ALGORITHM 94

ANNA BARTKOWIAK (Wrocław)

AN ALGORITHM FOR REPEATED CALCULATIONS OF THE GENERALIZED MAHALANOBIS DISTANCE

1. Procedure declaration. For a given Gramian matrix S of size $m \times m$ and a real vector $d = (d_1, d_2, ..., d_m)$ the procedure calculates the Mahalanobis distance D^2 defined by formula (1). Only the lower triangle of the matrix S (stored in a one-dimensional array) is needed.

Data:

- first Boolean variable with the following meaning: if first \equiv true, the matrix L^{-1} (see formula (3)) is calculated, and then the value D^2 ; if first \equiv false, the value D^2 is calculated by formula (1), using the matrix L^{-1} calculated previously;
 - m dimension of the vector d and size of the matrix S, which is an $(m \times m)$ -matrix;
- d[1:m] vector of differences for which the Mahalanobis distance is calculated;
- $c[1: m \times (m+1)/2]$ array comprising (row-wise) the lower triangle of the matrix S;
 - eps constant (small number, dependent on the computer accuracy), needed when calling Maha2 with first \equiv true (e.g., $\varepsilon = 10^{-9}$).

Results:

Maha2 – value of D^2 ;

 $c[1: m \times (m+1)/2]$ - array comprising the elements of L^{-1} ;

ind[1: m] - comprises information on linear dependences among successive rows of the matrix S:

ind [i]

 $=\begin{cases} 1 & \text{the } i\text{-th row is linearly independent of the rows } 1, 2, ..., i-1, \\ 0 & \text{the } i\text{-th row is linearly dependent on the rows } 1, 2, ..., i-1; \end{cases}$

m1 - number of linearly independent rows in the matrix S.

```
real procedure Maha2(first,m,d,c,eps,ind,m1);
  value m, eps;
 integer m, m1;
  real eps;
  Boolean first;
  integer array ind;
  array d,c;
  begin
    integer i,j,k,n,p,q,r,s,t,u;
    real x, y;
    if first then
    begin
      comment calculate L such that S=L*L';
      n:=p:=0;
      for i:=1 step 1 until m do
      begin
        q:=p+1; ind[i]:=1; r:=0;
        for j:=1 step 1 until i do
        begin
         x:=c[p+1];
          for k:=q step 1 until p do
          begin
            r:=r+1; x:=x-c[k]*c[r]
          end k;
          r:=r+1; p:=p+1;
          if i=j then
          begin
            if x<=eps then
            begin
              ind[i]:=0; n:=n+1; c[p]:=.0
            end x<=eps
            else c[p]:=1.0/sqrt(x)
          end i=j
          else c[p]:=x*c[r]
        end j
      end i;
      if n>0 then
      begin
        D:=k:=0;
        comment reduce the matrix L if necessary;
```

```
for i:=1 step 1 until m do
   <u>begin</u>
     if ind[i]=1 then
       for j:=1 step 1 until i do if ind[j]=1 then
         begin
            p:=p+1; c[p]:=c[k+j]
         <u>end</u> ind[j]=1, j;
     K:=K+i
   end i
 end n>0:
 n:=m1:=m-n;
 comment calculate the L-inverse;
 D:=r:=t:=0:
 for i:=2 step 1 until n do
 begin
   P:=p+1; r:=r+i; y:=c[r+1];
   for j:=2 step 1 until i do
   begin
      D:=p+1; s:=t:=t+1; u:=i-2; x:=.0;
     for k:=r step -1 until p do
     begin
       X:=x-c[k] #c[s]; s:=s-u; u:=u-1
     end k;
     C[D]:=x#y
   end j
  end i
end first
else n:=m1;
comment reduce the vector d if necessary;
if nym then
begin
  for i:=1 step 1 until m do if ind[i]=1 then
   begin
      k:=k+1; d[k]:=d[i]
    end ind[i]=1, i
end nym;
Comment calculate the Hahalanobis distance using the
        reduced vector d;
k:=0; y:=.0;
```

```
for i:=1 step 1 until n do
begin
    x:=.0;
    for j:=1 step 1 until i do x:=x+d[j]*c[k+j];
    k:=k+i;    y:=y+x*x
end i;
Haha2:=y
end Haha2
```

Remark. The values of m1, c and ind must not be altered between successive calls of Maha2.

