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A GEOMETRIC APPROACH TO MEASURING DEPENDENCE
BETWEEN RANDOM VECTORS

0. Introduction. Measurement of stochastic dependence between random
Vectors is one of the central problems of mathematical statistics. Usually, we
are rather dealing with dependence between real-valued random variables, say
Xand ¥ A popular measure of the dependence of X on Yis the correlation
Coefficient

00(X, Y) = cov(X, Y)/a(X)a(Y).

Geometrically, (X, Y) can be interpreted in (L*(Q, &, P), {,») as the cosine
of the angle between centered random variables X and Y.

According to me, the most important generalizations of g, for random
Vectors X and Y were done by Héschel [1] and by Jupp and Mardia [2].

Hoschel proposed a system of postulates, introduced a measure of
dependence satisfying this system, and showed that it is unique. However,
Héschel’s measure is complicated from the numerical point of view and is not
Commonly used.

Jupp and Mardia proposed a measure g5(X, Y) which directly generalizes
the definition of g,

(QE)(Xs Y))z = tr(zl_llzuzzzzfz s

Where >, & 22, 21, are covariance matrices corresponding to ¢*(X), ¢*(Y),
CoOv(X,Y), respectively, in the bivariate case. Thus, ¢5(X, Y) “normalizes” the
COvariance matrix X, ,; it takes values from [0, min(p, q)], where p and q are
dimensions of X and Y, respectively. _

Other generalizations of g, for random vectors X and Y were reviewed by
Jupp and Mardia (though this review did not contain Hoschel’s measure). In
Particular, they mentioned the first canonical correlation, equal to the maximal
Correlation coefficient between linear combinations of the components of
4 and Y. This measure is most commonly used by statisticians, mainly because
1t is simple to be calculated.
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~ As far as we know, geometric interpretations were not given for any
measures discussed by Jupp and Mardia.

The present paper introduces the correlation coefficient o(X, Y) for
random vectors X and Y, which measures the proximity of the linear spaces
generated by the components of X and Y, respectively. The geometric reflexions
given in Section 1 are the starting point for the definition of p, leading to
a volume measure of the angle between unitary subspaces. Theorem 2 in
Section 1 is the most important theorem of the paper. The correlation
coefficient ¢ is proposed in Section 2 as the cosine of the angle between the
subspaces spanned by the centered components of X and Y, respectively. The
properties of g are discussed, and the relations between o and the first
canonical correlation are presented. In Section 3 an estimator g, of ¢ is
introduced and some asymptotic properties of ¢, under the assumption of
stochastic independence of all components of (X, Y) are proved.

Summing up, we want to stress the difference between statistical in-
spirations, exemplified by the generalization of 0, proposed by Jupp and
Mardia, and the geometrical inspirations, exemplified by g proposed in this
paper.

1. The cosine of an angle between finite-dimensional unitary subspaces. Let
(E, <,) be a real unitary space and let 4 and B be finite-dimensional subspaces
of E with dimA4 = p and dimB = q. Let

C=AnB, E,=A+B

with dimC = p,, dimE,=n=p+q—p,

Assume that C # A and C # B. Then p, < min(p, g).

Let A* and B* denote orthogonal complements of 4 and B in E,, and let
A, and B, denote orthogonal complements of C in A and B. Further, let

(ay, a,, ..., a,_,), (b, by, .., [ N

(Crs €25 eenCpp),  (dy, dsy, ..., dy-g0)

(1)

denote the bases of 4, B, B*, A*, and let U,, U,, W,, W,, W,, W, be the
following matrices:

q0=[<ais cj)]s iaj=132""> D—Dy,
UO=[<bi’ dj>]a i,j=1,2,..., q4—Po-
W1=[<ais aj>]s i,j=1,2,..., p_pOa
W2=[<cis cj>]> i,j=1,2,--.,p—p0,
W3 = [<bi’ bj>]: la] = Ia 2’ +++3 4= Py;
We=1[<d,dp], i,j=1,2,...,q—p,.

THEOREM 1. The expressions

det Ul/(det W, -det W,)"/2,  |det U |/(det W,-det W,)!/2

have the following properties:
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(i) they are invariant on the bases of A,, B* and B,, A*, respectively;

i) idet U,| N |det U |
(det W, -det W,)!1/2  (det W,-det W,)"/2 ~
Proof. (i) Let (@}, a3, ..., ap—p,) and (c}, c5, ..., ¢p—p,) be other bases of

4, and B*, and let P, and P, be matrices of transformatlons from non-primed
to primed bases. It is known that

Wy = PTw,P,, y = PIW,P,,
Where
W = [Ka;, ajy], > = [, ]
Then
) det W) = (det P,)* det W,,
3) det W, = (det P,)* det W,.

