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On injective multivalued semiflows

by RomaN Srzepnickl (Krakéw)

Abstract. An injective multivalued semiflow is a mapping F from R, x X into the set of ali
nonemply compact subsets of X which has properties analogous Lo those of negative funnel
sections of local semiflows. If xeF({t, y), then the point y is uniquely appointed and we put
ng(t, x) = y. The aim of the paper is to prove that if X is a manifold, then the mapping =, is a
local semiflow if and only if all the sets F(r, x) are acyclic in Alexander cohomologies over Q.

1. Let X be a topological space and let D be a subset of R, x X (by
definition, R, =[0, oc)). A mapping

n. D-X

is called a local semiflow if the following conditions are fulfilled (see [1]):
(P1) D is open in R, xX and {0} xX < D.
(P2) n is continuous.
(P3) For any xeX the set

D.=teR,: (t, x)eD)

is an interval [0, w,) for some w, > 0.

(P4) n(0, x) = x for any xeX.

(P5) s+teD, if and only if reD, and seD,, .

(P6) m(s+t, x) = n(s, n(t, x)) for any xeX, s+teD, and seD,, .

For any xeX and reR,, we define the set

Fo(t, x) = yeX: n(t, y) = x|
called a funnel section. We shall write F instead of F,. Assume for any r and
x the set F(t, x) is nonempty. The multivalued mapping
F: R, xX3(t, x) = F(1, x) € 2(X)

(#(X) denotes the set of nonempty subsets of X) has the following properties:

(F1) F(0, x)= |x] for any xeX,
(F2) F(t, F(s, x))=F(t+s,x) for any xeX, t,seR,,
(F3) F(,x)nF(t, ) #Q=>x=y.
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Moreover, if we assume additionaly:
(F4) F(t, x) is compact for any xeX and t€eR,,
then (see [3]):
(F5S) F is upper semicontinuous.

2. In this section we reverse the situation considered in Section 1. Let F
be a multivalued mapping

F: R, xX = 2(X):

F is called an injective multivalued semiflow provided it fulfils conditions
(F1)~(FS5). '
If xeF(t, y) for some y and ¢, the point y is uniquely determined and by
definition we put
ne(t, X) =y.
We ask whether the mapping
ne: D= X

(denoted in the sequel by m), where
D= \(t,x)eR, xX: xeF(t, y) for some yeX!,

is a local semiflow, i.e., conditions (P1}{P6) are fulfilled.
The following example shows the mapping 7 = n; need not be a local
semiflow even in the case X = R. Let us put for xeR and reR,

SHE R if x>0,
F(!,x)-{!—!—kx} if x <0,
=11 if x=0.

Condition (P1) 1s not fulfilled.

3. Let F and n be the same as in the previous section. We present a
necessary and sufficient condition under which n is a local semiflow.

ProrposiTiON. If X is metrizable, then m is a local semiflow if and only if
the set F(t, U) is open for any teR, and U open in X.

Proof. Only if part is obvious.

If. It is easy to verify that conditions (P4), (P5) and (P6) are always ful-
filled. Moreover, one can see that:

(¥ If xeX and teD,, then [0,:] = D, and if t€[0, r] then:
n(t, X)eF(t—1, n(1, x)).

Let x € X. Define w, = supD,. Assume t €D_. In order to prove (P3) it is
suflicient to prove that there exists an ¢ > 0 such that t+¢€eD, since (%) is
valid. By assumptions. F(r, X) is open and there exists y, x €eF (¢, y). By (F9)
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there is 0 <& <t such that
F(t—e, y) < F(1, X).

Since F(t, y) = F(e, F(t—¢, y)), there exists weF(t—¢, y), xeF (¢, w). Thus
weF(t, z) for some zeX and xeF(t+¢, z).

Condition (P3) is proved.

Let (tr, x)eD. We have just proved the existence of an ¢ > 0 such that
(t+¢, x)€D. By () the set [0, 1+¢) xF(r+¢, X) is an open neighbourhood of
(¢, x) and is contained in D. Thus (P1) is proved.

