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ON THE NUMERICAL SOLUTION
OF THE GENERALIZED
ABEL INTEGRAL EQUATION

Abstract. A modification. of the Piessens—Verbaeten type method {11] for the numerical
solution of the generalized Abel integral equation is given. The modified method, which expresses
the solution in terms of shifted Chebyshev polynomials, is in certain cases more effective than the
original method. ’

1. Introduction. We consider the singular integral equation ([14], Section
23)

(L.1) (-t G)dy = g(x), 0<x<1,
0

where ae(0, 1), and teC'[0, 1] is a strictly increasing function; we may
assume without loss of generality that ¢(0) = 0 and t(1) = 1. Equations of this
type occur in a number of mathematical and physical problems. Two special
cases are of particular interest. The classical case, corresponding to Abel type
integral equation, is the one in which ¢(x):= x?, p real positive. Another special
case is obtained for t(x):= (1—cosnx)/2; the corresponding equation (1.1)
occurs in the theory of mixed boundary value problems [14].
The solution of (1.1) is explicitly given by (see [14])
sinanw d ¥

1) f@) =R -t 00y,  0<x< 1.
J [0

Formula (1.2) serves as a basis for many numerical methods for the solution of
(L1). See, e.g, [113-[13], [5] and the references given there.

In [11], Piessens and Verbaeten have described a method applicable in the
Case where the function G, o

(1.3) G(x):=g(t™'(x), 0<x<1,

can be approximated accurately by a function G, of the form

(14 G)=xY qTix), 0<x<l1,
: . k=0 - -
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where the prime means that the first term of the sum is halved, T¥ is the k-th
shifted Chebyshev polynomial of the first kind, T#(x) = coskf, cosf = 2x—1,
and f (B > —a) is a free parameter. The solution of (1.1) is then approximately

' -1 on
L] Z aqu(t(x))’ - Osx<l,
—k, k, p+1

B(l—a,y) 44
12, u), k=0,1,...,

is a polynomial of degree k (%). Pofynomials (1.6) should be computed by
a stable algorithm based on the forward use of the difference equation

L5  fx)i=

where y:=a+f, and

(L6) qk(u):=(—1)_"3F2(

(L7) 4, (1) +(4, +IBku)Qk— 1 (W) +(C, +Dk“)‘1kl—2(u) +Eygy-3(u) =0,

where

A;:=L[k_3+(k—1)(2k—3)], Boe g kB

k—2 k+y—1 k+y—1
1 [k=1)@k—y=5)
C"'_k——Z[ k+y—1 H

_Jk=1)(k—-4-3) E,=(k—1)(k—v—2)
Tk=2)(k+y=1"  TFT k=2 k+y—1)

D, :=

Starting values for (1.7) are

2(B+1)

g =1, gq,:= u—1,

_8B+1)(B+2) , 8(B+1)
q,(u): YO+1) u . u+1.

Although the Piessens—Verbaeten method is an efficient procedure, for-
mula (1.5) is inconvenient for some applications. We show.that the sum in (1.5)
can be converted to a sum of shifted Chebyshev polynomials, so that

r)[Ex)]"r & .
B(l -, 'Y) mz=0 bm TM(t(x))’ 0 SXS 1,

where the coefficients b,, can be computed in terms of the coefficients a,, using
a stable recursive scheme (see Section 2).

(1.8) Jalx) =

() Formulae (1.3)-(1.6) are generalizations of the forms given in [11] for the particular case
t(x):= x. '



The Abel integral equation ‘ 599

The sum in (1.8) is evaluated by the well-known Clenshaw’s ‘algorithm:
Sn+1 = Sn+2 = 0,
S,:=b,+@z—2)S;, .1 —Sx+» (k=nn—1,...,0),

Y b, Th(z) = So—(22—1)S,
m=0

(see [9], Vol. 1, Section 8.5; or [12], p. 166; or [10], Chapter 15).