Similarly, putting U}, = [{a}, ¢;>], we have

From the last equality divided by (det W, -det W,)"/2, in view of (2) and (3), we
Obtain

det Uy| _ |detU,|
(det Wy -det W5)'72 — (det W, -det W,)1/%"

The proof in the case of B, and A4 is analogous.

(i) In view of (i), we can restrict ourselves to the case where the vectors (1)
are orthonormal. Let

4)

(ap——po+1’ Ap—po+25 -5 ap)
e an orthonormal basis of C , and let

@, a5,...,a,_,) and (a,.y,8,.2,..., )

be complements of (4) for orthonormal subspaces 4 and B, respectively. Let

(5) (€15 €asvves Cpmpos Bpmpot1s -+s Q)
be an orthonormal basis of E,. The system of vectors
(6) (a,,a,,...,a,)

is linearly independent, and hence is a basis of E,. The matrix of coefficients of
the vectors (6) on the basis (5) is of the form

Lo 1
U= ,
U, 1,
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and therefore det U = det U,,. Since (6) is a basis of E,, the Gramian of (6)
satisfies the inequality

(7 W(ay, ay, ..., a,) = (det U,)? = (det U)? > 0.

Putting (by,...,b,.,) =(4,+1, ..., a,), we deduce similarly that

o-[s 3
0o U1

where U corresponds to the presentation of (6) in the orthonormal basis
@y,...,a, dy,...,d,_,), and U, is some matrix defined by the context.
Consequently, det Uy =det U, and the corresponding Gramian satisfies

Wa,, ..., a,) = (det Uy)? = (det U)? > 0.

This fact and (7) imply that |det Uy| = |det U, > 0. Since |det U,|, equal to

|det T, is the square root of a Gramian of a linearly independent system of
n normed vectors, we obtain

ldet Uy| = |det Uy < 1
DEFINITION 1. For any unitarian subspaces A and B, the expression
cos < (A B) — (1 _(det U0)2)1/2 if Po < min (p, Q),
o if p, = min(p, )

is called the cosine of the angle between A and B, and arccos (cos « (4, B)) is
called the volume of the angle between 4 and B and denoted by vol < (4, B).

This definition covers the previously excluded case in which
Po =min(p, q), i.e, A< B or Bc A. It is evident that

0 <vol «£(4, B) < n/2,
vol < (4, B) = vol « (B, A) = vol < (4,, By,).
Remark 1. Unitarian subspaces A and B are parallel iff
vol €« (4,B)=0
The orthogonality of 4 and B implies that
vol <« (4, B) = n/2;

on the other hand, the equality vol 4 (4, B) = /2 impliee only that 4, and B,
are orthogonal.

In the sequel we show another way of deriving |det U,
Let

(xl’ x2,-°':xp) and (y19 Ya, ooy yq)
be any bases of 4 and B, respectively. We define
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211=[<xi’ xj>]a ls_’=1327- ,P,
222=[<yi’yj>]’ i’j=15 2,~ - q,
212=[<xiayj>:', i=1,2,...,p,j=1,2,...,4.
Let (e, i=1,...,p) and (é:,-, J=1,..., qg) denote the eigenvalues of
and S=x7'3T,501%.,,

2= 21_1121222_212{2
Iespectively.
THEOREM 2. The eigenvalues of X and £ which are different from 1 satisfy

the equalities

2= Ppo 4= po
(detUo)* = [] (1—0?), (detUgy)?= [] (1-8?).
i=1 j=1

Proof We show first how we come to consider = and .

Let h be a functional on (H, ||'|,),

1, o = lxll+ 1y, Ixl = (<x, x>)'2,

H=AxB,

Such that
h((x, y)) = <x, y>.

We look for local conditional maxima of k& on the compact set
H = {(x, y): <{x, x) =<y, y>=1}.

