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Abstract. We exhibil an example of o Banach algebra A with an element e A such that
is left invertible in an extension B > A, w is right invertible in another extension B' = A and u is
invertible in no cxtension € » A. This selves some problems of W, Zelazko ([6], Problems 2.8
and 2.9) and shows that Arens’ characterization of permanently singular elements is not true in
noncommutative Banach algebras, Further, two problems of B. Bollobds [2] ars solved and the
following is proved: If T is a bounded operator on a Banach space X then there exists a Banach
space ¥ = X and §&B(Y) such that S|X =T and o (8) = {L: inf{l(T— A x]: xeX, x| =1)
=0}

Let 4, B be Banach algebras (all Banach algebras in this paper will be
complex and unital). We say that B is an extension of 4 (we write shortly B
> A) if there is an isometric, unit preserving homomorphism f: 4 — B.

Let u be an element of a Banach algebra A. We say that u is a left
topelogical divisor of zero if inf{{luzll: zed, ||zl =1} =0. If ued is a left
tepological divisor of zero then u is left invertible in no extension B - A.
Indeed, suppose on the contrary bu = [, for some beB, B > A. Then

1= inf {||buzl: z€4, [|lz] =1} < ||bllinf {luz|: zed, ||z]] = 1} =0,

a contradiction,

For commutative Banach algebras the following characterization (Arens
[1]} holds:

ueA is invertible in some (commutative) extension B = 4 if and only if
v is not a topological divisor of zero.

The analogous statement for one-sided inverses in noncommutative
Banach algebras is an open problem.

ProsLEm. Let 4 be a Banach algebra and suppose ueA is not a left
topological divisor of zero. Does there exist an extension B = A4 such that u
is lefl invertible in B?

In this paper we show that the analogous statement for two-sided
inverses is not true. It is possible that ued is neither a left nor right
topological divisor of zero and still u is invertible in no extension B o A4
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([6], Problem 2.8). In fact, we construct an example giving also an answer to
Problem 29 of [6]:

1. THEOREM. There exist a Banach algebra A, an element ueA, and (wo
extensions B oA, B'> A such that:

1. u is left invertible in B.

2. u is right invertible in B'.

3. u is invertible in no extension C o A.
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2. LemMA. There exists a semigroup P with unit 1p, and elements
Qs ...n 81y, WEP such that:

1. ag # asg.

2 uds = ay, Uldg =405, 7l =dyy, QGU=0ay, dyd, =dg, d7dy =y,
Q403 = Qygs CGa05 = 37

3. If pr. P2 €P, Py % po. then upy # up; and piu # pyu.

Proof. Let P={zluiu™ mz 0l uiwfau' (k, i, 1) S} where
S={k i, k=0,1=20, i=1,2,3,8,9, 10, 11}
GO, 1, 1) 120, i=5, 60U ik, i, 0): k=

(we consider z, u”, u*g;u' as formal mutually distinct symbols).
The multiplication on P is defined by:

0, i=47)

zp=pz=z (peP), ie zis a zero element in P,
Wp=pul=p (peP), ie u’ =1,

mra s (m, nz0),

eF ) = wm e k120, m>1,i45,6),

W asdy=w"ta,d, w(agu) =uw""lagd (120, mz1),

u™y® = u"

Wahu" =ukau™ Kk, Iz0, m=1l,i%4,7),
(W au™ =g, um""l,  (Wadu" =dtanwtt k=0, mz1),
(oY au)=z (Iz1lorkx=1or

(1, 1) ¢{(2, 6), (7, 3), @, 3); (2, 5},

(Wt ay)(agu’) = w* ag u”

(" ar) (a3 ') = uw* ayu” )

(W ag)(as u’) = v ajou” (k, =0
(" ay)(as u') = v*ay u”

We write ¢, w*a;, a1, u instead of u°a,u% w*a,u® ulaul, u' respectively.
It is easy -to check (although rather tedious) that the multiplication
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defined in this way is associative. Also conditions 1-3 of Lemm'i 2 are
satis fled. '

3. Lemma. (i) Let P be a semigroup with unit 1p and let ueP satisfy
up, # up, whenever py, p, €P, py 5% p,. Then there exists a semigroup Q with
unit 1y = 1p containing P as a subsemigroup such that u is left invertible in Q.

(i) If py. p2 €P, py # py, implies pyu 5 pyu then there exists a semigroup
Q' P with unit 1y = 1p such thai u is right invertible in Q'.

Proof. Lemma 3 is a well-known fact from the theory of semigroups
(see e.g. [4], X.1). For the sake of convenience we give an outline of the proof
here. Let Q be the semigroup of all mappings f: P —P. We may identify an
element peP with a mapping L,eQ defined by L,(p") = pp’ (¢’ €P). In this
way P becomes a subsemigroup of Q. As L, is a one-lo-one mapping, it is
left invertible in Q. Part 2 can be proved analogously.

Proofl of Theorem 1.

1. Let P, Q0 = P be the semigroups constructed in Lemmas 2, 3 and let
beQ be the left inverse of the element ueP, bu = 1.

