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Abstract. The paper is devoted to the problem of approximation of an optimal sequential plan
in stochastic diffusion processes and fields when observations are made at discrete points.

1. Introduction. The paper is concerned with the problem of sequential
estimating the parameter of the drift coefficient in stochastic diffusion processes
and fields. We consider the models when drift is known up to a multiplicative
Constant. For such models Novikov [12], Le Breton and Musiela [9] obtained
Optimal sequential plans. Their results are based on the assumption that the
Process is observed continuously in time. In practice we often meet the
situation when the process can be observed at discrete points ¢, only. So we
have the problem of approximation of the derived optimal sequential plans.

A similar problem, but in the case of a fixed-time observation, was
Considered by Le Breton {8]. Other aspects of estimation in the disc-
Tete-observation case were treated by Stoyanov [17], Robinson [14], Zylinskas
and Senkiené [22], [23], Prakasa-Rao [13], and Dohnal [4].

- The paper is organized as follows: in Section 2 the theorem about the
approximation of the Novikov sequential plan is formulated, the multidimen-
§ional case is considered in Section 3, in Section 4 some optimal sequential plan
In diffusion random fields is constructed and some its approximation is given,
-1n Section 5 examples are given, and Section 6 contains proofs of previously
formulated theorems.

2. Sequential estimating the parameter of the drift coefficient of a stochastic
diffusion process. One-dimensional case. Let (2, #, P) be a probability space.
By (#,):» 0 we denote the family of sub-o-algebras of the g-algebra #. Assume
as usual that (%), is nondecreasing and right continuous with respect to ¢,
and #, contains all subsets of © of P-probability zero. Let us consider
a stochastic diffusion process (X,, #,) satisfying the stochastic differential
€quation ' :

2.1 . dX,=0a(t, X)dt+dW,, X,=0 as,
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where (W,, #,) is a Wiener process and @ is an unknown parameter. The space
of continuous realizations x of the process X is denoted by C. We also assume
that

t t ’ .
P{[a*(s, X )ds < oo} = P{[a*(s, W)ds < oo} =1 for each t >0
o 0

P{ofaZ(s, X)ds = oo} = 1.

Under these assumptions one can get a maximum 11ke11hood sequential plan
(ty, O) for estimating the parameter 6, where

H

tg(X) = inf{s: _faz(s, x)ds = H}, 6y=H"'{|a(s, XgdX,.
0 o .

Novikov [12] proved that this sequential plan is unbiased, efficient and
achieves the minimum of its variance in the class of all unbiased sequential
plans for which

22 E, {a%(s, H)ds < H
0

Musiela [11] proved that (t,, éﬂ) is minimax in the class of sequential plans
satisfying (2.2). Moreover, the estimator @, is normally distributed with mean
value 6 and variance H™'. This optimal sequential plan is constructed under
the assumption that we observe a realization x(t) of the process X, continuous-
ly in time up to the random moment 7.

In many practical situations we observe the values of the process at some
points t, only. So the natural problem arises to approximate the optimal
sequential -plan (t, ).

Let us assume that we observe the process X, at the points t, = k5 0>0,
keN = {0, 1, 2,...}. Introducing the Markov stopping time

Th,e = inf {t, , = ké: Z @*((j—1)8, Xj-1)5)8 = H}

and the corresponding estimator

TH,5/0
Ope=H ' Y a((i-1)8, Xj-15)4Xs,
j=1

where AX;; = X;;—X-1)5, we prove the following

THEOREM 2.1. If the function a(t, x) in formula (2 1) is a continuous function
of both arguments, then |

(2-3) : P{lim TH,& = TH} = 1,
: =0

(2.4) 0y s— 6Oy in probability as §—0.
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3. Multidimensional case. Le Breton and Musiela [9] considered a multi-
dimensional generalization of the model described in the previous section.
Namely, let X . be an n-dimensional stochastic diffusion process satisfying the
Stochastic differential equation

dX, = AX,dt+odW,
Xo(w)=x, for almost all weQ,

Where W= (W,, W,,..., W) is a Wiener process in R" defined on (@ #,
(F )0, P), A and ¢ are (nxn)- and (n x r)-matrices, respectively,

