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The projective tensor product of Fréchet-Montel spaces
by

JARI TASKINEN (Helsinki}

Abstract. We construct a Fréchet-Montel space F for which F&, F is not a Montel space.
It follows that the spaces L,(F, F}), By (F, F) and F;@)&F{, are not (DF)-spaces. We also show
that if X is an L"space with 1 <p < co, then there is a Fréchet-Montel space F such that
Ly(F. X", By(F, X) and Fy&, X' are not (DF)-spaces.

1t is well known that the projective tensor product of Fréchet-Schwartz
spaces is again a Schwartz space. This fact was already proved by Grothen-
dieck in his thesis. it has been conjectured that the similar statement would
also be true for Fréchet-Montel spaces ([6], 45.3). However, in this paper we
shall construct an example of a Fréchet-Montel space F for which F&, F is
not a Montel space. ,

The preceding question is equivalent to “Probléme des topolegies” of
Grothendieck (see [3], Question non résolue 2) and we get a new counter-
example to it, too. The first counterexamples for Fréchet spaces were given
in [97].

The Fréchet—Montel space F has the approximation property. Hence,
we have the duality relation :

(Fy @, Fp)y = F&, F.

Using this we get an example of a (DFM)-space F,, for which Fy &, F, is not
even a (DF)-space. Thus we get an answer to Question non résolue 10 in [3].

The spaces L,(F, F;) and B, (F, F) are topologically isomorphic to
F,®,F, if F is as above. Thus, they are not (DF)-spaces, and we get other
counterexamples to the questions of Grothendieck.

Let X be an infinite-dimensional [P- or LP-space with 1 <p <o, We
shall also show that for a suitable Fréchet-Montel space F the space F®, X
does not have property (BB), ie. not all bounded sets B of F&, X are

contained in sets I'(B;®B,), where B; c F and B, = X are bounded. It
follows again that L,(F, X), B, (F, X) and F;®, X" are not (DF)-spaces.
Section 1 contains notation and preliminary results. In Section 2 we
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18 J. Taskinen

study certain extension properties of tensors in Banach spaces. As a conse-
quence of Pisier’s results in [8] we get a proposition which is later used in
the counterexamples. Section 3 contains the main construction and the
counterexample concerning Fréchet-Montel spaces. In Section 4 we study
the projective tensor product of a Fréchet-Montel space and a Banach space.
The other results are given in Section 3.

Acknowledgement. 1 thank Dr. Kaisa Nyberg, Dr. Kari Astala and Dr.
Hans-Olav Tylli for reading the manuscript.

1. Preliminaries. For locally convex spaces and tensor products we shall
use the notation and the definitions of [6]. Let us, however, recall some of
the most important facts. A barrelled locally convex space is Montel if all
bounded sets are precompact. A locally convex space E is (DF) il it has a
fundamental sequence of bounded sets and if every strongly bounded subset
of ' which is a union of countably many equicontinuous sets i3 also
equicontinuous. By a (DFM)-space we mean a (DF)-space which is also a
Montel space. A locally convex space E is said to have the approximation
property if the identity operator on E can be approximated uniformly on
precompact sets by finite rank operators,

We denote by L(E, F) the space of continuous linear mappings E = F
and by B(E, F) the space of continuous bilinear forms on E xF. The
topological dual of a locally convex space E is denoted by E'; Ej is the dual
equipped with the strong topology.

The projective and injective tensor product and the s-products of the
spaces E and F are denoted by E®, F, E®, F, e(E, F) and EeF, respectwe!y
(for deﬁmtlons see [6]). The completion OF E@_F (resp. E®,F) is E ®, F
(resp. E®,F). For all locally convex spaces E and F, EeF is topologically
isomorphic to e(E, F). Moreover, if one of the spaces E and F has the
approximation property, we have

(L.1) , E&,F = EsF,

In the case E and F are Fréchet-Montel spaces we have the topological
isomorphism

(1.2) (EyeF), = EQR.F
(see [6], 45.3(1) and 44.3(8)).
If p and ¢ are seminorms in E and F, we set
(PRY) () =inf T, p{x}a(v),
i=1

where the infimum is taken over all representations z = 3, x; ®y; with x;€E
and y; &F. Similarly

