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UNIQUENESS OF THE SOLUTION OF THE CAUCHY PROBLEM
TO SOME EQUATIONS OF NONSTATIONARY FILTRATION

Consider the equation

az
(1) %l{' = 'a;i([p(xa t, u))s

Where the function @(x, ¢, u) is defined for xeR, t = 0, u > 0. Assume also that

o(x,t,u)>0, o,/ (x,t,uy>0 ifu>0,
and |

@.(x, t,0)= (pu(x’ t, 0)=0.

In the special case ¢ = @(u), (1) reduces to the one-dimensional equation
of nonstationary filtration (cf. [1]). For u > 0, (1) is a parabolic equation of
Second order, for u = 0 it is degenerated. For some initial or boundary data in
Cauchy or boundary value problems for (1), the equation does not degenerate
and via the substitution. v = ¢(x, t, u) reduces to a quasilinear equation of
Parabolic type. The Cauchy problem and the boundary value problems are
§01Vable (of course, with some natural additional assumptions on ¢). However,
In the general case these problems might not have classical solutions and their
Solvability is meant in some generalized sense (cf. [2] and [3]).

The paper [2] deals with the Cauchy problem and the boundary value
Problems of the first and second kinds. The proofs are given for ¢ = @(x, u)
assuming the Lipschitz continuity of ¢(x, u(x, 0)). The Cauchy problem for (1)
With ¢ = @(x, u) and the initial conditions from L*(R) are considered in [3].

The multidimensional analogue of equation (1) is of the form

ou XN &
(2) Et- = i=1-a—x_i2(¢(x’ t, u))s

Where the function ¢(x, t, u) is defined for x = (x,, ..., Xy)€RY, t >0, u >0
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and satisfies
ox,t,u)>0, @ x,t,u)>0 ifu>0
and '

o(x,t,00=0,(x,t,0=0

Here and in the sequel Jd¢/0x, and J¢/dt are the derivatives of
@(x, t, u(x,t)) with respect to x; and ¢, respectively, and ¢, ¢, @, the
derivatives of ¢(x, t, u) with respect to x;, t, u.

The problem of generalization of the result from the one-dimensional to
the multidimensional case seems to be interesting. The existence of the solution
of the Cauchy problem can be proved similarly as in one dimension, and the
solution is the limit of the solutions of some nondegenerate quasilinear
parabolic equations. The method of proving the uniqueness of this solution
used in [2] does not generalize to the multidimensional case.

In this paper we show that the Cauchy problem for equation (2) has at
most one solution if N = 1 or N = 2. The proof is independent of the existence
and regularity results.

Consider the Cauchy problem for equation (2) in the strip

G={x,1):xeR", 0<t< T}, 0<T<w,
with the initial condition _
(3) u(x, 0) = uye L*(R").
The generalized solution of the problem (2), (3) is defined by the following

DEerFINITION. A function u > 0 defined on G is called a generaliz'ed solution
of the problem (2), (3) if

(i) ue C°(G) N L*(G), d¢/ox,e L*(G);
(ii) for each function fe C}(G) which vanishes at t = T we have

@) if [ Z o a"’]d dt + j £(x, 0)ug(x)dx = 0.
G i= 1

1

THEOREM. Assume that the functions @, @, for bounded u are continuous

and bounded in G and N < 3. Then the problem (2), (3) has at most one
generalized solution.

Remark. The assumption N < 3 is used only in the final part of our
proof. The difficulties of generalization of our proof to the case N > 3 become
apparent when we consider an arbitrary N.

Proof of the Theorem. At first we prove that equality (4) holds for any
function fe C3(G) for which

fx, T)=0, offox,, df/ote L*(G).
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Let
0eCF(R"xR), 0=0, i olx, ydxdt = 1.

RN xR
A function f can be extended to a continuous function fin R¥*! by using the
formula
0 for t > T, xeR",
flx,0)=< f(x,1) for (x,1)eG,
f(x,0) for t <0, xeRV,
Let also

Jf(x, 1) = hN—IH if Q(M)f(y, t)dydt  for h> 0.

RN +1 h

I fe CY(G), dffox,, ofjote L*(G), then the sequence {J,fl;} = CZ(G) is
Uniformly convergent, when h— 0, to the function f and the sequences
0/ax )1, 13, {(8/0t)J ,f} converge in L2(G) to df/dx,, of /ot, respectively. Hence
(as d0/0x;e L°(G)) equality (4) holds if we replace f by .

fi=[1-@/Ty]J,fls.
Since f (x, T)=0, it is easy to verify that (4) holds for the limit function
S(x,8) = him fi(x, 7).

n—w
h—=0

Let us assume that the problem (2), (3) has two different solutions u, and
;. From equality (4) written for u, and u,, respectively, we obtain

o {%’;(ul—uz)—i gjj[aw(x,t, u)) G t, uz)]} dxdt — 0.

