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Asymptotic periodicity of the iterates of
positive contractions on Banach lattices

by

WOJCIECH BARTOSZEK (Wroctaw)

Abstract. An operator T° on o Banach space is called constrictive if there is a compact set F
such that the iterates 7" x tend to F for any x with |lx|| < I. We prove that if T' is a constrictive
positive linear contraction on a real Banach lattice X then there are positive normalized vectors
Pia oo ¥, in X and positive functionals Ay, ..., 4, on X such that T"(x~Y;=; 4(x) ) =0 for xeX.
As an application, we present a characterization of quasi-compact posilive contractions on

‘Banach lattices.

Asymptotic behaviour of the iterates of operators is one of the funda-
mental problems in ergodic theory. In particular, for constrictive stochastic
operators (see (x+) below) the asymptotic periodicity of iterates has been
investigated by Lasota, Li and th_r}'cc in [4]. Their result can be stated as
follows:

.
(%) Px =Y 4 () Yy HRox (1m0 20, xell)
i=t )

where P denotes a constrictive stochastic operator on L', 4,,..., 4, are
bounded linear functionals on L!, y,, ..., ¥, are normalized densities with
mutually disjoint supports, o denotes a permutation of the set {1, ..., r} and
the remainder R, converges to zero in the strong operator topology as »
— o0,

The purpose of this note is to present a similar decomposition for a
class of operators acting on arbitrary Banach lattices. We will prove:

Tueorem 1. Let T be a positive linear contraction acting on a real
Banach lattice. If T is constrictive then there exists a sequence of positive
normalized vectors y,,...,y, in X and a sequence of positive (bounded)

functionals Ay, ..., 4, on X such that

lim HT"(x—i_il An =0 (eex).

n—rod

Moreover, there exists « permutation o of the set [1,...,r] such that Ty,
= Yuipy -
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In the second part of the paper we give some applications of (his
theorem. In particular, we present a characterization of quasi-compact posi-
tive contractions on Banach lattices (Theorem 2).

1. Let X be a real Banach lattice. A linear operator T: X — X is called
positive if x 2 0= Tx =0, and is a contraction if |T|| € 1. We say that T is
constrictive (cf. [4]) if there exists a compact set F = X such that

() lim d(T"x, F) =0  whenever |x|| <1,

n -

where d(y, F) = inf {||ly=fl: feF}.
The w-linit ser of an element x&X is defined to be the set

w(x)= yeX: y= lim T™x for some n, == .

k-

Observe that if T is constrictive, w(x) is a nonemply compact T-invariant
subset of X We write € =/, yw(x). Clearly Q is closed and T-nvariant.
The following lemma is contained in a more general result of Dafermos and
Slemrod (see also [8]).

Lemma 1 ([1], Theorem 1, p. 98).
(i) yeo(x) = w(y) = w(x).
(ii) Tl s an invertible isometry.

In [1], Dafermos and Slemrod have proved (i) and (if) for an arbitrary
nonexpansive (not necessarily constrictive or lincar) mapping acting on a
complete metric space. Moreover, if (x+) is assumed (ie. every limit set o (x)
is norm compact), then it can be shown that

(i) € is a finite-dimensional lineai subspace of X and T is an invertible
isomeiry of 2 with T™' = 0.

Indeed, for any x, y €€, there exists a sequence », — 00 such that T " x,

T ™y converge in @ to x, y' respectively. By (i), we have
N7+ ) = (el = T X = x+ Ty =y
=T =T ™+ T =T ™yl
S =T x|+ =T " —0.

This proves x-yeQ. Clearly if xeQ then rxef2 for every scalar ¢. It follows
that € is a linear subspace of X. ‘

Now we show that T}, is an isometry. Clearly for every xeQ the
sequence |lx||—||T"x|| is. nondecreasing and nonnegative. Since for some

n; oo we have T x —x it follows that {|T"x|| =||x]| for every n. Since
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x—yef) for any x, ye(), by the linearity of T we obtain || Te— Ty = -
T (x=y)ll =llx—yll, which means that T, is an isometry.

Using (+#) again we conclude that the unit ball in € is relatively
compact, so  is finite-dimensional. Since T 'w(x}=w(x) in &, T=0
implies T"'xz0for 0<x, ie T-! >0,

In the following lemmas T is a constrictive positive linear contraction
on a real Banach lattice X.