(P®, 9@ = sup | Z (ux) (vyill,

(u,v)5G xGy im=1
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where G, and G, are the polars
={xeE|p(x) S1]°<=E, G,=[yeFlg() <1}® cF

and z =) x;®y,. If M and N are subspaces of E and F and 7eM®N, we
denote '

(PI M)B(gIN))(z) = inf Y p(x) g (v,
i=1
where the infimum is taken only over representations z =) x;®y; with
x; €M and y;eN, Thus for all zeM®N we have {(p]M)®(q|N))(@)
= (p®q)(2); see [9], Section 4, for more details. The same notation will be
used for the s-tensor product, too. In this case we have always
I M), (g} N) = p®,q in MRN.
The following theorem is a special case of [8], Theorem 3.2.

Tueorem 1.1. The Hilbert space 1 can be isometrically imbedded into a
separable Banach space X for which X®,. X and X®,X are topologically
isomorphic.

2. On the extension of bilinear forms in Banach spaces. We used already
in [9], Section 4, a quantitative analysis of the extension properties of tensors
in Banach spaces. To get a counterexample to “Probléme des topologies™ in
the case of Fréchet—Montel spaces we need the best possible results in this
field. These can be achieved by using the Banach space X constructed by
Pisier.

ProrosiTioN 2.1. There exists a separable Banach space (E, p) and a
family of its n-dimensional subspaces (M,),.n with the following property:

2.1) ((p] M)®(p| M) (z,} > Cn(p®@p)(z,)
Jor some z,e M, @M, and a universal positive constant C.

Remark. Given E and (M,) we can always find a projection P from E
onto M, with ||P|} < ﬁ (see [71, 28.2). From this it follows that

{(p| M) @(p| M ))(2) < n{p@p)(2)

for all zeM,®M, ([9], 4(1)). Thus Proposmon 21 is an optimal result in
the obvious sense.
For our purposes it is essential that the coefficient Cz in the right side of

(2.1) satisfies
2
On
< oo,
pet {c}

where p, =inf{||P||| P is a projection from E onto M,}. However, it is not
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necessary that (g,) grows as fast as \/5 when n tends to infinity; any M, with
unbounded (g,) would do in this respect.

Proof of 2.1. We take the space X of Theorem 1.1 for E and for M,
the spaces I? = sp((eJi=,) < * = E, where (g)i%, is the natural basis of [*.
By Theorem 1.1 there is a positive constant C such that p®,p > Cip&p).

Consider the tensor z, =3 1=; &;®e; e M,®M, = EQE. By [6], 42.6(1),
{(pi My®(p| M)){z,) = n. On the other hand, ((p| M,)®.(p| M))(z,) = 1, be-

i

cause z, can be considered as an isometry M, — M, and the s-norm is equal
to the operator norm of L(M,, M.,)
Combining these facts we get

(I M)®(p| M)z, = nl{(p| M)®,(p] M))(z,)
= H(F ®s p) (Zn) > CPI (p @I’) (Zn.)
for some constant C. m

Proposition 2.1 can also be expressed in terms of bilinear forms. In the
following E and M, are as above.

CoroLLary 2.2, There is a bilinear form beB(M,, M,) such that
1Bl > Cnpl|
for every extension B €B(E, E) of b.

Proof. Let I be the identity mapping (M,@M,, p®p) — M, &, M,. By
Proposition 2.1, ||[I')] = M|l > Cr (I’ 1s the adjoint of I). There exists thus a
be(M,&, M,) such that

1ollwt, @, p @ = Coliblion, @m0 -

For an arbitrary extension b e(E®,E) of b we then have

||b||(E®,,E)' > Cullbll, @,m,) -

‘The assertion follows now from the natural tsometry of (E®, EY (resp.
(M, ®, M,)) and B(E, E) (resp. B(M,, M,)). =

3. The projective tensor product of Fréchet-Montel spaces.

3.1. DrriniTions. Since no Montel space can contain an infinite-dimen-
sional normable subspace, we cannot use the space E of the preceding
section as such in the construction of our Fréchet-Montel space. However, it
is not difficult to find finite-dimensional subspaces of E which are suitable for
our purposes. -
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Let (E, p), (M,) and (z,) be as in Proposition 2.1. For each z, we take a
finite representation z, = 3,7, a,, ®b,, such that

Zp(aiu)p (i) < 2(p@p)(z,).