A= Xp: 0;4;s
=t "
4; and ¢ are known matrices. We also assume that for B = g¢’
BB*A;#0, AB"A,+AjB*A;=0, i#j, L,j=12,..,p
(B* indicates the pseudoinverse of the matrix B). Supposing that
rank[e, Ao,..., A" ‘] =n

We can define the sequential plans (z; y, 9,-, 4) with
t
0

Ou=H'| X,4B*dX,, i=1,2,...,p.
0 .
The sequential plan (t; g, 0; &) is unbiased, efficient and achieves the minimum
of its variance in the class of all unbiased sequential plans (z;, §,) for which

E, | X,4,B* 4, Xds < H.
0

The estimator 0, i is normally distributed with mean value # and variance H 1.
This sequential plan may be approximated by some sequential plan based on
Observations of the process X, at the points t,; = ké only.

Let

. k :

T8 = inf{tk,,,"= ko: Z XG—1)6A§B+A:XU—1)65 2 H},

i=1
1,H,5/8

g',H,é = If_1 Z XZj_.l)aA;B-F AXJ'J.

i =
Using the same methods as in the proof of Theorem 2.1 we get
THEOREM 3.1. Under the assumptions mentioned above the sequential plans
(T,-,H,,,, Q-,H,‘,), i=1, 2,..., p, have the following properties:
P{lim Ti.H.a = Tl',H} = 1,
‘ 3-0
gi.g,a-»é}_ﬂ in probability as 6 —0.
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4. Sequential estimating the parameter of the drift coefficient of a diffusion
random field. Let R% be the positive quadrant of the plane. In this set one can
define a relation of partial ordering as follows: for each z,, z,eR%,

Z, = (SI’ t1)> Zy = (8,, tz)a
2y €z, iff s; <5, and t; <t,.
Let us introduce the notation
2, @z, = (5;, 1)-
For each z,eR%, '
= [0, zo] = {zeR,: z < Zo}-

Let (Q, #,(F - ) be a probability space, where (% ,),cz2 is a family of
sub—a-algebras of # such that for each z,, z,eR2

Z, < zzrb,f',1 c Jzz,

for each zeR,,

zsz'

:?7 :=F.0: and FI=F, 5. are conditionally independent given %, (see
[31), and &, contains all sets of P-probability zero, where 0 denotes the origin.
For the random field X,, ze R%, the formula

X([zl’ 22]) = Xzz—X21®22—X22®zl+le
defines the increment of the random field X, on the rectangle
[z4,2,] ={zeR%: z;, <2< 2,}, 2, <2,

DEFINITION 4.1. A random field X,, defined on (Q, #, (# Dzerz > P),
belongs to the class of random fields of d:ﬁruszon type if there exist ndnan-

ticipative functionals a,(-) and b,(-) defined on the space C (R,,) of continuous
functions such that

P{ j' la,(X)|dz < 0} =1, P{ [ b2(X)dz < 0} =1,

Rz, Rz,
X(R) = [ a,(X)dv+ | b,(X)dW,
Rz Rz

with P-probability 1 for each ZeR,,.
The above equation can be rewritten in the equivalent differential form
dX, = a,(X)dz+b,(X)dW,
with the initial condition

¢. = X0+ X0.9—X(0,0)-
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Sufficient conditions for the existence of such random fields are given in
[18] and [21]. For further applications the problem of the absolute continuity
fJf measures corresponding to random fields of diffusion type is of great
Importance. Following [6] (Proposition 7.2) and [19] (Theorem 6.1) we can
Prove that if X, Y, (zeR,,) are random fields of diffusion type satisfying the
®quations

4.1) ' X,=¢,+ | a,X)dv+oW,
Rzo
(4.2) Y, = ¢,+0W, with P-probability 1 for each zeR, ,

then the measure y% corresponding to the random field X is equivalent to the
Measure ug<o corresponding to the random field Y and

dx ool L j aoax,——L | aZ(X)dz]
T T ek |

To consider the problem of sequential estimation for random fields of diffusion
type we must introduce somehow the concept of Markov stopping “time”. Let
X, (ze R?) be a random field with the corresponding measure uy. Let ¥ be the
Space of realizations of this random field, and # be the g-algebra of subsets of
¥ generated by cylindrical sets. By " we denote the family of compact subsets
of R? for which the following condition holds:

CONDITION 4.1. There exists .a countable family of compact sets P;(n) with
diameter O(P,(n))—0 as n— oo such that for every Ke A" there exists a finite
Covering C,e A" of K by some sets among P(n), i€ I, for which C,,; = C, and

Nc =K.

n=1
By ¢, we denote the restriction of the g-algebra of subsets of ¥ generated
by cylindrical sets :

{xeY’: (x(zy), x(2y), ..., x(z,) e B}, BE.QR", z;eK,i=1,2,...,n.
The restriction of the measure Uy to the c-algebra % is denoted by uf.