Lemma 20 If xeQ and n, — =0 are such that T x —x and T™|x| =y for

some yEQ then T™y — y.

Proof Let x, be any limit point of the sequence 7™ (y— |x|). Thus T"k’y

ﬂk -
=T "(|x|+y—ixf) = y+x,. By a diagonal procedure we can choose a subse-
quence my, of the sequence n, such that

Ty —y+x,,
T™(y+x,) = y+x, +x,,

T (y+x;, +...4X) = p+x, +o Xy

for some x, x;, ...€Q, where each x;,, is taken in w(x;). Observe that
since the positive cone X, is closed and T is positive we have
y=lim T"%|x = |lim T™ x| = |x],
k- k= a0
so x; 2 0. For every j = 1, y+x,+...+x;€w(|x!). Since x| = const (T, is
an isometry), this implies [|x;[i = 0 because otherwise the sequence y+x, +...
+x; would be discrete, which is impossible as w(jx|) is compact.

Lemma 3. If @ € Q is o Tinvariont lattice for the ordering inherited from
X and if 1yy, ...y is @ linear basis in Q' such that the y; are positive,
normafized, and mutually orthogonal in Q' then Ty; = y,, for some permuta-
tion o of the set {1, ..., 5},

Proof. The existence of an appropriate basis follows from Theorem
26.11in [6]. Thus x =3, ;t;5;2 0 if and only if r; 0 (j =1, ..., s). Let
S: €' [F be a positive linear operator such that Sy, =e¢; where ¢, ..., e,
denotes the standard basis in I, Clearly Q =SoToS ' is a positive linear
operator on [° and Q™! is also positive. It is well known that there exists a
permutation o of {1, ..., s} and a sequence of positive scalars r,, ..., r, such
that Qe; =r;e,;. Hence Ty; = S"'oSoT oS e, =8 " (re,;) =1y, for
every j=1,...,s Since T 1s an isometry on £, we get Tj; = y ;. '

Lemma 4. For every xeQ there exists a sequence n, — oo and a T
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invariant lartice §' with modulus || such that:
(a) xe&'. '
(b) lim, ., T™y =y for every yed.
(©) Nimgom T exists where || denotes the modulus in X.

Proof. By (i), there exists a sequence m; such that T™ x — x. Let

O = lyeQ: lim Ty =y).

k—tot
Clearly 2% is a Tinvariant linear subspace of Q. By (x#}, we can choose a

(1) ‘ '
subsequence m{’ of m, such that lim, ., T"* [y exists for every y e, Let

1)
09 = ye: lim T y = y).

k=

Clearly Q' = Q® and by Lemma 2,

) (1)
lim T |y eR®  for every yef.
k—on
By induction we can obtain sequences {m{’}L, where [m{"'}Z, is a
subsequence of !m{?) & for every j, and subspaces QV) of €2 such that

lim T’"’('j)y =y, lim T”"(‘” Iyl e@Y*tD  for every yeQV.
k-'m k—rom
Since Q is finite-dimensional, we have Q¥ = QU*Y = | for some j. Put &
=09 and n,=m, k=1,2,... We show that Q' is a lattice. For every
_yeQ define |y}’ = lim, .o, T "" ly. Clearly " = [v] and |y’ is the least element
in ¥ with this property. For if |y| < ze@' then for every k& we have T " g
= T™!y| and

z==hm Tz 2 lim T%|y| =y

ko koo

Prorosition 1. If T is a constrictive positive contraction on a real
Banach lattice X then the limit veciors form a finite-dimensional lattice in X
with a normalized, positive, orthogonal basis y,, ..., ¥,. Moreover, there exists
a permutation of {1, ..., r} such that Ty; = yy;.

Proof By Lemmas 3 and 4 for every xeQ there exists ieN such that
T'x = x. Since Q is finite-dimensional, we have T, = Id|, for some naiural
d. We show that Jim, .., T™|x| exists for xe. Indeed, let. #; be such that
T"|x| —y. Since |x] < T%|x < ....and y 32 T|x, we get

limsup|ly ~ T x|| = lim |ly— 7" x|| =

n—on j-wo
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As in the proof of Lemma 4, the formula |x| = lim, ., 7™|x| defines a
modulus in €.

