal property of Ky (see [5]) we have
Ay A3 1/2) = ‘I«LM.as)n/z)
with continuous imbedding. Since
AL, 9); 1/2) = (L)1 @112),
by Theorem 2.1 in [20], it follows that
Ay wr Ag); 1/25 < Ay,

with continuous imbedding. Hence

Mallg o) = 1K (-, a3 Dl gy ~ /2 Cllgiar = olly? <

icm
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Consequently, (pedi Therefore if xelL$,, then X(s) (p(s)llxll,_ll and
lF¥ls < ellxll.gz, . Hence LE, < &.

On the other hand, by inequality (22) we have X()

=K (t, x; L®) < o (t)||x]l¢ for all xe¢ and t>0. Thus & < L§, and the

proof is complete.

CoRrOLLARY 2.9. Suppose that a Banach couple A is K-surjective. Then if
a couple (AO o Af ) with fe 2"~ has the universal right K-property it follows
that p = 0.

Proof. The Banach lattice ® = L5, (R.., dt/t) has the Fatou property
and it ig easy to show that ¢ ~ f. Hence pe #*~. From Theorem 2.8 we
obtain @ = L§;, so ||fllg ~[Iflle <co and this implies p = co

From Theorem 2.8 and Theorem 4.2 in [10] we get the following result:

TueoreM 2.10. Let a Banach lattice & with the Fatou property be such
that pe .2t . Assume that A is a Ko-surjective Banach couple such that the
couple (L™, L$,) has the Culderén property relative to (Ao, @ [ ). Then
(A4 %, Ag) has the universal right K-property if and only if & = Ll,,,,

L%

Remark 211. By Theorem 4.2 in [10] it is easy to see that if a Banach
couple A has the universal right K-property, then so does the couple
(Ao s Af ,.) for each quasi-concave function f. The couples with the univer-
sal right K-property include (L', L") (ie, “weak LP” spaces) and
(Lip(q), Lip(y,)) for o, Y, e Pt In fact, all known examples of such
couples can be subsumed under the general results in [5], [18] which imply
that the couple (B,,0 o> Bu,l ) where Yo, ;€ 2™~ has the universal right K-
property for any Banach couple B =(By, By).

3. Further results and remarks. Now we give a theorem about the
universal right K-property for a couple (L', E) of symmetric spaces. In order
to obtain this result we introduce some further notation.

The associated space X' of a Banach lattice X on (Q, 2, u) is the
collection of all measurable functions xeL® for which

Il = sup, flx@y@ldu < co.
Iplix<1 @
A Banach subspace E of L°(R, , m), where m is the Lebesgue measure, is
said to be symmetric on R, if for each yeE and all measurable functions x
such that x*(t) < y*(¢) for ¢t > 0, we have xeE and [Ix||g < [|yllg (cf. [13])-
Here x* denotes the nonincreasing rearrangement of |x|.
The fundamental function of a symmetric space E on R, is defined for

t>0 as Yg(t) =10,k
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FQr each symmetric space E on R, with fundamental function ¥y the
following continuous inclusions are valid (see [13]):

(3.1 A(E) <« E = M (E),

where

AE) = [xe L [Ixl = :fx* () dyis(s) < oo},

M(E)= {x €L ||x||pe, = sup (%t(t)
>0

1
§x*(s) ds) < oo}.
0
Let ¢ be the dual Banach space to & with respect to the bilinear form
® 1\dt
(La=[f(®g (—)~-
F t)t

By J4 we denote the J-method (see [5], [10], [18] for more details).
Note that K4(X) and Jy(X) are Banach lattices if )?:(Xo, X)) is a
couple of Banach lattices.

TueorEM 3.1. Assume that (X, X,) is a couple of Banach lattices on

(2, Z, ). Then:
(a) Jp(Xo, X)' = Ko (X5, X1).
O If &= and SNL®£L*NLE, &NLY ©NLE
Is» s # L NLy,, then
Ko(Xo, X,)' = J, (X3, X}). g !

Progf. This follows by applying the results of Lozanovskii [14] and a
modification of the proof of Theorem 10.1 in [5].

THEOREM 3.2. Let E be a symmetric space on R, with the Fatou property

such that the fundamental function yze 2% ~. Then the couple (L*, E) does not
have the universal right K-property.