DEFINITION 4.2 ([5], [15]). A Markov stopping set T is a mapping t: ¥ — %"
Such that for each KeJt’

{x: t1(x) = K}e%y.
With each Markov stopping set © we can connect the ¢-algebra %, as the
family of sets Ue% such that for each Ke X'
Uni{x: 1(x) € K} e %.

The measure u restricted to %, is denoted by p".
~ The following theorem answers the question about the absolute continuity
of the measures w* corresponding to random fields.
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THEOREM 4.1 ([15], [16]). As.éume that Condition 4.1 holds. If, for every
Ked', u% is absolutely continuous with respect to pk and

dp

7 K X = K’ P

du§( )=g(K, x)
where g is a function for which g(K,, x)—>g(K, x) pg-almost surely as K,| K,
then uy is absolutely continuous with respect to u% and

du

dpp

We pass to the case of diffusion random fields in the sense of Definition

4.1. We put

(x) = g(t(x), x).

A" ={R,: zeR%}.

If X,, Y, are random fields satisfying equalities (4.1), (4.2) and 7 is a Markov
stopping set with respect to 27, then under the assumptions of Theorem 4.1 the
measure py is absolutely continuous with respect to the measure u} and

dux, . 1 r .,
s (x) = exp,:? { a,(X)dX 2552 j; a? (X)dz].

Now we assume that X, fulfils the equation

X, = ¢.+6 [ a,(X,)dv+W,
Rz

with
P[ fal(X,)dv < 0] =1 for each R,,
R; - ‘
P[ [ a2(X,)dv = 0] =1,
.

where 8 is an unknown parameter which we have to estimate. By Theorem 4.1
the measure 4 corresponding to X and defined on the c-algebra ¥, is
absolutely continuous with respect to uj,, where 6, =0 and

dug 6. ,
: = exp| 0§a (X )dX,——[a2(X,))dz | = g(z, S(x), 0),
dup : 2y

S() = [ [a,(X,)dX,, [a? (X,)dz].

DEFINITION 4.3. By a sequential plan for estimating the unknown parame-
ter 6 we mean a pair (t, f(S(c))), where  is a Markov stopping set with respect
to o and f(S(r)) is an estimator of #.

For a sequential plan so defined the Cramér-Rao-Wolfowitz inequality
holds. o
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THEOREM 4.2. ([15]). Let (z, f (S(2))) be a sequential plan for which f(S(z)) is
an unbiased estimator of the parameter 0. If the regularity conditions

8 I Y
Eo%[lng(t, S(‘L’), 9)] = 0, 56E9f= Eefﬁ[lng(r, S(‘L’), 0)] N

s ,
E [ﬁlng(t S(z), )i' >0
hold, then '

(4.3) Var,f(S(t))z( I:aaolng(t S(z), e)] )_iz(E,jaf(X,)dz)-l.

DEFINITION 44. A sequential plan (t, f (S (1)) is said to be efficient if
inequality (4.3) becomes an equality for 0eR.

Let
={R, =[0,]x[0,¢]: t=>0} and tg4(x)=inf{t: [a?(x)dz =H}.
| R

It is easy to see that R, =[0, 4] x[0, 74] is a Markov stopping set with
Tespect to . We have

THEOREM 4.3. ([16]). The sequen;ial plan (R, 6,) with
' Oy =H! | a,(X,)dX,

Rey .
is an unbiased efficient maximum likelihood sequential plan for estimating the 6.
Moreover, (R.,,> Oy) has minimal variance and it is minimax in the class of all
Sequential plans for which

E,fa?(X,)dz < H.

