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TWO STATIONARITY CONDITIONS IN THE Gl/r,/M/r, DAM

Abstract. We study the infinite dam in which the content process
alternatively decreases or increases continuously at random time-intervals. The
Output and input rates are content-dependent. We prove the equivalence of two
Stationarity conditions in the case of exponential output phase and we find the
h_miting distribution of the content process. We use the methods of inves-
Ugations of Markov processes.

1. Introduction. We have considered in [4] the dam in which the content
Process alternatively decreases (output phase) or increases (input phase)
Continuously at random time-intervals and the output and input rates depend
On the state of the process. We have investigated there, among others, the
Stationarity of the content process and we have obtained two conditions in the
c‘fSe of the exponential output phase. Similar conditions have been obtained by
Cinlar [2], Harrison and Resnick [3] and by Brockwell [1] for the dam with
4 pure-jump input process and with content-dependent output rate. In [1] it
Was shown that the conditions obtained there for the input process, being
a Pure-jump Lévy process, are equivalent. In this paper, using the methods of
Nvestigations of Markov processes applied in [3], we show that the stationari-
t5f Conditions obtained in [4] are equivalent. Moreover, we find the limiting
distribution of the content process with exponential output phase.

2. Stationarity conditions. Let (2, %, P) be a probability space,
%, = [0, ), #, =(0, ©), let #,, #, stand for the o-algebras of Borel
Subsets of these half-lines, respectively, and b%, be the class of real bounded
%-measurable functions. Introduce the notation Y for a stochastic process
_{Y(t), t >0}, Y for a random sequence {Y,, n=0,1,...}, and 1, for the
dicator of a set A. |
. We give now the construction of the content process in the general model
With content-dependent input and output.

2 .
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346 7 M. Jankiewicz

Suppose we are given the following:

(a) sequences of times 75,44, m =0, 1, ... (1, = 0), such that the intervals
1 = Tom+2-a—T2m+1-a are positive independent random variables with com-
mon distribution function H, and finite mean 1/u, (a = 1, 0); the sequences t*
(a =1, 0) are also independent;

(b) real functions r, (a = 1, 0) strictly positive continuous in £, and such
that r,(0) =0, r,(0) > 0, r, non-decreasing, r, non-increasing in %,

O Gy o

(1/r,(w)du < o0 for every x > 0;

(c) the random variable X§: Q> %, .

Wecall 75,,.,(m =0, 1,...; a =1, 0) the moments of change of the phases
and r, (a =1, 0) the intensity functions.

We define the content process X for the distances #* and the intensity
functions r, (a = 1, 0). We assume that the contents X (¢) at the time ¢ decrease
with intensity r,(X(t)) or alternatively increase with intensity ry(X(¢)) with
regard to whether the process is in the output or input phase at time ¢. Thus for
fixed a for |

te[12m+1—aa 12m+2—a)a m= 09 19 cees

the content process X is given by the functions q, = ¢q,(x, t}, x, t > 0, fulfilling
the differential equation

g
1 — =(-1)

1 e (—1rn,(q)

with the initial condition g,(x, 0) = x. Hence we obtain the solution in the
implicit form

t

() 4%, 1) = x+(—1)" [ r (g, (x, w)du.

0

With our assumptions the equation (1) can be also solved in an explicit form.
Write

x

R,(x) = [(1/r.)du, a=1,0.

0

Then the solutions are of the form

< Ri(x)s

Ri'(Ry(x)—t) for x>0,0
t l(x)a

0 for x >0,

ql(x’ t) = {

AN
-

3
do(x, ©) = Rg*(Ro(x)+1) for x,t>0.
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From the formula (1) for a=1 it is easy to see that the assumption

F(l/rl(u))du < ®

Means the finiteness of the time to emptiness of the contents x provided we are
In the output phase. For a = 0 and by the assumption that ro 1S non-increasing,
the integral

X

f(1/ro(u))du

o

is finite for every x, which means the finiteness of the time to reach the contents
X starting from zero provided we are in the input phase.
Define the chains X* (a =1, 0) as follows:

Xg = ql(Xfl)a t(lj)a
Xomr1=q1-a(q.(X5, 13), th35-0) form=0,1,...