Proof. Since E has the Fatou property, E is an interpolation space with
respect to (L', L) (see [13], Theorem 4.9, p. 142). But (L}, L*) is a Calde-
rén couple (see [7]) so E = K% (L', L) with some &, = 430, by the results
of [5]. It is easy to see that @g (1) = t/Yy(t)e #*".
nd I:j{or.?o::cr, observe that &, N L® % L* L3)s and @ N LY, # L® N LY.
ndeed, if for example &, NL*® = [® Y byl
gc(pLix;s(t)=Ct, x P 0 L*® LS, then &, < L and Py (1)

im ¢~ gy (2) < ¢ < 0.
=0
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On the other hand,
limt ™" @g, (1) = lim 1/fg () = o0
t—~0 t—0
and we get a contradiction. :
Since E = E'!, it follows from Theorem 3.1 that
E =Kq(L', L™),
where @ = @. Obviously, ¢ has the Fatou property. Since @g4(f) ~ t//g(t)
we have e 2" ~. Therefore if the couple (L', E) has the universal right K-

property, then so does the couple (K (L', L), Ko(L, L™)). Hence by
Theorem 2.10 we deduce that ¢ = L{j, and consequently

E = Ko(L}, L®) = K(L!, L) = (L', LY.
= (Ll, Lm)r/wE(n,m = M(E)

But the couple (L', M (E)) does not have the universal right K-property
(see [9]). Thus the proof is complete. :

Remark 3.3. If a symmetric space E does not have the Fatou property,
then in general (L, E) is not a Calderén couple. For example, this is the case
if E is the closure of L'NAL® in M,, O<a<1, where M,
= (L', L®); 4, (see [17]).

4. The universal right K-property for the couple (Ags ‘Zlgm). We give some
results for the couple (Ao, Xl,m).

ProrositioN 4.1 (see [2], [157). Let a Banach lattice @ be such that the
Junction o, (1) =1t/p(t) is increasing and ¢, (Ry)=R,. Then

K(t, a; g, As) ~IP.K (", a3 Allo
for each Banach couple A and all ana,+A1, where u = @3 (t).

COROLLARY 4.2. Let a Banach lattice @ be such that the function ¢ is in
P*~. Then

Jor (s} = /59 (s)-

The proof is similar to that of Corollary 2.4.

Kt f; 6, LE) ~ /i

COROLLARY 4.3. If & = (L:i.g)o, 0 <# < 1, then no Banach couple A has
the Calderén property relative to (9, Lf).

Proof. Similarly to the proof of Corollary 2.5 it can be seen that the
function f(s) = §° 1y, o i in (@ N LE)~ but not in &N LY.


GUEST


126 M. Mastyto

THEOREM 44. Let a Banach lattice @ with the Fatou property be such that
Qe ﬂj‘. Moreover, let A be a K,-surjective Banach couple. If the couple
(A, A1, ) has the universal right K-property, then & = L%,

Proof. Choose ae 4, + A4, such that K (s, a; ) ~ f(s) =
from the reiteration theorem (see [5], [18]) we get

5@ (s). Then

K(t, a; Ag, Ay o) ~ K(t, K (-, a; A); 6, L)~ K(t, f; &, LE,).
By Corollary 4.2,
K(t, a; dp, A1) <K (1, x; L),

where x(s) = c/s,c>0.

We have xelLf 5 = <L®:1/2> by Proposition 2.7 and Theorem 2.1 in
[20].w So if X =(ffq,, ffl,m) has the universal right K-property, then
ae(X;1/2> with |l y./2, bounded by some positive constant. Since
AP, L) 1/2> < (12(LF)1)~, by Theorem 2.1 in [20], it follows that

{Adg A1,0); 1/2> A«o,Lf‘;s);l/n < I‘I(¢1/Z(Lﬁs)1/z)~ = XF
with continuous imbeddings by Proposition 2.7, where F = @2,,,. Hence we
obtain

llallzy = 1K (s, a5 Dl ~ ||(s™12 £(S)]42 = llgly? < oo.
Consequently, pe®. This implies that & = L3;,, which finishes the proof.

CoroLLarY 4.5, Let A be a K o-surjective Banach couple. If a couple

(A;.p Ay, ), where fe 27, has the universal right K-property, then p=o0.