Let us define for all neN the subspace E, =sp la;,, byli=1, ..., m,] —i—M,,
of E. Proposition 2.1 implies now

(.0 {(PIMIB(p| M)z, = Cnip®p)(z,) = 1 Cn((p| E)®(p! E))(z,).
We choose a projection Q, from (E,, p) onto (M, p) with ||Q,]l € /n (this-is
possible by [7], 28.2} and set R, =idg ~ O, and N, = R,(E,).

We are now ready to construct the Fréchet-Montel space F we need in
the cowvnterexample. For all n N let us denote.

n
An = Mn® @ Nzn:
t=1
where N, =N, for 1 <t <n We define a family of seminorms in 4, as
follows: if z =x+3 y, €A, with xeM,, y,eN,,, then for k=1
n n nak
(pel A}(z) = n* "V ploct 3 p)+ X p(pd+ X n*p(n).
t=1 =1 t=1

Here n A k = min {n, k}. Note that x+), )y, and y, are considered as ele-
ments of E, in a natural. way when taking the seminorm p. Finally, F will be
the space

F = {Z = (‘ZH)T!EN

anAna pk(z) = z (pk|An)(zn) < .CO}'
neN
It is clear that F is a Fréchet space when topologized by the seminorms
PSP Spys...
We denote the closed unit ball of p, by ¥.

Let us give some explanations for the preceding definitions. We shall
choose tensors z,eM,®M, using formula (3.1) applied to the terms
nk~ D2 plx 43 p,) in the definition of p,]A,. It turns out that for each k
< n the tensor z, has a representation z, = Y 4, ®b; in (M, BN, ) R(M,BN,,),
t > k, for which

(Pe@pa)(z) < 3 o) pe(B) < Gy

Here €, > 0 does not depend on n. On the other hand, we shall show that
(P, ®pa)(z) > C >0 for all neN and a constant C. It follows that
sp {z,|n €N} is isomorphic to a normed space. It is essential that the “good”
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representations y. ¢; ®@b; of z, are “very different” for different p,. This causes
the different behaviour of F and F® F with respect to the Montel property.
The purpose of the terms #* p(y,) in the definition of p,| A, is to ensure
that @,y Ny, ¢ fixed, is not normable; the sums Y t*p(y) do the same in
evety @,en Nopm, where fis an arbitrary unbounded function N —N.
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Proeosimion 3.2. The space F is Montel.

~ Proof. Itis enough to show that every bounded set B < F is precom-
pact. We may assume that B is of the form ()E,r W with r, 2 1. We fix
some £ >0 and ¥, k> 2, and choose n,e/N such that

(3.2) k2R 20+ 1)
Arieq

for n = ng and
£

(3.3) o —— gl

4y

for t 2 ny. Then we take an seN with s>z max {n), k+1} and n &N,
ny > Hg, such that

£
3.4 ko g
(34) <ot

1

for nz n,.

let z€B be arbitrary. We denote the A,-coordinate of z by z, = x,
+Z:I=1yrm WhEI'E xn EMH and ymENm'

I) We first consider the coordinates z,,,
get

n = ny. Using (3.2) and (3.3) we

(3.5) ATV p(x,+ Z Ve + Z P (en)

=1 =g

<__8__‘(nk,'(2(k+1 (X + E ytn)+ z Tk-i-l y!n))

dreel 1= t=ag
&
< e (Prs1 14w (20
k+1

Similarly by (3.4) (note that ny <n, no <s and k <5s)

"0“" 1Ak
(3.6) Zl t* p (v + Zl 1 D (Vem)
i t= .