@

Then
) X(1) = (X% t—Tams1-0)
for 12m+1-a<t<r2m+2—as a=1,0,m=0, 1,...

From the construction (5) we see that X4 = X (1,,,+1-4), i.€., the chain X! gives
the contents at the initial times of the output phases, and the chain X° gives the
Contents at the initial times of the input phases. Simultaneously, because the
distances tm are independent for m =0, 1, ..., it follows from (4) that X°
(@< 1, 0) are Markov chains.

The content process X is defined by the quadruplet {¢°, r,, ¢!, r,}. Under
these assumptions we will therefore use the symbol GI/r,/GI/r, for this model
Applying the notation related to Kendail’s notation in the theory of queues.

We introduce two conditions obtained in [4]. Let &, be the g-algebra
&nerated by the random variable X§, let P, be the conditional probability
P{| & oy on the set {X§ = x}, and let E, be the appropriate expectation. Next,
let 02 be the operators defined by the transition probabilities for the Markov
Chains X* (@ =1, 0). Thus from (4) for feb#, we have

© g = :f I (@1-olautx, . )aH0)dH 40 a=1,0.
Write
ﬂo = inf ro(x), B, =sup r(x)
x20 x=0

(8, may be infinite).
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THEOREM 1. In the model Gl/r,/Gl/r, the condition
() PBolto < Bi/ps

is sufficient for the Markov chains X® to have the invariant probability measures
Nf,a=1,0.
For the completeness of the paper we quote the proof of this theorem.

Proof. We prove the existence of the invariant measure Ng. Then the
existence of Ni follows from (4). '
Choose ¢, such that B, < c, < B, u,/u, and put

Do = {x: ro(x) < ¢o}-

Since r, is positive continuous non-increasing, the set &, is non-empty and it is
of the form (d,, ). In addition, if xe9,, then from (1) for a = 0 we have

(7 do(x, ) < x+cyt, t>0.
Choose ¢, such that cqu,/u, < ¢, < f, and put
Dy = {x: 1, (x) > c,}. |

The set 9, is also non-empty and it is of the form (d,, o). In addition, if
qg,(x, )€ 2,, then from (1) for a = 1 we have

(8) g (x, ) <x+cyt, t>0.

Consider the set 2 = 9,1 2,. If d = max(d,, d,), then 9 = (d, ). Let
us define the chain § by the formula

' S0=X8, Sm+1=Sm+Cotg1—C1t,}l+1, m=0, 1,...
Let also 7
U=min{m: S,¢2}, V=min{m: X3¢ 9}.

m=0 mz0

It follows from (7) and (8) that for fixed weQ we have: if
o X9, X9,..., X0 > d,
then Xi, X3,..., X%y, >d, and
| . X% < XS +cotl_1—cyth.
Hence, if X3, X9, ..., X% > d, then S, >d and we obtain
©) Ve mi={X3>d, X0>d,..., XO> d)
c{8,>d,8,>4d,...,S,>d} ={U>m}.

Since the random variables 2 (@ =1,0, m=0, 1, ...) are independent,

the chain § forms a random walk. The constants ¢, (@ = 1, 0) have been chosen
such that

EiSm+1—8,} = Colto—C1/Hy < 0.
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Therefore, the random walk S drifts to —oo and for each x > 0 we have
E,{U} < 0. Define the operator ¢ such that
9f(x) = Q%Igf)(x) for each feba,.

From (9) we obtain

S @10 =E (V)= ¥ PAV>n} < ¥ PAU > n} =B, (U},
n=0 n=0 n=0
Thus

) %"1(x) < oo for each x = 0.
n=0 :

Now the same arguments as in the proof of Theorem (4.4) in [2] allow to prove
the existence and finiteness of N¢ . “ '

Define the processes Y and a by the formulas
(10) Y(O) = tam+140a—t, oty =a
for tE[T2m+a, T2m+1+a)’ a= 1, 0, m= 0, 1, .

Y is called a residual-time process, and o is called an alternating process.
One obtains the second condition for the model GI/r,/M/r, investigating
the extended Markov process .