Imagine that we want to tabulate the solution of (1.1) at m points of the
interval [0, 1]. In the Piessens—Verbaeten method we have to perform about
6m(n— 2) multiplications and 5m(n— 1) additions provided we have first stored
the coefficients 4,, B,, C;, D, and E, (k =10, 1,..., n) of the equation (1.7),
which costed us 2(n—2) divisions, 10(n—2) multiplications and 12(n—2)
additions. The proposed method requires about (n+1)(n+5) divisions,
(n+3)[m+4.5(n+ 1)] multiplications and (n+1)(4n+ 13)+m(2n+5) additions
(cf. formulae (2.1)+2.5)). Actual computations show ‘that the total cost of the
latter method is lower than the total cost of the former one provided the
inequality m > 0.8n+ 3 holds; if, for instance, m = n+ 10, then the ratio of the
costs equals 0.8. In the case where y = 1/2, our method simplifies conside-
rably and the numbers of the operations required are reduced to about
0.5(n+1)(n+8) divisions, m(n+3)+1.5(n+1)(n+4) multiplications and
m(2n+ 5)+(n+ 1)(3n+ 10) additions. See formulae (2.1), (2.2), (2.3'), (2.4) and
(2.5). The total cost of this variant is lower than the cost of the Piessens-
Verbaeten method provided m is greater than 0.4n.

In (1.1), the function g may be either characterized by its values on a finite
set of points or given by an explicit formula. In the former case, the coefficients
a, in (1.4) can be calculated by the Clenshaw’s curve fitting method [2], while in
the latter case one can apply the interpolation method (see [4]; or [9], Vol. 1,
Section 8.5; or [10], Chapter 7) or the recurrence relation method (see [7]; or
[9], Vol. 2, Section 12.5; or [10], Chapter 13) for the calculation of the
Chebyshev coefficients of the function H(x):= x~#G(x) over the interval [0, 1].
The value of B must be chosen so that H is as smooth as possible on [0, 1].

Under the assumption that the function g is continuously differentiable on
the interval [0, 1] one can obtain, using (1.2) and an expression for f (x)
obtained from this formula by replacing g by g,:= G,o¢,

sino
of

|f ) —=fu(x) < t'(x) ()]G = Gall

for every xe[0, 1], where |||}, is the supremum norm. Now, the error
IG'~G,|l, can be expressed in terms of |H—H,|l,, and |H' —H,||,, where

H (x):= x"#G,(x).
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Several ways of the estimation of |H®—H{|_,i= 0, 1, are possible. For
instance, if H, is the n-th degree polynomial interpolating the function H at the
points

u;:=[1+cos(jn/n)]/2, 0<j<n,
then
(1.9) IHO—HP| < APE,-(H?), i=0,1,

where A are constants,
2 .
A0 < Elogn+2, A < 2logn+2,

and
Em(F) = lnf ”F_P"w,

pelly,

IT,, being the set of all polynomials of degree < m (see [3]).

In the case where H,, is the (n+ 1)-st partial sum of the Chebyshev series of
H, it can be shown that H}, is the n-th partial sum of the Chebyshev series of the
second kind of H'. Using results of [8] or [10], Chapter 7, one can obtain
inequalities of the form (1.9) with A such that _

4 8
)..5,0) ~1—t-2~logn, ls,l) ~-1-t-2-n+ 1.

- In both cases, estimations of the form
IHO—H|, < COIH* 0, i=0,1,

are also available, C¥) being some constants. For instance, in the case of the
truncated Chebyshev series, we have

(1) _ 20 N1
(see [1]).

2. Computation of the coefficients b,.. We show that the coefficients b, in
the right-hand member of (1.8) can be computed in the following way. Let us
write _
@.1)  Agi=3a,,  Ag=(—1tka, k=1,2,....n

_1
=7
Given me {0, 1,..., n}, let us define

22) UM:=@r2—m?)/2r—1), m<r<n+2,
) V= 1/[r+y)U™,], m<r<n+l,
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and

P = 2r[(2y— YU™/2r + 1)— o+ 1]V,

Q™= (r—y+ 1) [UD, — 1TV,

Next, let us define the sequence {S™}, m <r<n+2, by
Siyi=8,:=0,

SM:= A, —PMSM, +QMS™M,  r=n, n—1,...,m.

m<r<n.

2.3)

(2.4)

Then we have

20—2
2O+ g0 o,
(2.5) b = .
" B+1)
—1)y"—=8m 1< m<n,
=0 .

where the notation

@iz b k=0,
D= Va@+ ). avk—1), k>1,

is used.
To prove formulae (2.1)+2.5) let us observe that the hypergeometric
polynomial (1.6) can be represented as

k
26) G = Y G T,
m=0
where
25 k=m=0,
" P (1D, \2m 41, m 12, mty ’

0<m<k, k>0.