Thus we get two systems of equations:

xIx"=1, ¢#0,

(Z—QZIp)iT = oT’
(E—*1)y" =07, ¢ #0, |
Where x and 7 are the counterparis of vectors x and y if 4 and B are replaced
by R? and RY , respectively. Non-trivial solutions appear when the matrices of
the systems are singular. The eigenvalues of 2~ and 2 satisfy
0<@ij+1<...<02<1,

<...<8<1,

JIT =1,

~2 ~2
0< Qg—q0+1 < ... Qq—qo+j

It is easy to show that X is equivalent to X', and X to 2’ (i.e., they have the
Same eigenvalues), where X’ and £’ correspond to the new bases of 4 and B.
herefore, in this proof we restrict ourselves to orthonormal bases. Then
Let do = rank X, ,. It is known that each of the matrices X,,27, and X7,%, ,has

90 positive eigenvalues and both sequences of positive eigenvalues are identical:
i= 1, 2, vaey qo.

2 o A2
Qp-qo+i - Qq—qo+i,
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Let us choose the bases as indicated in the proof of (ii) in Theorem 1. Therefore
(8) @ ot e @)

is an orthonormal basis of C, and

©) @15+ By (g e @)

are the complements of (8) to the orthonormal bases of A and B, respectively.

Let Ay, B, and C be the matrices of coordinates of the vectors (9) and (8) in the
orthonormal basis

(10) ey, ..., €,)

of E,. The Gramm matrix W of the system

(@, ..., Ay pos + -+ 5 Gy)

in the basis (10) can be expressed as follows:

I, 0 AgB0
W= 10 I, 0
BgA0 0 Iq_p0
Let
IP_PD 0 _AgBO
Z =10 I, 0
0 0 IP“IO
Then
Ip_po—AgBoBng 0 0
ZW= 1|0 I, 0
B@AO 0 I._,
Hence

P~ Po

detZW=detZdetW = detW = det(I,_, — A3B,BIAo) = [] (1—0d),
i=1

where ¢f(i=1,2, ..., p—p,) are the eigenvalues of the non-negative definite
matrix AJB,B{A,. It follows that

P~ Po
(11 (detUg)> = [T (1—e?).
i=1
It remains to show that the sequence of eigenvalues of X being

non-decreasingly ordered and different from 1 is equal to such a sequence of
AFB,BfA,. Let

Z,=[4, C] and Z,=[C B,].
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Then
ATB,B¥A, 0
Z:Z{Zz=[0000 0 ; .

COnsequently, the family of eigenvalues of X consists of the family of
elgenvalues of AfB,B{A, and of p, = dim C eigenvalues equal to 1. Thus, in
view of (11), the proof is complete.

ExampLE. Let (E, { ») be an arbitrary real unitary space with the
Orthogonal system of vectors (e,, e,, e;, €,, e5). Basing on Theorem 2, we
Calculate vol <« (4, B) between unitary subspaces

A=1L{e +e;, e;+e,+es} and B=L{e,e, te,+es, e,+e,}.

po

We have
2 1 _1 06 —02
211”[1 3]’ 211_[—0.2 0.4]’
1 10 1.5 —-05 0
= |13 0|, Z@=1]-05 050 |,
00 2 0 0 05
1 20
le:[o 2 1:|'
Then

0.7 0.1
2= .
[0.1 0.8]
The eigenvalues of X satisfy the equation

(0*—0.7)e*~—0.8)—0.12 = 0.

COnsequently,

0} =0.75-005./5, % =0.75+0.05,/5,
cos?(vol € (4, B)) = 1 —(1—p})1—03) = 095,

vol « (A, B) = arccos,/0.95.

2. A correlation coefficient between random vectors. In this section we
define a measure of dependence o(X, Y) between random vectors X and Y,
Which corresponds to Definition 1. The introduced measure can be geomet-
rlcally interpreted in (L3(Q2, &, P), { )) as the cosine of the angle between the
llnear subspaces spanned over the centered coordinates of X and Y, respect-
ively, It can be also interpreted as a measure of “mutual closeness” of these
Subspaces.