< Z 21 p (9un) <;(-Z 7 p(¥) < (paIA)( 2.
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By (3.5) and (3.6) we get

(37) pk ((Oa ’ 09 znla zn1+ 1s »» )) = Z {pki An}(zn)
H=r1q
n np—1 n Ak

3 (Il Y+ 3 Eplt 3 #pGi+ 3 A p()

n=any =1 1=ng =1 =1

<3 (per A+ (il 4 )
Z( TG+ (] Az

< j—
4, 117Jc+1(2')‘*“,_,”_‘v Ps(2)
a+e K
<itiTy

II}) The subspace @,,Hl A, of F is finite-dimensional. Thus we can
choose a set ()L < F such that for all zeB =y V,

fy—1 LR R
(24, -s 25y -1: 0, 0, JeB 6—) 4,) = U (ui-i-;Vkm( @ An)),
= n=1
Combining this with (3.7) we get

B« U (Ui+8Vl—r.):

i=1

which completes the proof. =

TuroREM 3.3. There exists a Fréchet—Montel space F such that I' is
topologically isomorphic to a subspace of F®, F

Proof. Let F be as above. We first define suitable tensors in the spaces
A, ®A,. By formula (3.1) there exists z,eM,®M, < E,@E, such that
(P M,)®(p| M) (z,) = Cr((p| E)&(p| EJ)(z,)-

(We have redefined C to remove the unnecessary number 1/2.) We may
assume ((p| M,)®(p| M,))(z,) = 1. Let Y2 AinX;,®yiy e a representation of
z, in E,®E, for whlch T Al < 2/C, plx) < 1/</n and p(yid < 1//n. We
define for <t :

~1mf Qn xm+R Xin EAm m = Qnyi_n+Rn Vin €Ay,

where Q,x.,€M, and R,x, €N, and similarly for J,. By the inclusion
M, = A, we can consider z, as an element of A,®A,. Morecver, z, has the
representations

(38) . In = Z A—mi‘m@j”im
i=1

forall 1<t<n
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I) We form upper bounds for the seminorms (pk®pk)(zn). Since, by
definition, [|R{ < /n+1 <2./n we have

1
p(Rmxin)gz np(xin)sz\/ﬁ'——r_=2
/n
Y

and similarly for R,y;,. For k <t <n we thus have

39 (n@pdza) = (] A)B(pe| A (2
S Z sl (P | A (i) (Pic| An) (Fie)

= Z Iliul (”‘(k_ DZR) p (Qn Lin -+ Rn xirr) + tk P (Rn xin))

x (n*~ R by, + Ry yi) +2F 2 (R, 1))
< 3 Ml (7172 p (i) + £ PR, X))

x (nlll p(yin) -+ rk P (Rn yin))
€ X Al (142099 < 2(1+ 289/,

We choose t =k+1 in (3.9). Then

(3.10) (B ®p)(z,) € max {(pk @01 (2.),

m=1,..,

2(1+2(k+ 1)
e

for all z,. The right-hand side of (3.10) is clearly independent of n.

II) On the other hand, we need a lower bound for (p,®p,)(z,). For all -

w=a+ Y/, b eA, we have

(3.11) nt*pla+ 2 b,)+ Z tpb) = 1p(a),
t=1 t=1

so that

(3.12) ' (P21 4,)(w) = $p(a) = 1p(Q,w).

Formula (3.11) follows immediately if ]
. pla+} b) = a). In the otl 3
we get by the triangle inequality ( 20)>5pla). To the other case

gp(b,) = p(3b)> ip(a),

1

which also implies (3.11).

Fréchet-Montel spaces 25

it now follows from (3.12) and the normalization of z, that

GA3) (P2®p2)(2,) = (P2 ]| ADB(p: | ANz

= inf Y (pal A (@) (p2] A (i)
Toi®hy=z, i

= n‘@i;;fw 2AP(Q0a) p(Q0b) = (| M) &lp| M) z) = i
because z, e M, QM.

Let J be a finite subset of N and a,&K for all neJ. One verifies
immediately that

(314) (pk @pk](z anzn) = Z mnl ((pk | An) ®(pk I An))(zn)

nel ned

for all k.