2. Method used.

2.1. The Mahalanobis distance receives much attention in modern data analysis.

Let $x = (x_1, ..., x_m)$ and $y = (y_1, ..., y_m)$ be two points of the space \mathbb{R}^m . Let $d = (d_1, ..., d_m)$ be the vector of differences

$$x-y=(x_1-y_1, x_2-y_2, ..., x_m-y_m).$$

The Mahalanobis distance D^2 is defined by the formula

$$D^2 = dS^{-1} d^T,$$

where S is a Gramian matrix determining a metric in the space \mathbb{R}^m . In statistical applications S is the covariance matrix of a random variable $X = (X_1, \ldots, X_m)$. The distance D^2 is called also the *generalized distance* between x and y (see, e.g., [2], p. 35). It is often used in biological applications, also in cluster analysis.

2.2. Taking into account that S is a Gramian matrix, we can make the Cholesky decomposition

$$S = LL^T,$$

where L is a lower triangular matrix with nonnegative elements on the diagonal, and all elements above the diagonal equal to zero [3].

We may invert S by the formula

(3)
$$S^{-1} = (LL^T)^{-1} = (L^T)^{-1} L^{-1}.$$

It is easy to show that L^{-1} is also lower triangular.

It follows that the value D^2 can be calculated as

$$D^{2} = d(L^{T})^{-1} L^{-1} d^{T} = (L^{-1} d^{T})^{T} L^{-1} d^{T}.$$

Defining a vector $z = (z_1, ..., z_m)$ as

$$z^T = L^{-1} d^T$$

We obtain another formula for calculating the value of D^2 , namely as the product of z and its transpose:

$$(5) D^2 = zz^T.$$

2.3. The method of calculating the Mahalanobis distance by formula (5) is more economic than that by formula (1) using the inverse S^{-1} . Evaluating D^2 by formula (1) we compute a quadratic form in the matrix S. Taking into account the symmetry of S we compute D^2 as

(6)
$$D^{2} = \sum_{i=1}^{m} \sum_{j=1}^{m-1} d_{i} d_{j} s^{ij} + \sum_{i=1}^{m} d_{i}^{2} s^{ii},$$

where $\{s^{ij}\}=S^{-1}$. Calculating by formula (6) we need to carry out m(m+3) multiplications. Evaluating D^2 by formulae (4) and (5) and taking into account that L^{-1} is lower triangular, we need to perform m(m+3)/2 multiplications. Therefore, repeating the calculations many times for the same matrix S and different vectors x and y, the gain in computing time may be essential.

2.4. Suppose now that the matrix $S = \{s_{ij}\}$ is not positive definite and there exists at least one row that is linearly dependent on others. In this case a generalized Mahalanobis distance is defined by the formula

$$D^2 = dS^- d^T.$$

where S^- is a generalized inverse of S. Some formal properties of the generalized Mahalanobis distance may be found in [1].

We proceed now as follows:

Performing the Cholesky decomposition (calculating the matrix L from (2)) we use the formulae

(8)
$$l_{11} = (s_{11})^{1/2}, \quad l_{k1} = s_{k1}/l_{11}, \quad k = 2, ..., m,$$

$$l_{ii} = \left(s_{ii} - \sum_{j=1}^{i-1} l_{ij}^2\right)^{1/2},$$

$$i = 2, ..., m, \quad k = i+1, ..., m.$$

$$l_{ki} = \left(s_{ki} - \sum_{j=1}^{i-1} l_{ij} l_{kj}\right)/l_{ii},$$

We do this sequentially overwriting the elements s_{ij} by the values of l_{ij} . At the begin of the calculations we put ml = m. Before calculating square roots we check whether the argument of this function is greater than zero. Taking into account rounding errors arising during computations we check the inequality

$$s_{ii} - \sum_{j=1}^{i-1} l_{ij}^2 \geqslant \varepsilon,$$

where $\varepsilon > 0$ is a small number dependent upon the accuracy of the computer.