This follows from a general result on the Chebyshev series expansion of
a generalized hypergeometric function (see [9], Vol. 1, Section 9.3; or [10],
Chapter 12). Introducing the notation

(2.7)

1, k=m=20,
= | ‘ —k, m+k, m+B+1
ok (k—m+1)2m_13F2('2nm+1mm++ym P ‘1) 0<m<k k>0,

W€ can write

2(:8 + l)m(k + 5k0) (m)

, 0<m<k, k=0.
emim,

Com = (— I)k_m
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Now, putting (2.6) into the polynomial

Z’ ak Qk »

k=0

we can convert it into the finite Chebyshev series
: .
2 buThs
m=0
where

2(ﬁ+ 1)
(2.8) b,:=(— ™ m=0,1,...,n,
(2 m)! (V) sz
A; being given by (2.1).
For any fixed value of m, 0 < m < k, quantities (2.7) satisfy the following
second-order difference equation : :

2.9) I+ PMeM QI ol =0, r=m,
the notation being used is that of (2.3) (see [6]). The starti_ng values for (2.9) are

210 «ps::"={(2m o o= @D+

The asymptotic approximations for a fundamental set s, (r), s,(r) of (2.9)
may be obtained by Birkoff-Trjitzinsky theory (see [15], Section B.2). We have

s;)~r72#73 s ()~(—1Yr %, r-oo,

which means that (2.9) cannot have any solution which increases strongly if § is
not too large. Thus we can evaluate the sum :

Z 4,077,

using the following stable algorithm, called a nesting procedure (see [9], Vol. 1,
Chapter 8; or [15], Section 10.2). Let {S™}, m < r < n+2, be defined by (2.4).
Then we have
0 = SP O+ S, [0+ P9,

which, by (2.10) and the first equation of (2.3), simplifies to

__[SP+a-)sPh, m=o,

" lem-1)18™, . m>0.

Putting this in (2.8), we obtain equation (2.5).

We have made several heuristic experiments, using.n as big as 200. The
results were in agreement with the above statements about the stability.
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In the case where y = 1/2, the coefficients P™ and @, of the difference
equation (2.9) reduce to simpler forms and, consequently, the algorithm
(2.1)2.5) simplifies considerably. Namely, formulae (2.2) and (2.3) may be
replaced by

2.2 W= dr/[(r+1)*—m*], m<r<n+l,

and

(2.3) P™:=(1—o)W™, QM:=1-W",, m<r<n,
respectively.

3. Examples. The calculations reported below were carried out on the
ODRA 1305 computer of the Institute of Computer Science, University of
Wroctaw, by using single precision arithmetic.

ExampLE 1. We consider the equation (see [11])

{ [0 — 1)1 2f ()dy = exp(t(x)—1,
4}

which has the exact solution

f(x) = gt;:—x)e‘(x) Exf(,/t(x)).

From the values of leading Chebyshev coefficients of the exponential
function, tabulated in [9], Vol. 2, Chapter 17, one can readily obtain a,,
a,..., a, such that |

Gr)=e—1~xY a,TH).
k=0

We have tried t(x) = x?, p = .1, .5, 1, 2, and t(x) = (1 —cosnx)/2. By using
n=9 and B =1, formula (1.8) gives results with an absolute error less than
5:107 ! for x = k/25, 0 < k <25, in all cases.

EXAMPLE 2. An integral equation of importance in plasma physics can be
transformed into the Abel integral equation

x

fx—y) "2 f(dy =g(x), 0<x<1,

4)
Where

1/2
g(x) = %(g) exp[1.21(1—1/x)].

The exact solution is
f(x) = x"*?exp[1.21(1—1/x)]}
(see [11]).
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Let G,{x):= xJ (x), where J_ is the polynomial of degree at most n which
interpolates the function h(x):= x fg(x) at the points

x,:= [l +cos(kn/n)]/2, k=0,1,...,n.

It is well known that

where

2—8,,
g =—2%" h(x)TF(x), k=0,1,...,n
n j=0 '

The double prime means that the first and the last terms of the sum should be
halved. See, e.g, [10], Chapter 7; or [4], Chapter 4.

We have used 8 = 0 and n = 30. As y = 4, we have applied the variant of
the algorithm described in the last paragraph of Section 2. The maximum
absolute error of the result given by (1.8) did not exceed 5-107¢.

Acknowledgement. The author would like to thank Prof. S. Paszkowski for
helpful criticism on an earlier version of the paper.
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