We define a continuous linear mapping ¥ from sp(lz,}) < F®, F onto
I' by ¥(z,) =e,, where {¢) is the natural basis of I*. By (3.10), (3.13) and
(3.14), ¥ is a topological isomorphism.

COROLLARY 34. There exists a Fréchet—Montel space F for which F &, F
is not Montel.

CoroLLARY 3.5. Let F be as above. The space F®,F does not have
property {BB).

4. The space F®, > Using the space F constructed in Section 3 we get
another counterexample to “Probléme des topologies™: the space F &, [* does
not have property (BB).

We begin with the following remark: If p, E,, M, and z, are as in
formula (3.1), then by (3.1) '

(4.1) ((p) M) @(p| M)z > Crl(p] E)®(p ED)z)
= C./n((p E)&(p| M) (z)-

Here we have again redefined the constant C. The last inequality follows
from the existence of a projection from E, onto M, with ||P|| < \/;1

It is certainly clear that we would not need the complex construction of
Pisier to get an example of spaces E, and M, which satisfy {4.1). We discuss
Jater the question to which Banach spaces our construction can be genera-
lized.

We define the space F as in the previous section and we use the same
notation. : : '

TusoreMm 4.1, The space F&,* does not have property (BB).
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Proof. The beginning of the proof is analogous to that of Theorem 3.3.
The norm of /* is denoted by g and the closed unit ball by U. We fix for
each » an n-dimensional subspace of /? and using formula (4.1) we choose
tensors z,eM,®I2 = E,®I? such that

(p] M,)®q)(z,) = C /n((p] E)Rq)(z,).

We normalize again ((p| M,)®g)(z,) = 1 and choose a representation

m n

2y = Z ;{mxin®y!n

i=1

< 1/, ynell,

with ) |4,] <
tions

2/C, x, €E,, p(x < 1. We get representa-

My
Zy = Z lin jc-irn®yin
=1
in 4,®01% = FRF by defining

ml - Qn xm+ R ¥m EA

where Q, x;,€M, and R, x;,€N,,.
Analogously to the proof of Theorem 3.3 we see that (p, ®q)(z,) < €, for

all neN and some positive constants C,. Thus, the set B =(z),.n 15
bounded. By antithesis, let

4.2) Bc r((an n )QU),

where r, > 0. Since B «- F®/? the closure in (4.2) may be taken in F®, [°. It
follows from (4.2) that for a fixed ¥ every z, has a representation

my ma
(4 3) Z Qin Gin ®bm+ Z Ty Cm®d1m
i=1 i=1

where Y |0l <1, au e\ W, by €U, }loy <1, dyeU and ¢, e(3n) 1 ¥, .
We may assume that a,, ¢,4, for all { and n.

We now consider g, and c;, also as elements of (E,, p) in the natural
way (see the remark after the definition of {p,| A,} in Section 3.1). Because
2, €M, ®F,

ng Qn in ®bm+ Zam(gn m m

It now follows from the normalization of z, and the definition of the
projective tensor norm that for each n there is an i such that p(Q, a;,) = 1/2
or p(Q,¢,} = 1/2. But the latter is not possible. Indeed,

Qn m \/_ P(Cm) \/—(pko | An) (Cm) = '\/’;pko (Cln)

icm
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since [|Q,f1 € /n in (E,. p). On the other hand, py,(c.) < 1/(3n) for all n.
Thus, for each n
(4.4) p(Q.a) =3,

where a, = a;, for some i
By assumption the set {p,(a)j.n 15 bounded above. Formula (4.4)
implies

" n
a) = n"p(Qran+ Y @)= nt E—p(Y &),
Pz( ] =

=1

where &, is the N,-compouent of a,. Thus, for n large enough, say n > ng,

\_/
PIH

p(@y) = p(Y

1 t

Il P =

(4.5)

t
otherwise |p,(,)}en is not bounded. Therefore there are indices r, such that
Z p(&,) = ?%T

t=fq
For n > ny we set
L3
o < ”I 2, pla) > 5
1=ty
I) Suppose first that {D,},», i bounded, say D, < C for some C > 0.
For k> C and n > max {ng, k} we have