We assume that the covariance matrices of X and Y exist. Therefore, as
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a natural real unitary space E we take (L*(Q, #, P), { ») with the inner
product defined by

<Z.1) Z.2> = E[ZIZZ]a
where Z,(i=1,2) is the class of abstraction represented by the random
variable Z, (i = 1, 2).
We start with geometrical interpretations in the case of the correlation

coefficient for random variables and of the multiple correlation. The first of
these two measures of dependence is defined for any Z,, Z,e L*(Q, #, P) by

_cov(Z,,Z,) E(Z,-EZ)Z,-EZ,)

0(Z,)e(Z,) o(Z)o(Z,) ’
where the operations cov and ¢ define the covariance of a pair of random
variables and the dispersion of a random variable. The multiple correlation

coefficient between a random variable Z, and a g-dimensional random vector
Y=(Y,..., Y,) for Z,, Y, e L}(Q, #, P) is defined by

01(Zo, Y) = sup{0o(Z,, Z): ZeL(Y,, ..., ¥,) < L@, #, P)}.

Then ¢,(Z,, Z,) is interpreted in (L2(Q, &, P), { ») as the cosine of the angle
between the random variables Z,—EZ; (i = 1, 2) while o 1(Z,, Y) is interpreted
as the cosine of the angle between the random variable Z,— EZ, and the linear
space spanned on Y, —EY; (j=1,..., 9.

Now, let X =(X,, ..., X,) and Y = (Y}, ..., ¥,) be random vectors (p-
and g-dimensional, respectively) defined on (2, #, P), with

dimL(Xl,...,Xp)=p, dimL(Yla---a Y;):qg
X, ;e LQ,#,P),i=1,..,p,j=1,...,q. Let

211=[COV(X1"XJ)]: Lj=1,2,...,p,
222=[C0V(Y;, Y.‘J)], i’j=1’27-"s q,
212=[COV(X.'3Y})], i=1,...,p,j=1,...,q,

2 = 21_1121225212{2-

0o(Zy, Z,)

We deal with the non-decreasingly ordered eigenvalues of X which are different
from 1: '

1>012052...202,,=0,
where py =dimZ N %, and
9&"=L{X1—EX1,...,XP—EXP}, ¥ = L{Y, - EY,,..., ¥, —EY,}.

DEerFINITION 2. The expression

P~ po

1-T] (1—g?)*  otherwise

i=1

_ 1 if alt eigenvalues of X are equal to 1,
Q(X ’ Y) =
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is called the correlation coefficient between the random vectors X and Y.

Remark 2. In view of Definition 1 and Theorem 2, ¢(X, Y) can be

interpreted in (L*(Q, #, P), { ) as the cosine of the angle between subspaces
Z and %,

Obviously,
0<oX, ¥)<1

For p = 1, p=gq, ¢ =@, so that Definition 2 generalizes the notion of the
Multiple correlation coefficient.

THEOREM 3. Let X and Y be random vectors with singular covariance
Matrices. Then

(1) for any linear isomorphisms ue I(RP), ve I(RY),

| oo X,voY)=g(X, Y);
(i) o(X, Y) = o(Y, X);
(i) if X and Y are uncorrelated (i.e., X,, = 0), then o(X, Y)=0;

(v) if o(X,Y)=0 and py=dim(@ Nn¥) =0, then X and Y are uncor-
?'elated;

; (v) o(X, Y) = 1 iff there exists a linear transformation ue L(R?, R?) such
that

X—EX =uo(Y—EY) ae
Proof. (i) Put
=Xy ..., X,))=uoX =4X", Y =(Y,..., Y)=voY¥Y=BY",
Where 4 and B are the respective non-singular matrices, and let
' = L{X\—EX}, ..., X,—~EX,}, @&’ =L{Y{—EY}, .., Y,—EY,}.

Due to the geometrical interpretatlon of g it suffices to prove that =% and
= %', Since A is non-singular, we have

14 14 14 14
Zl tiX’ Z L (Z a;j J) Zl(zl aijti)X.i = ‘Zl t}Xi’
i= j=1i= i=
t;, ;€RY,
Which implies L{X ,, ..., X,} = L{X}, ..., X}}. The proof for Y is analogous.
The proofs of (ii) and (iii) are obvious, while (iv) is a consequence of
R'~‘Jr_lark 1. To prove (v), note that ¢(X, Y) =1 iff & is parallel to # or,
“Quivalently, there exists a {p x q)-matrix 4 such that
(X—EX)T = A(Y-EY)".
The next theorem states the relations between ¢ and the canonical
Correlations (as defined for instance in [3]).
THEOREM 4. (i) Let g, =rankX,,. For any i=1,...,q4,—po, if the
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number g; introduced in Definition 2 is different from 0, then g, is the canonical
correlation of order p,+i between X and Y.