0x 0x; 0x;

i=1 i i
Let {a,(x)} be a sequence of functions which have the following properties:
%(x) = 1 for Ix| <n—1, a,(x) =0 for |x|"> n0<a(x)<lforn—1<|x| <n,
ﬂ_‘e functions {Oa,/0x;} (i=1,2,...,N;n=1,2,..) are uniformly bounded.
With the help of a,(x) we define now a new sequence of functions {f, (x, 1)}
by Putting |

Jo(x, ) = 0,00 | [@(x, T, uy(x, D)) —@(x, T, uy(x, 1)}] dr.
: T

It is €asy to verify that
£LeCG), f,(x,T)=0 and &f/dx; of/dte L*(G).

Therefore, equalities (4) and (5) hold for each function f,.
EqUality (5), with f replaced by f, defined as above, is of the form

(6) Il,n+12,n+13.n=0’¢



242 T. Sliwa

where

Il n= Ij an(x)‘[(p(xy L, ul)_(p(x’ L, uZ)](ul _uZ)dxdt’

_ ﬁ 2, (%) Z {I [ﬁtp(xa,xt, uy) acp(xaxr, “2)] T[&p(xéxt, u,)

T i

0x;

t ’ N a 1
I, = —[§{| [o(x, 7, uy)—o(x, 7, u,)] d«c}{z [M_)
On T =

ox;

T

_9o(x, t, uy) "2)]} dxdt,
0x;

and Q, = {(x, )eG: n—1 < [|x] < n}.

Since
dp(x, T, u;) 0p(x, T, uy) 2
jja( )Z 6t{j|: ox. , 2] }dxdt

ox;

_ S o, (x )Z {5 [a(P(xéxf uy) a‘P(xaxT “2)] ‘t} dx,

i

we may write equality (6) in the form

O I+ I ) Z {I[afp(x T, 4) Oo(x, 1, uz)] T} dx = —1I,,

Ox; ox;
From the boundedness of the functions
oo, (x) op(x, t, uy)
ox; | 0x;

and the Schwarz inequality we get

|I3,n| <C, H |qo(x, t, ul)—{p(x, t, u2)|dxdt
<C (H 1dxdt)*/( jj[cp(x )= 0(x, 1, )] dud)
<C”(N rt {ﬂ [4’(" t, uy)— fP(x,t u,)] (u, —u,)dxde}'/2.

From the above inequality and from (7) we get

(8) gan(x) [(P(x, t ul)_(p(xs t, u2)](u1 _uZ)dxdt

< Cn(N—l)IZ {.ﬁ[(P(x’ t, ul)—(P(x’ £ uz)](ul_uz)dxdt}llz'
on
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The function

\[’(x’ t) = [(D(x, t, ul)_q"(x’ L, uz)](“l—“z)

is nonnegative and continuous in G, and it vanishes if and only if u,(x, 1)
= U,(x, t). Hence, it suffices to show that

ﬂ Y(x, t}dxdt = 0.
G

Let us define the sequences

T
k,=fdt | y(x,0dx, i, =k/m""Y, n=12,..

0 Ixlsn-1
From (8) we obtain
©) k, < C[n" % (k,,, —k)]'2.

The function y is bounded, so

kys1—ky, = [f¥(x, )dxdt < cn¥ !
Qn

for a certain constant c.

Now, from the above and (9) we get k, < const'n" !, and the bounded-

Dess of {4,} is proved.
Dividing both sides of (9) by n¥~!, after some calculations we get

N—-1
(10) 24+Cl, < c(-’f-:—l) Aoy

Taking the upper limits we have
limsupA2 + Climsup 4, < Climsupi,;

thus limsup, = 0. Since A, are positive, they tend to zero.
Let

A, = maxi,,.

mzn

'USin'g inequality (10) we may write

N—-1 1 N-1
R4+CL =24Ci, < C(T—;_—l) Ass < c(%) I

for some m > n. This gives

N—-1
ened ()

k,=4

and

n¥ 1< Cln+ 1Y —n"1].
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In the case of N = 1 or N = 2 this inequality implies the boundedness and,
keeping in mind the monotonicity, the convergence of {k,}.
Let us write inequality (9) in the form
ki

N—-1

< —k).
n C(kn+ 1 kn)

Summing up the inequalities for all n we get

0 kn .
Y S Climk, < c0.
n=1

This inequality holds only if k, =0, n=1, 2, ... Hence
[§¥(x, H)dxdt = limk, = 0,
G

which completes the proof of the Theorem.
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