Denote by 4 the {* algebra over P, ie. A consists of all formal series a
=Y ,erd,p With complex coefficients A, (peP) such that |lally =3 ,.p|4,l
< o, The algebraic operations on A4 are defined by

Z A’I’p L ‘u’!?p z An"‘#,‘)) ps

peP e P pelP

(Y App) =3 (@l)p (x&C),

pelP peP
(Z %P)(Z pr) = Z ( Z Ap;xf“pz)p"
pueF peP pel pLra=ip
Similarly, let B be the I* algebra over the semigroup Q. Clearly 4, B are
unital Banach algebras, 4 = B. Furthermore, the element ued = B is left
invertible in B,
2. The proof is quite analogous. We use the semigroup Q' constructed in
Lemma 3(l)) instead of Q.
3. Suppose on the contrary thal there exists a Banach algebra C > 4
such that wed is (two-sided) invertible in C. Put ¢ =u"". Then
0 = ay cag (1 —ue) ay—ay (1= cu) dts ey +ay (L —cu) ag=a, (1 —uc) a,
== 0y Oy Gy = o {0y, UCHy (g 5 [ - {y Cldly Cly
-y g — Oy Cldg — dq Uy -+ Utds
= (g 0y o= thy CAy Oy =y Cdy + 0 €4y €dy+ag
=0y Clyg =g+ 0y €Ay = dg~—ag # O,
a contradiction.
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In [2], B. Bollobds asked the following two gquestions: Let T be a
bounded linear operator on a Banach space X, ie. TeB(X).

QuestioN 1. Does there exist a Banach space ¥ = X and an operator
SeB(Y) such that §|X = T and &(8) is the essential spectrum of T?

QuesTion 2. Can one find a Banach space ¥ o X and an isometrical
algebra homomorphism @: B(X) —B(¥) such that @(S}| X =5 (SeB(X)
and o (@ (T)) is the essential spectrum of T?

(By the essential spectrum of T i3 meant the set {}{ eC: inf (T
—Ax: xeX, x| =1} = 0}). We show that Question 1 has an affirmative
answer while the answer to Question 2 is negative.

Let 4 be a Banach algebra and aeA. Then t{*(a) (¢7(a)) denotes the left
{right) approximate point spectrum of a €4, ie. the set of all complex 1 for
which a—1 is a left {right) topological divisor of zero in 4. If A = B(X) is the
algebra of all bounded linear operators on a Banach space X and Te&B(X)
then

PO(T) = {: inf (T—Axl|: xeX, lIx| =1} =0},
XY = (A (T=2) X # X),

hence tf¥N(T) UB®(T) = o®O(T) (seec [3]).

Let ¢: B(X) = C be an isometrical algebra homomorphism from B(X)
to a Banach algebra C. Then 7™ (T) Uf™ = ¢%(p(T)) = o®N(T), hence
6% (@ (1)) = o®®(T) (the condition ¢ (S)| X = S, § eB(X), was not used). We
have proved:

4. ProrosITION. Let ¢ be an isometrical algebra homombrphism o B(X)
—~C, where X is a Banach space and C a Banach algebra. Then o (¢ (T))
=c(T) for every TeB(X).

Question | has an affrmative answer:

5. THEOREM. Let T be a bounded linear operatbr acting on a Banach
space X. Then there exists a Banach space ¥ = X and an operator SeB(Y)
such that S|X =T and o(S) = {AeC: inf{|(T~)x: xeX, ||x]| = 1} =0},

Proof. Let o — B(X) be the closed algebra generated by f, T and
(T-4)7' (A¢o(T). Then & is a commutative Banach algebra and
o”(T) = ®N(7).

Let o/ = #@®X. Define a norm on by

lADx|| =14l +lx]] (4ded, xeX)
and a multiplication by
(ADX)(A'BX) = AL B(Ax' +A'x) (A, A e, x, x' €X).
Then .« is a commutative Banach algebra.
The mapping f: & — & defined by 7, (4) = ADO (4 e} is an isome-
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trical algebra homomorphism so
¥ (1T®0) = 0*(T) = o™ (7).
Let AeC. Define d(T—2) =inf{|{T—A) x||: xeX, ||x|| = 1}. Clearly,
inf {[(T-HDO)AD)|: e, xeX, [A@x]| =1}
=inf ([(T—= A+ (T~ x]: ded, xeX, |4 +|lx| =1) <d(T~A).
On the other hand, [[(T=2) Al|+((T—= A} x| 2 d(T— D) || Al +d (T A [|x]| so
inf {|(T- HBONADN|: Aedt, xeX, |A®x| =1) = d(T~1)

and v (TBO) = {A: d(T—2) = 0).

By [5] there exists a Banach algebra % = .o/ such that o*(T0)
=17 (TOO) = {4 d(T—J) = 0}. Consider the operator $: % —% defined by
Sc =(TP0)c (c&%). Then clearly

B (S) < " (T@O0) = (A d(T—1) = 0}.
Let xeX, e 0@xe.of < %. Then
$(0@x) = (TP (0Px) = 0B Tx.

If we identify xeX with OBxed =% then §|X =7 and o(S) = {4 d(T
) =01
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