Remarks. I. The modulus of x in @ will be denoted by |x|. If in
addition the Banach lattice X has the property that 0 < x < y and ||x]| =yl
imply x =y {e.g. if X = IP) then }x| = |x|' for every x €2, which means that

is a sublattice of X, Indeed, |[|x|] 2 lm, ., [|T"}x|]| = ||xI'{| and |x] < |x|', so
[} = |[".
2. If | Tx) = |ix] for all x = 0 then
0 = Lim || T"(x]"~ |xDIl = [} |~ xf ]!

and  is a sublattice of X.

3. Let X =C([0,1]). The Markov projection T: X - X defined by
Tf (x) = (1—x) f(0)+ xf (1) is constrictive, Now  is the space of all affine
functions on [0, 1], so £ is not a sublattice of X.

Now we are in a position to prove Theorem 1. We base the proof on
the method of Lasota, Li and Yorke (see [4], Lemma 5.2). For the reader’s
convenience a complete proof is presented.

Proof of Theorem 1. Let £ be the lattice of all limit vectors and
{¥1s .. ¥.] @ basis as in Proposition 1. By (x«) for every x€X there exist
scalars 4, (x), ..., 4,{x) such that

[T"{x— ¥ 4;(x)»;)|] =0
i=1
It remains to show that the A; are linear. Let x, zeX. Hence

0= lim T"(x+z— Z Ai(x+2)y))

n—rom Jj=1
= li_]:n (T”( Z (DY) +Tz— Y A;(2)y)

=1
W-T"(gr: {A;()+ 4;(z)~ Aj(x+z))y1))

so the third component must converge to 0. Therefore

r

IS (04252 — 4 (x+2)) p

i=1

= lim H:r"(i (A;(x)+ 4 (=

-0 j=1

)= & (x+2) y)f = 0.

By the linear independence of the vectors y; we obtain the additivity of the
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4;. Clearly by the linearity and positivity of 7 we get the positivity of A, as
well as the homogeneity 4;(tx) = th; (x).
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2. In this section we consider positive contractions acting on the Banach
lattice I! (¥, £, ). The foliowing corollary has been presented in [4] for a o-
finite space (Y, X, w). It now follows directly from our Theorem 1.

CorovLLary 1. Let P be a stochastic operator on LMY, 2, 1) (le. P20
and |Pf =|If|} for f= 0. If P is constrictive then P has an asymptotic
decomposition ().

CoroLiary 2. Ler P be a constrictive stochastic operator on LMY, X, u).
If there exists a vector g e such that suppyg =Y (equivalently Z}m,g.,. > {)

ae. where gy, ..., g, is a basis as in Proposition 1) then for every fell
¥
lim ||P"(/= ([ fdwg)|=o.
R=ton F=1 suppg;

Proof. Let ;L™ be such that A;(f) = | fir;dp. Since all 1, are positive
and. their norms do not exceed 1 we have 0 < »; < 1. By Theorem |, P is a
permutation on g,, ..., ,, 50 .

' 1 for j=k,

Y4lon) = {0 otherwise.
Thus #; =1 on suppg; and »; =0 on Y—suppy;.

Recall (see [4]) that a stochastic 6perator P is asymprotically stahle if
there exists a unique normalized vector f, such that lim,_, ., P"f = f, for all f
=0, |[fl =1. Now we give conditions which guarantee the asymptotic
stability of P. Let us remark that we are not assuming constrictivity here (cf,
Corollary 14 from [4] where it is assumed).

Prorosition 2. Let P be a stochastic operator on L} (Y, X, 1) such that
w(f) # @ for every f, and for any 0% fi,; =0 there exists nz 0 with
P'fi ~ P'fs £ 0. Then P is asymptotically stable.