The estimator 0y is normally distributed with mean value 0 and variance H™ ',

This optimal sequential plan is constructed under the assumption that one
Can observe the whole realization of the random field X, on the increasing
$quares. This is difficult to realize in practice. More often we meet the situation
When we observe the random field X, at the points (s, t)=(ic, jo).
F Ortunatcly, we can construct some approximation of the optlmal sequentlal
Plan as in the previous sections. Let us define

thy=inf{kd: ¥ a*((—1)3, G—1)), x(i—1)s, (- 1)5)) > H)},

(1.5
1<4,j<k

Ogs=H (_Zﬁ a(((i*1)5,(j—1)5),X((i—l)ﬁ,(jf1)5))X(Pi.j),

C1K0,j<tH, 08
where X (P;) is the increment of the random field X, on the square [(i—1)J,
0] x [(j— 1)5 jo]. Then we have

— Zastosowania Mat. 20.4
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TueOREM 4.4. For the sequential plan (tg s, 0n,) the following holds:

(44) P{ lim TH,e = TH} = 1,
30 _
4.5) ég,a—réH in probability as 3 — 0.
5. Examples.

1. A signal S0, t) = 0f (t) with unknown amplitude 0 is passing through
a channel with addltlve white noise. So we can write

dX, = 0f(t)dt+dW X,=0,

where 0 is the unknown amphtude. If T is such that

T
JLf@®))dt =
0

then

k
g = inf{ks: ¥ [f((J- D)5 > H},

TH,5/0
Ogs=H ' Y f((j—1)0)4X.

i=1
Observe that t;; is nonrandom.

2. Let the evolution of a dynamical system be described by the Orn-
stein-Uhlenbeck process. This means that X, is the solution of the stochastic
differential equation :

dX,=0Xdt+dW, X,=x,,

where W, is a Wiener process and 6 is an unknown parameter. In this case

tH /6
r,,,,-—mf{ké Z X% )50 = H} Ous=H ' Y X, 1adX j.
j=1
3 (see [12], [1] [2]). The instantaneous axis of rotation of the earth is
displaced with respect to the minor axis of the terrestrial ellipsoid. This
displacement is a sum of a periodic motion and some fluctuation. The latter
can be modelled by the solution of the stochastic differential equation

dX, = AX dt+0dW,

Lo 0 —1
A = 01A1 +02A2, Al = [0 1], A2 = [1 O],

1 0
g = [0 1] ﬁ’ Xg = (Xl,ts X2.t)’a_

where
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6, and 0, are unknown and B is known. So we can write

) & .
Tms = Tams = tas = inf{kd: ), [(Xig-nstX3g-15]0 2 H},

j=1
TH,s/0 TH,5/0

Oyps=H (Y Xi4- 1)&AX115+ Z X3 5-154X2,55)s
i=1 ji=1
TH,5/0 ‘ tH, 5/

Orns=H Y Y Xyg-0sdXz 55— Z X - 1)aAX1 is)-
i=1 i=

4, Let us consider a dynamical system which may be described by the
following stochastic differential equation:

dX, = 0X,dz+dW,, z=(s,t)eR%, |

X0 = by Xy =1

This equation can be used to model the propagation of a plane sound wave
Wwith constant velocity v in some medium [7]. In order to estimate the unknown

Parameter @ we can use the sequential plan (75, Og.5) conmdered in Theorem
44

6. Proofs.
Proof of Theorem 2.1. By the definition of 7y, for each ¢ > 0 we get
tH+e TH™—E
[ a®G,x)ds=H,>H, [ a*(s,x)ds=H,<H.
0 ’ 0

From the definition of the integral it follows that for each n > 0 such that
H,—y>H and H,+n < H there exists d, >0 such that for each é < 60

(o (50

Where [z] indicates the integer part of z. Thus we obtain

ﬁm([”*;g]ﬂ)a lim g, < limeg,s < hm([t‘*; 8]+1)5.
-0 . -0 60 -0

So for each ¢ >0 we have

Tg+e<limty,; < hm'c,” Ty +&.
-0 -0

Thus
(6.1) P{limtg, =14} = 1.

a—0
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By the assumption, a(t, x) is a continuous function of both arguments. So by
Lebesgue’s theorem and (6.1) we conclude that