D, =max {{reN, 1 €

nak C+1
(4.6) pla)z L W@ =n Z p(G.) = /8.
=1 t=1
The last step follows from (4.5) and the definition of D,. Clearly, (4.6)
contradicts the assumption pe(a,) <7 Vn in formula (4.3).
1I) Suppose then that there exist elcments D,l ., j €N, with D > j. In this
case

ﬂj ‘
P2 (anj) ? Z r am Zt P(ﬂm
=1 ;

ny
"

2 L p ) 27 Z pl@n) = J*/8.

1= D"j
For j large enough this again contradicts the assumption p,{a,) <r, for all
no®m

Other pathologles followmg from this example are dlscussed in Sec-
tion 5. ,
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A similar counterexample can be constructed for other /- or L/-spaces,
p>1 as well (We denote the space by G) We take the duals of I-
complemented n-dimensional 2-subspaces of G for M, and we embed the
spaces M, isometrically in C(0, 1). It is well known in Banach space theory
that the projection constants g,:= inf {||P,]|| P, is a projection from {0, 1)
onto M,} tend to infinity as n grows up. Using Lemma 4.1 of [9] we can
choose tensors z, such that

(1M, 8) ) > 2 (B,

where k and g denote the norms of C(0, 1) and G, respectively. Finally, using
a trick analogous to that at the beginning of Section 3 we find finite-
dimensional subspaces E, of C(0, 1) contaning M, such that

@7) ((ha M) D) ) = £ {(h] E) ©4) 2,

and such that there are projections Q, from E, onto M, with Q4] < 20,. We
can now use the preceding construction with (4.1) replaced by (4.7) and G in
the role of P In the definition of p,|4, we take ()% "* instead of
= DR The fact that the sequence g, grows up to infinity is needed in the

proof that F is a Montel space. Finally, in (4.3) we take cn €07 2V, /3 instead
— L n O
of (3m)~* Veo-

5. Other counterexamples. As easy consequences of the preceding cons-
tructions we get counterexamples to some old questions of Grothendieck.

It follows directly from the definitions that all of the spaces F in
Sections 3 and 4 have a so-called finite-dimensional decompaosition (for defini-
tion, see [2], Ch. VL1). Hence, the spaces F have the approximation
property. Since Fréchet-Montel spaces are reflexive, the same is also true for
the spaces F; ([6], 43.4(9)).

We now prove

THEOREM 5.1. There exists a (DF M}-space G for which G®,G is not a
(DF)-space. Moreover, if X is an {7~ or LP-space with 1 <p < o, then there is
a (DFM)-space G such that G®, X is not a (DF)-space.

Proof. 1) We first consider 9’@)8 G. Let F be as in Theorem 3.3 and set
G=F;,. By (11) and (1.2), (G®, G}, = (GG, = (6(G, GV = F®,F. }t is
enough to comstruct a countable bounded set B = F ®. F which is not
equicontinuous. In view of the preceding results it suffices to show that the
equicontinuous sets of F&, F are subsets of the sets I'(B, ®B,) with B, c F,
B, = F bounded: then we can take a bounded set B which is not contained

in any set I'(B;®B,) and choose a dense countable subset N of B. As &
consequence, N is bounded but not equicontinuous.
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Any neighbourhood W of 0 in £(G, G) contains a set (U°®V")°, where
U, ¥ =G are absolutely convex neighbourhoods of 0 and U°@V° is
considered as a subset of G'QG' = F@F; (F&F, ¢(G, G)> is a dual pair as
in [6], 44.3(6). Note that U° apd V° are bounded in F. We now form the
polar of (U°@¥V°)° in F&,F = (s(G, G));, and denote it by (U°@V°)™. The
bipolar may be considered to be taken in the dual pair (G, G), F®, F>.
Thus, by the theorem of bipolars

(5'2) WO — (UO®VD)GQ e F(UD ®VO),

where the closure is taken in the weak topology of F&, F with respect to the
dual pair (&(G, G), F®, F>. But (F®,F) is algebraically isomorphic to
e(G, G) (see [6], 45.3(1)). Thus, the closure in (5.2) may be taken in the
original topology of F&, F. We have shown that every equicontinuous set of
F®_F is contained in a set I'(B, ®B,), B; = F bounded, which completes
the proof.