Proof.-Let fe( and let' n; =0 be such that PYf —f Clearly P/t
_—>ft and thus (Pf—f)}* are also recurrent. Since P is an isometry on
“synchronous limit™ sets (see [8] for details), for every natural n we have

UBf =11l = IP"(Bf =P < 1P (B~ M1+ [P (PF~1)"|
= W= N+ 0PN = [1PF—l

and thus P*(Pf—f)" L P"(Pf—f)~. This means Pf< for Pf = f and by the
stochasticity assumption Pf = f. Thus for every f the set w (/) must be a
singleton, and clearly it is a fixed point of P. From our condition it can be
easily concluded. that the space of fixed points of P is one-dimensional and
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thus there exists a unique normalized positive vector g such that for every f,
lim, .. P"f ={{fdu)y. :

3. Let K be a compact Hausdor!f space and C(K) the Banach lattice of
all continuous functions on K. A linear operator T: C(K) — C(K) is called
Markov if Tl =1 and f 2 0= Tf = 0. The (nonempty) convex, w*-com-
pact set of all Tinvariant (Radon) probabilities on K is denoted by Pr(K).
A nonempty closed subset Z of K is said to be invariant if z eZ implies
T*6.(Z)=1. By the center of T we mean

M =closure { |} suppu).
RePT(K)
It is known (see [7]) that M is a nonempty T-invariant subset of K. The
main result of this section is the following:

ProrosiTion 3. Let T be a constrictive Markov operator on C(K). If the
center M of T is the whole space K then there exist a partition of K into
clopen sets E,; and probability measures m,, wirth suppm,;=E,; (¢
=1,...,0 d=1,...,4d,) such that

r 4
(/- X X ([fdm)iz, ) —0
e=1d=1
Jor every f eC{K). Moreover, for every g =1, ..., r we have TIEQ,& =l
(5 = 1, caay d(‘_]') and TlEgd = lEg]'.' X
Ay .

ed+ 1

Proof Using the constrictivity assumption (s+) it is easily seen (hat the
set ex Pr(K) of extreme points is finite (sec [7]). Let ny, ..., g, be these
extremal probabilities. Since the suppy; are pairwise disjoint (and Tinva-
riant), without loss of generality we can assume s = 1. Now u denotes the
unique T*-invariant probability measure. Observe that T acts on
LMK, A, 1) as a doubly stochastic operator (70, T1=1, T*1 =1 ae)
and the constrictivity assumption (*#) also holds with the norm ||-||,.

Now we show that Q is a sublattice of C(K). Recall that for g=,

gl = lim T%|g| = |g| for some m, =0
ko
{the limit is in C(K)). Since Q , is a sublattice of LN, gl = |gl’ n-ae. (see

Remark 1). From the continuity of [g| and lg|” we get |g| = |g|’ since supp u
= K. By Theorem 1, for every feC(K) we have

I7(= 3 i1, 0

where the g; are orthogonal in C(K). Since T1 =1 we get g; =1 on E;
=suppg; and 0 otherwise. Clearly the E; are clopen sets and | l{-, E; = K.
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Since 4; is positive with norm one, there exists a probability measure m;
(with suppm; = E;) such that 4;(f) = | fdm;, and the proof is complete.
As a simple consequence we get the following
CoroLLARY 3. Let T be a constrictive Markov operator on C (K) where K

is a connected compact space. If the center of T is equal to K then for every
JeC(K)

lim T"f = [fdu

n—m

uniformly on K

where i is the unigue T-invariant probability,

4. A linear operator T- X — X is called quasi-compact if there exists a
linear compact operator Q: X — X such that |[T"—Q|| < 1 for some natural
m. It is clear that equivalently we can write | T"—Q|| < ¢ for some m and
some compact operator ¢ where 1 > ¢ > 0 is arbitrary.

LemMa 5. If T is a quasi-compact contraction then T is constrictive.

Proof. First we show that for every xeX the orbit {T"x: n2 0} is
relatively compact. Let & > 0 be arbitrary and let meN be such that ||T™
~ Q| < ¢ for some compact operator Q. Thus for some finite set C, we have
C,+B,2T"B, =2 T"*YB, o... (B, denotes the ball in X with radius r and
center 0) and so the orbit of x is relatively compact (here |[x|| < 1).

Now define

F= | ox)c N T¥B,.
j=0

=l =1

Since for every € > 0 there exists m > 1 such that T™B; has a finite e-dense
subset, F is compact. Clearly lim,_d(7T"x, F) =0 whenever ||x|| < 1.

Tueorem 2. Let T be a positive linear contraction on a Banach lattice X,
Then the following conditions are equivalent:

(A) T is quasi-compact.