. tH,s/3 ™ ,
P(lim Z az((j—-l)é, Xu_m)d = I a’(s, X)ds = H) = 1.
5-0 j=1 0
To prove (2.4) we qwrlte
tH,6/8
6.2) jZ ((1_1)5, X(j—na)Aon
=1
tH,5/0
=0 Z a((j—1)9, XU 1) j als, Xs)ds ‘
G-1)é
tH,5/0
+ Y a((J—1)6, X ;) AW,
i=1

With the same arguments as previously we can show that

tH, 5[0 Jjé
(63) P(lim ) a((j—1)9, X4-10) [ afls, X,)ds
a0 j=1 (G-1)

= [ a*(s, X)ds=H) = 1.
0

We pass to the second term of the sum in (6.2). Let
ha(s! X) = Z a((j_ 1)6» XU— 1)6) 1[(i- l)&jéj(s) 1[0,1:1-1.4](5)-
: o
By the previous considerations we obtain

P{T [h,,(k X)—a(s, X )10, ()2 ds 559 0} = 1.

If f —f in probability in the L?-norm, then | f,,dW—» {faW in probablhty
[10]. So

b TH : '
jh,,(s, X)dW, 550> [ als, X )jo.;(s)dW, = [ a(s, X,)dW, in probability.
0 0 0 ‘

However,

tH,0/0

{huts, X)W, = 2 ali=05, Xy AW

Then

H,5(6

(6.4) Z ((] 16, X ;- nY) ,,—»ja(s X,)dw,

~ in probablhty as 6—0.
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From (63) and (6.4) it follows that

tH,5/0 TH .
Y a((j—-16,X;_;,)4X ;53— j a(s, X,)dX, in probability as §-»0.

i=1

The proof of Theorem 3.1 is the same as that of Theorem 2.1 and is
therefore omitted.

Proof of Theorem 4.4. The proof of (4.4) is analogous to that of (2.3).
To prove (4.5) let us consider the expression

. Z a(((i—1)9, (j—1)8), X-1ys.4- o) X (Py).
1 ﬁi,}'éjt)ﬂ,a[ﬁ -

We have _ g .
(6.5) Z a(((,i_jl)‘s’ (i=19), X-1s.5-0a)XPy)

= 9 ' Z a(((i—l)é, (j—1)é), X((i—l)é.(j—l)&)) _f a(z, X,)dz
150 Lot | | Pui
+ 2 a((—1é, (—1)9), X-nag-va) WP, ).
10, om0 L
By arguments similar to those in the proof of Theorem 2.1 we obtain
©6) P{lim ¥  a((—13, (G— 1)), X-nag-va) | alz, X,)dz

0 (i.hH ’ Py
1<1,j< s, 6/0

= | &, X)dz=H)=1.
Rey .
Let us consider the second term of the sum in (6.5). Let
ho(z, X) = Y, a((i—1)8, (G— 1)), X~ 1y 1)6))1&,,(,,,(:)1?, @)
(UY) B
If T denotes the line s = ¢, then 1 Regr ,(2) is F r-measurable (for the definition of
F,-measurability see [19], [20]). Observe that -

Z a(((l—l)é, (j—1)9), X((i~1)a.u—1)a;) W(P;)
TR v L |
I Z ( (i—1)3, (j—1)9), X(¢-nps, u'—1).s))lpu(7-) W(dz).
Rcﬂ &)
Using the definition and propertles of the I"-mtegral with respect to a Wlener
Tandom field, introduced in [19], we can wnte

I Za(((l—l)é (j—1)9), X 8.4~ 1)5))11",(7-)W(d2)

' R'Ha('-”
§ Y a(l-1s, (j-19), X«: 13, - 1)5))1pi,(Z)W(dZ)

Ry , (i)
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As proved by Rozanski [16] the above integral is equal to

5 Y. a(((i—1)8, (j—1)8), X 1)s,4- 1) 1p,(2) 1k, LOWdz)

R} + @)

r
= | hy(z, X)W(dz).
So we have proved that
Z a(((i"l)é, (j—l)(S), X«i—l)a,u- 1)6))W(Pij = Iz hs(z, X)W (dz).
v R? _

(i)
1<€i,j<ty,0/d

With arguments similar to those in the proof of Theorem 2.1 we conclude that
hs(z, X) converges in probability in I*(R%) to a(z, X,)1g,_(z) as 0. This
fact together with the results of Wong and Zakai [19], [20] implies that the
integral

r
.‘; hd(z’ X)W(dZ)
R
converges in probability to
r
j a(z, X)1g, ()W (d2) = | a(z, X,)W(dz)
R+ Reyy

by [16]. The last statement together with (6.6) gives (4.5).