Now we will prove (P2). The proof will be divided into five steps.

Step 1. For any xeX the mapping n(-, x): D, = X is continuous at 0.

Assume the assertion is false. There exists an open neighbourhood U of
x and a sequence \t,!, t, >0, t, >0 if n > o0 such that for any neN

n(t,, x)¢U.

Without loss of generality we can assume t, <r for some r <w,. Let z
=n(r, x) and y, = n(t,, x). Thus y,eF(r—t,, z). It is easy to verify that the
sequence |y, has an accumulation point yeF(r,z), y # x and we can
assume y, —»y. We can find V, an open neighbourhood of y, x¢ V. (F9S)
implies F ([0, &), W) < V for some § > 0 and W open, y € W. In n is sufficiently
large, y,eW and t, <9d. Thus xeF(t,, y,) = V which is impossible.

Step 2. For any xeX the mapping n(-, x): D, = X is continuous.

Let U be open, n(t, x)eU. (F5) implies the existence of an ¢, > 0,
F([0,¢), n(t,x))cU. From Step 1 we obtain an & >0,
n([0, £,), n(t, x)) c U. Let ¢ = min ¢y, ¢;) and te(t—e, t+¢). If 1—t >0,
then n(r, x) =n(t+(t—1), x) = U. If we assume t—1 >0, then () implies
n(t, x)eF(t—1, n(t, x)) < U.

Step 3. Write D' = |xeX: (1, x)eD]. Then D' is open for any t >0
and the mapping n(t, -): D' = X is continuous.

Indeed, let U be an open neighbourhood of n(r, x). The assumption
implies that F(t, U) is open. xeF(t. n(r. x)) = F(t, U). Using (F3), one can
easy verify that n(r, F(r, U)) = U.

Step. 4 For any xe X the mapping n: D — X is continuous in (0, x).

Let U be an open sel. xeU. There exists ¢ >0 and V. an open
neighbourhood of x, such that F([0,¢), V)< U. By Step 1 there exists
0€(0,¢], n(d, x)eV. Step 3 implies there exists an open set W, xeW,
n(d, W) < V. Using (x) we can prove ([0, d), W) < F([0, ¢), n(6, W)) and
thus = ([0, é), W)c U.

Step 5. The mapping n: D — X is continuous.

It suffices to prove the continuity of n in (¢, x)eD, t > 0. Since X 1s
metrizable we can apply results of [2] to Steps 2 and 3 and obtain the
assertion. Thus Proposition is proved.
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4. A topological space is called acyclic iff its reduced Alexander co-
homology modules over Q are equal to 0. If the space is compact, one can
replace the Alexander cohomologies by the Cech homologies (see [4] and
[5D.

A metrizable space is called a manifold if any point has a neighbourhood
homeomorphic with R".

Now we can [ormulate the main result of the paper.

THeorReM. If X is a manifold, F is-an injective multivalued semiflow on X,
then the following conditions are equivalent.

(1)  The mapping ng is a local semiflow.
(2) For any teR, and U open in X the set F(t, U) is open.
(3) For any teR, and xeX fhe set F(t, X) is acyclic.

Proof. Proposition states the equivalence (1)<(2).

(1)=>(3). This theorem is proved in [6].

(3)=>(2). If the set F(t, U) is contained in a coordinate neighbourhood,
the assertion follows from VII (3, 5) in [4]. This conclusion implies the
following statement.

If K is compact subset of X, then there exists an ¢ > 0 such that for any
x €K there exists U, an open neighbourhood of x such that if V< U, V is
open and 7 €[0, ¢] then F(z, V} is open.

In order to prove (2) it suffices to assume that U is relatively compact.
Let ¢ be an arbitrary positive real number. Since F is upper semicontinuous,
the set F([0, t]. U) is compact and thus we can choose an ¢ to it as in the
statement. Let t = kd for some ke N and 0 < < ¢ The statement and (F2)
imply that F(id, U) is open for any i =1, ..., k, thus (2) holds.
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