(B) There exists d 2> 1 such that T™ converges in norm to a finite-
dimensional operator P.

(C) There exists a compact set F < X such that

sup 4(T"x, F) —0.
llxit €1

Proof. (A)=(B). Since T is constrictive (Lemima 5), it follows that
lim, ., 7™ x = Px for some d 2> 1, where P is a finite-dimensional projection.
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Clearly for every finite € = X we have sup,c||T™ x— Px|| = 0. Next
[T ~P| = sup||Tx—Pxl{ = sup ||T® ™ x— Px]

xelly xe TME

< sup ||T™? x— Pxj|
xeC, + B,

< sup || T ™ x — Px| +-sup [T ™y~ Py,
xeCy yeB, ’

s0 limsup, ., /T —P|| € 2¢, and || T¥—P|| -~ 0.
(B)=(A) is trivial.
(B)=(C). Let F = P(B,). Then
sup d(T"x, F)

I=l <1

< sup inf{|T"x—TPx|, ||T"x~T2Px||, ..., |T"x-—T" Px||} ~0.
II=Il <1
(C)=>(B). Since T is constrictive, by Theorem 1 there exist a finite-
dimensional operator P and d > 1 such that T"x — Px. Clearly for every
compact K =X we have sup, x| T™x— Px|j —0. Observe that for every
£ >0 there exists m = 1 such that

sup ||[T¥x—Px|| < sup [|[T¢ ™9 x—Px|
fIxl=1 xeF+B,

whenever n = m. Thus

limsup || T —P|| < lim sup|| T ™ x— Px||+2& = 2s,

n—oe n—+w xeF

so ||T™—Pj| —0.

Remark 4. If T is a positive linear contraction on a Banach lattice X
then by [5] our conditions (A), (B), {C) are equivalent to

(D) The Cesiaro means N '12;';1’? converge in norm to a finite-dimen-
sional projection.

Remark 5. If T is a positivé contraction on a Banach lattice X and
(##) holds then T is quasi-compact if and only if [|R,|| =0.

" Acknowledgement and remarks (added May 1987). 1. 1t is a pleasure to
thank Professor Robert Sine for his comments on this work and for sending
me some of his papers. Especially I would like to thank for finding some
gaps in the first version of Proposition 2 and giving the correct proof.

2. After this paper had been written there appeared some new results
dealing with this subject. The reader will find them in [2], [3], [9], and [10].
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Packing measures on ulirametric spaces
by
H. HAASE (Greifswald)

Abstract. We introduce packing measures on ultrametric spaces following the ideas of [9].
Since ultrametric spaces have strange properties they are a good object for testing the properties
of new classes of measures, Qur main concern is to show that packing measures permit similar
theorems as for Hausdorff measures [87, for instance the selection problem for subsets of finite
positive measure can be attacked by a good Density Theorem. The packing measures are in
general u different class from that of Hausdorff measures, i.e. a packing measure cannot be
obtained by taking the Hausdorfl measure with respect to a different increasing function using
ancther metric which generates the same topology. Furthermore, packing menasures seem to be
better means for studying sets of non-o-finite measure. We apply our theorems to prove the
existence of Borel measures on the. real axis with remarkable properties.

1. Basic motation. Let (X, d) be an ultrametric space, ie. the usual
triangle inequality for d is replaced by the stronger one

{0 dix,y) < max(d(x, z),d(z, y)) for all x,y,zeX.

It is well known that ultrametric spaces have strange properties. Both open
and closed balls are clopen sets. Every point of a ball may be its centre. For
any two balls, either their intersection is empty or one is contained in the
other.

Let H be the family of all Hausdorff functions, ie. heH iff h: [0, + ool
- [0, +2¢] and : : -

(2) h( =0, higg>0 for g=>0,
(3) g, <q, implies hig.) < h(qa),
Ch limh{g) = 0.

al0

Let M < (aeR; a>0) and inf M = 0. Put
Py = [B(x,1); xeX, reM|,

where B(x, r) is the closed ball of radius r and centre x. A countable subset
iB(x,, ra} of Py is called a Py-packing for a set 4 X iff

(5) X, €A,

] B(.xm rr) NB(x,, ry) = Q for n#m.