References

[1] M. Arato, On the statistical examination of continuous state Markov processes, in: Select.
Transl. Math. Statist. Prob., ¥ol. 14, 1978.

[2] S. E. Borobeicikov and V. V. Konev, Construction of sequential plans for parameters of
‘recurrent type processes, Mathematlcal Statistics and Applications, Publ. Tomsk UniV-
6 (1980), pp. 72-81.

[3]1 R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975),
pp. 111-183.

[4] G. Dohnal, On estimating the diffusion coefficient, J. Appl. Probab. 24 (1987), pp. 105-114.

[5] L. V. Evstigneev, Markov moments for random fields, Theory Probab. Appl. 22 (1977
pp. S75-581.

[6]1 X. Guyon and E. Prum, Identification et estimation de semimartingales représentables par-
rapport @ un Brownien d un indice double, pp. 211-232 in: Processus aléatoires a deux indices:
Lecture Notes in Math., Springer-Verlag, Berlin 1981.

(71 D. Landau and E. M. Lifshits, Hydromechanics (in Russian), Moscow 1986.

[8] A. Le Breton, On continuous and discrete sampling for parameter estimation in diffusion tyP"
processes, Math. Programming Study 5 (1976), pp. 124-144.

{9] — and M. Musiela, Some parameter estimation problems for hypoelliptic homogeneots
Gaussian diffusions, pp. 337-356 in: R. Zielinski (Ed.), Banach Center Publ,, Sequential Methods
in Statistics, Vol. 16, PWN, Warsaw 1985.



Optimal sequential plan 585

[10] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, I, 11, Springer-Verlag,
New York 1978.

[11] M. Musiela, On sequential estimation of parameters of continuous Gaussian Markov
processes, Probab. Math. Statist. 2 (1982), pp. 37-53.

[12] A. A.Novikov, Sequential estimation of the parameters of diffusion processes, Theory Probab.
Appl. 16 (1971), pp. 394-396.

[13] B. L. S. Prakasa-Rao, Estimation of the drift for diffusion processes, Statistics 16.2 (1985),
pp. 263-276.

[14] P. M. Robinson, Estimation of a time series model Jfrom unequally spaced data, Stochastic
Processes Appl. 6 (1977), pp. 9-24.

(151 R. Rozanski, Sequential estimation in random fields, Probab. Math. Statist. 9 (1988),
pp- 77-93. _

[161 — Markov stopping sets and stochastic integrals. Application in sequential estimation for
a random diffusion field, Stochastic Process. Appl. 32 (1989), 237-251.

[17] M. J. Stoyanov, Problems of estimation in continuous-discrete stochastic models, pp. 363-374
in: Proc. 7-th Conf. Prob. Theory, Brasov, Romania, 1982.

[18] C. Tudor, On the two parameter Ito equations, pp. 117-134 in: Séminaires de probabilités,
Rennes 1983.

[19] E. Wong and M. Zakai, Likelihood ratios and transformation of probability associated with
two-parameter Wiener process, Z. Wahrsch. Verw. Gebiete 40 (1977), pp. 283-308.

[20] — An extension of stochastic integrals in the plane, Ann. Probab. 5 (1977), pp. 770-778.

[21] 1. Yeh, Existence of strong solution for stochastic differential equations in the plane, Pacific
J. Math. 97 (1981), pp. 217-247.

[22] A. Zylinskas and E. Senkiené, Estimation of the parameters of the Wiener process (in
Russian), Litovsk. Mat. Sb. 18 (1978), pp. 59-62.

(23] — Estimation of Wiener stochastic field parameter from observations at random dependent
points, Kibernetika (Kiev) 6 (1979), pp. 107-109.

ROMAN ROZANSKI

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCLAW
WYBRZEZE WYSPIANSKIEGO 27

50-370 WROCLAW

Received on 1988.02.12;
revised version on 1989.02.10