Suppose that inequality (9) is not satisfied for some i $(1 \le i \le m)$. We put then

$$l_{ii} = l_{i+1,i} = l_{i+2,i} = l_{mi} = 0.$$

Simultaneously, the element ind[i] gets the value 0 (otherwise, if (7) is satisfied, it gets the value 1), and we diminish the value m1 by one.

After finishing the Cholesky decomposition we reduce the matrix L removing rows and columns that have diagonal elements equal to zero. The remaining matrix is positive definite, and its size is $m1 \times m1$ (the corresponding array c comprising this matrix has dimensions $c[1: m1 \times (m1+1)/2]$).

The reduced matrix L is inverted by the usual algorithm of Martin et al. [3]. Again the elements of L are overwritten by the sequentially calculated elements of L^{-1} .

2.5. The Cholesky decomposition and the inversion of L are done only once, when calling Maha2 with $first \equiv true$.

Entering the function Maha2 with $first \equiv false$, we check whether m1 = m. If this is not the case, we reduce the vector d removing the elements d_i with the subscripts i such that ind[i] = 0. Next we perform the multiplications according to formulae (4) and (5), calculating the vector $z = (z_1, \ldots, z_{m1})$ and the appropriate value of D^2 .

- 3. Certification. The results of Maha2 were checked by comparing the values of D^2 with appropriate values obtained by calculations using the definition formula (1). To obtain S^{-1} we used the procedure *cholinversion2* from [3]. We got the same results.
- 4. Test example. The following examples were calculated on the ODRA 1305 computer (this computer is compatible with the ICL 1900 series of computers):

Example 1.

(a) Data:

first = true,
$$m = 5$$
,

$$d[1:5] = \begin{bmatrix} 1.0 & 2.0 & 3.0 & 4.0 & 5.0 \end{bmatrix},$$

$$c[1:15] = \begin{bmatrix} 1.0 & & & & \\ .0 & .0 & & & \\ .0 & .0 & 4.0 & & \\ .0 & .0 & .0 & .0 & 9.0 \end{bmatrix},$$

$$eps = 10^{-9}$$

Results:

$$Maha2 = 6.0277778, m1 = 3,$$

 $d[1:3] = [1.0 3.0 5.0],$

$$c[1:6] = [1.0 \quad .0 \quad 1/2 \quad .0 \quad .0 \quad 1/3],$$

 $ind[1:5] = [1 \quad 0 \quad 1 \quad 0 \quad 1].$

(b) Calling Maha2 the second time with actual values:

$$first \equiv$$
false, $m = 5$, $d[1:5] = [6.0 \ 7.0 \ 8.0 \ 9.0 \ 10.0]$,

c[1:15] — as obtained from the previous call of *Maha2*, eps — arbitrary,

ind [1:5] — as obtained from the previous call of Maha2. We get the following results:

$$Maha2 = 63.11111111, \quad d[1:3] = [6.0 \quad 8.0 \quad 10.0].$$

The values of c, ind and m1 are not changed during this call of Maha2. Example 2.

Data:

first
$$\equiv$$
 true, $m = 2$,
 $d[1:2] = [1.0 \quad 1.0]$,
 $c[1:3] = [4.0 \quad 5.0 \quad 6.5]$,
 $eps = 10^{-9}$.

Results:

$$Maha2 = 0.5$$
, $d[1:2]$ - unchanged, $c[1:3] = [0.5 -2.5 2.0]$, $ind[1:2] = [1 1]$, $m1 = 2$.

References

- [1] K. V. Mardia, Mahalanobis distances and angles, pp. 495-511 in: P. R. Krishnaiah (ed.), Multivariate Analysis. IV, North Holland, 1977.
- [2] F. H. C. Marriott, The Interpretation of Multiple Observations, Academic Press, London-New York 1974.
- [3] R. S. Martin, G. Peters and J. H. Wilkinson, Symmetric decomposition of a positive definite matrix, Numer. Math. 7 (1965), pp. 362-383.

INSTITUTE OF COMPUTER SCIENCE UNIVERSITY OF WROCŁAW 51-151 WROCŁAW