II) Let X be as in the hypothesis. Using the results of Section 4 we
choose a Fréchet—Montel space F such that F®, X’ does not have property
(BB). By assumptions, X' is separable. We set again G = F}. Because G 15 a
Montel space, G®, X = GeX = L, (G}, X) = Ly(F, X), where Ly(F, X) is the
space L(F, X) equipped with the topology of uniform convergence on
bounded sets of F. It follows from [1], Corollary 2.8, that (L, (F, X)), is
topologically isomorphic to F®, X’. As in case I we see that there are
countable bounded sets in F ®,E X’ which are not equicontinuous; in the
proof we again need [1], Corollary 2.8 to deduce the algebraic isomorphism
of (F®, X) and &(G, X). &

This resuli answers Question non résolue 10 in [3]. In fact, we have
shown that the spaces of Theorem 5.1 are not quasi-barrelled.
We get immediately another Grothendieck counterexample:

CoRrOLLARY 5.2. For suitable Fréchet—Montel spaces F and F, and a
Banach space X the spaces L, (F, Fi) and L,(F,, X} are not (DF)-spaces.

Proof. The élaim follows from Theorem 5.1 and the fact that L, (F, F})
=F®, F, and Ly(Fy, X) =(F )8, X. u

For any Fréchet spaces F and H the space B(F, H) is algebraically
isomorphic to L(F, Hj). We endow B(F, H) with the bibounded topoclogy,
defined by the O-neighbourhoods

U= {WEB(F, H)HW(BU Bz)| = l]l:

where B, « F, B, = H are arbitrary bounded sets. We denote this space by
By, (F, H). The topologies of By, (F, H) and L(F, H}) coincide and we get by
choosing F, F; and X as above
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CoroLLaRY 53. The spaces B, (F,F) and By, (F,, X) are not (DF)-
spaces.

30 J. Taskinen

Corollaries 5.3 and 5.2 give an answer to Question non résolue 7 in [4].

Remark. After this paper was submitted, Gilles Pisier noticed that an
analogue of Proposition 2.1 is valid for C(0, 1) instead of our (E, p). The
proof for this case 1s more elementary; it uses only a form of Grothendieck’s
theorem.
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The Wold-Cramér concordance problem
for Banach-space-valued stationary processes

by
GRAZYNA HAIDUK-CHMIELEWSKA (Szezecin)

Abstract. The problem of the concordance of the Wold decomposition and the spectral
measure decomposition of Banach-space-valued stationary processes is studied. We give a
sufficient condition for the concordance in terms of the representation of the process as a
process in the space of square Bochner integrable functions on the circle.

0. Introduction. The problem of the Wold—Cramér concordance for g-
variate stationary processes was extensively studied (cf. [4]-[6]). In the case
of stationary processes with values in a Banach space the only result was
given by F. Schmidt. He proved that every such process X admits a unique
orthogonal decomposition

X (k) = Y (k)+ U (k) + V'(k)

where ¥ is regular, both U and V are singular and the spectral measures of
¥. U are absolutely continuous, while the spectral measure of V' is singular
with respect to the Lebesgue measure (cf. [7], Theorem 5). In particular, the
question of whether there exists a nonsingular process with nonzero U part
in the Schmidt decomposition remained open.

In this paper we present a sufficient condition for the concordance of the
Wold decomposition and the spectral measure decomposition for Banach-
space-valued stationary processes. The proof is based on the isomorphism
theorem {cf. [8], Theorem 3.3) which yields a representation of the process
under considerstion as a process in the space [*{K, u, H) of all u-square
Bochner integrable functions from the circle K to a Hilbert space H. Our
condition is formulated in terms of this representation. In Section 2 we
establish some properties of this representation we need in the proof of the
main theorem. Finally, we give in Section 4 several examples related to our
theorem. One of them (Example 4.1) answers positively the question formula-
ted above.

1. Preliminaries. In this paper we use the following notation:
Z — the set of integers,
C — the set of complex numbers,