(i) For any i=1, ..., g,—p,, we have o(X, Y) > ;.
Proof. (i) follows from the derivation and interpretation of X and its
spectrum presented in [3]; (ii) follows from the obvious inequality

40~ Po

[T 1—eh) <1-g2

i=1
3. Estimation of ¢. Let X = (X,,..., X)) and Y =(Y,, ..., Y,) be defined
as in Section 2, and let
(E,, &, Q) = (R°x R?, B(RP)®B(RY, Py,

be the sample space corresponding to n observations of the pair (X, Y). Let X;;
i=1,...,p,j=1,...,m) and Y; (i=1,...,q, j=1,...,m) be statlstlcs
defined on the sample space, such that X (Y,.j) is the i-th coordinate of the j-th
observation of X (of Y). Let T, = [X; ] T, = [Y;], and let

T=(Xy.n X), T,=(Y,.. T

be the respective vectors of sample means; X X, Y, Y, belong to

L*(E,, &,, Q,). We define the sample analogues of Z‘u, 200 2100

and the sample analogue of X:
S = (S SYh(Sgh (ST
Let o(S™) denote the spectrum of $™,
LemMma 1. If ST} and SY) are positive definite a.e. Q,, then o(S™) < [0, 1]
a.e. Q,. Then we consider the sample analogue of (X, Y):

. |1 if any eigenvalue of S™ is equal to 1,
Cn = [1- I @@—=ry)]¥* otherwise.

1 #r2ea(S()
Obviously, §,e L*(E,, ¢,, Q,).

We investigate the asymptotic behaviour of §, when n tends to infinity-

First, we extend the sample space (E,, ¢,, @,) to the case of infinitely many
observations of (X, Y), ie, to

(E, e, Q) = (RPx RY, B(R)@B(RY), Py ,)".
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TheoReEm 5. If {X,, Y, i=1,...,p,j=1,...,4} is afamzly of stochas-
tlcally independent random varlables then n(g,,)2 is weakly convergent to

V8e L\(E, g, Q), where V3 has the y>-distribution with v, = pq degrees of
freedom,

Proof Without no loss of generality we can assume that X;; and ¥;; are
Standardized. In view of the assumption of mutual mdependence of the
Components of X and Y, there exists Noe.4" such that for any n > N, all
eigenvalues of S™ are different from 1 ae. Q. Then

62 = 1—det(I,—S™).
We use the fact that the statistic
Z, = n[1—det(I,— 7S]
has the same weak limit as néﬁ. In the sequel we calculate the weak limit of Z,.

,,,,,

where
1 n

X% ==Y X,

n i nj=1 J 4
Since, for any A = [A4;;=1,..p

detd = Z 5i1...i,,a1i: - Qpi,

i1yeeesip€{lyenes B}

(Where the function 5“ i is equal to —1 when (i, ...,i,) is an odd permutation

OF{1,..., p}, and is equal to 1 when (i,, ..., i,) is an even permutation of
{1 . P} and is equal to O otherwise), we have

(12) nZ =n—n _ﬁ (I_Sﬁ)%n(m)

ZSH“-}-Z Slllx lzl2+ v +(_1)p H Su)_n()
i=1

itia

)
_-nZSliu nzsuu tzlz+"‘+(_1)p+l HSii“—n("‘)'

igiz i=1

Consider the first component of (12):
n P 4 — = 2
P 4 2
Ty ((’_‘_"_) —2X Y, X5, +n(X, Y)l)
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By the Central Limit Theorem we have

XY,
(\/ﬁj) =V}, VieL\(E,e¢, Q).

Further, applying the Central Limit Theorem and the weak laws of large
numbers to the remaining components of (13) we obtain

2X; YX -->0 n()?,-l_’j)zao.
Therefore

1 - 4 q P -
Ly, xr) =3 (7= S vi=r,
i=1 1=1 i=1

where
< 2
j=1

It is easy to show that the statistics Ve L*(E, ¢, Q), i - L,...,p,j=1,..., 4,
are stochastically 1ndependent and have the x —dlstnbutlon with 1 degree of

freedom. Then V3 = Z V?# has the y2-distribution with v, degrees of freedom,
i=1

where v, = pg.
The remaining components of (12), namely

14
Z i1y lzlz’ cees (= 1)p+1 ]._.[ Sis n(...),
i=1

i1ia

have weak limits equal to 0, which completes the proof.
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