THEOREM 4.6. Suppose a Banach lattice @ has the Fatou property and

@27, Let, for a K,-surjective couple A, the couple (LT,, L{5) have the

Calderén property relative to (A_q,,m, fi'lm). Then the couple (A, /fl‘w) has the
universal right K-property if and only if & = LY,.

CoROLLARY 4.7. Assume lhatﬁa Banach lattice & has the Fatou property
and e P*~. Then the couple (&, LS
and only if & = L%,

TueoRem 4.8. Let E be a symmetric space on R, with the Fatou property
and let the fundamental function yze P*~. Then the couple (E, L®) has the
universal right K-property if and only if E = M(E).

Proof. Assume that the couple (E, L) has the universal right K-
property. Then by Theorems 3.1 and 4.4 we obtain E = M (E) (the proof is
similar to the proof of Theorem 3.2). On the other hand, the couple
(M(E), L™) has the universal right K-property if yyeP*~ (see [9], [22]).

has the universal right K-property if

icm°®
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It is possible to give a direct proof of Theorem 4.8 (see [16]). We present
it for the sake of completeness. B

Since Yg ~ g, we get Y27, 50 Yr(R.) = R, and y; is increasing.
Then

K(t, y: E, L*) <K(t, y; A(E), L*)

o— 1
«© _ ds Yg _ d
< [ O0hio.g; Lon)* () e (S)? < | ¥ (5)1/2*3i < \/’—
0 o

by (3.1) for y(s) =yg(s)""* and by the formula for K(t, x; A(E), L®).
Consequently, we have

K(t,y; E, L9 <K(t, x; L% for x(s) ~ /5.

By a result of Ovchinnikov (see [21]) and Proposition 2.7, the spaces
E'2(L*)Y? = E® and (L9)Y? (LE)Y/? = Lg 5, intermediate with respect to
(E, L™) and (L*™, L$}) respectively, ‘are interpolation spaces with respect to
(E, L®) and (L®, L§)). Therefore if the couple (E, L) has the universal right
K-property, then (L™, Lfj) has the Calderén property relative to (E, L%).
Hence there exists a constant ¢ > 0 such that

IVlpe < ellxll 0 _ <oo.

Hence ye()™'~g(-) ' €E. Since x*(t) < ¥g(t) Xl for
xeM(E) and t > 0, we have
Ixlle = el < We ()7l [l < oo,

and so M(E) cE. Consequently, E = M(E) by (3.1).
On the other hand, the couple {M(E), L*) has the universal right K-
property if f,. <1 (see [9]). Thus the proof is complete.

each
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On the ergodic power function for
invertible positive operators
by
RYOTARO SATO (Okayama)

Abstract. Let T be an invertible positive linear operator on L, I <p<oo, of a g-finite
measure space, and suppose 77! is also positive. For 1 <r < oo, the ergodic r-th power function
P.f of feL, (with respect to T) is defined by

Pf= [,Eol'lllﬂ,of—7;;,0f|""|To,k+1f‘Tv,kﬂ']”r

where T, f = (n+k+1)"* 3k _, T'f with n, k> 0. In this paper it is proved that if Tx are
uniformly bounded operators on L, then IlP, f1l, < ClIfli, for all f L,. This generalizes a recent
result of F. J, Martin-Reyes. An application is also given.

1. Introduction and the theorem. Let (X, &, 4) be a o-finite measure
space and T an invertible linear operator on L, = L,(X, &, ), with 1 <p
< 0. If both T and T~ are positive, then, as is well known (see e.g. 3y, T
and T~! are Lamperti operators, and there exists an invertible positive linear
operator S acting on measurable functions such that § is multiplicative and
S1 =1, and a sequence {g;}i“;_ « Of positive measurable functions on X such
that for each integer i, T* has the form

(1) ' T f () = g:(x) S' f ().

It is immediately seen that

@ Girj(X) =g, (X)Sigj(X) ae. on X.

Further, by the Radon-Nikodym theorem there exists a sequence {J;}2 _ "
of positive measurable functions on X such that

3) [J:() 8" f(x)du = [f(x) du for each i and feL,.
Clearly,
“ Jirj (%) = Ji(x) 8 J;(x) ‘ae on X.
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