X@)=[X@®, Y(®), 2()], t=0,

Vfllued in Z =R, xR, x{0, 1}. We assume that X has the unique stationary
distribution N and that the Markov chains X* have the unique invariant
Probability measures N, . Putting

N,(4) = N(Ax R, x {a),
N9 = N0, x]), N2 () = NGO, x),

We assume moreover that there exist derivatives

—_ d + — d +
n,(x) = E;Na(x) and n/(x)= dea (x) for x>0.

Before we formulate the theorem introducing the second condition, define
the functions K*" = K*(x,y), 0<y<x, n=1,2,..., by the recurrent
formulas

(1) K*(x, y) = py (1— Ho(Ro()— Ro )7, (),
(12) K*m+D(x y) = JICK(x, u)i(*"(u, ydu, n=1,2,...,

where K = K*!,
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It is easy to verify by mathematical induction that the iterates K*" can be
evaluated as follows:

(13) K*®*D(x, y) < i1 Ry ()= Ry 0 /(1 (0)mY),

O0<y<x,n=0,1,...
Hence

(14) Zl K*(x, y) < nyexp iy (Ry (x)— R (0)}/r1 ().

From (14) we define the function K* = K*(x,y), 0 <y<x, by the
formula

.o}

(13) K*(x, y) = } K*'(x, ).

n=1

Putting
vl =Ypo+1/py, k=1/1+ [ K*(u, 0)du)
0

we formulate the second stationarity condition.
THEOREM 2. In the model Glfro/M/r, the condition

(i) IK*(u, 0)du < o0
is necessary and sufficient for the equation
(16) ng (x) = N§ (0)K(x, 0)+§K(x, ung (wdu, x>0,
to have a unique solution of the form
17) N§ (x) = k(1 +f1<*(u, O)du), x>0.
0
Moreover, the distributions Nf, N,, N, are then of the form
(18) N () = ] HofRo(x)— Ro(w)dNG 0,
(19) O Nel) = @/k)NS (0,
(20) N1 = (/o) I Ho(Ro(%)— Row)dN§ (),

x

where Ho(x) = po {(1—Ho(u))du, x > 0.

0
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Theorem 2 is a direct consequence of Theorems 5-7 contained in [4]. Here
We give a sketch of the proof of the theorem. It is based on the paper [5] in
Which one considers extended piecewise Markov processes with general state
Space. The process X is a simple example of such a process with regenerative
Mmoments t,,.+, and with continuous trajectories. On the interval [T,m4 4,
Tam+a+1) (m, a fixed) it is a Markov process with transition probabilities P, of

the form ‘
(21) P(t, x, A)=I,(q1_o(x, £)), t,x>0, AdeB,.

Applying Theorems 2 and 3 from [5] we obtain the following relations
etween the distributions N, and N,':

e Nica) = § NF @) ] Py_oft, u, A)(1—H,(0)ds
0- 0

(23) ri—a(X)n,(x) = v(Ng (x)—N{ (x)), x>0, AeB,, a=1,0.

To verify the assumptions of these theorems, it suffices to show that for each
function f on #,, real, continuous, vanishing at infinity and for a = 1, 0 the
following holds:

(24) ~ limsup| Gjo F@P,t, x, duy—f(x)| =0

t]0 xz0 00—

By (21) we have
§ F@P,(, x, du) = £{g:-a(x, 1)
0_

SiIllultalneously from equation (1) we obtain

limg,(x, t} = x,
110
and so

lim f(q,(x, ) = f (x).
t40

Umformly on %, which proves (24). Relation (22) follows from Theorem 2 (b)
1n [5] and relation (23) follows from Theorem 3 in [5] after the calculation of
the value of the infinitesimal operator &/ (P,) induced by transition probabil-
ities P,, namely

- d
A (PIN((x, 00)) = (= 1)'r1-a(x) N.((x, o).

_ One can transform relations (22) and (23) substituting (21) into (22) and
Using (4). For our purpose it suffices to remark that

N7 () = P{ay(X3, 8 < x} = | Ho(Ro(®)—Ro(@)dN3 ()
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and to substitute this into (23) for a = 0. Hence we obtain

(25) no(x) =v | (1—Ho(Ro(x)—Ro)))/r,(x)dN§ (), x> 0.
o..
The next step is to show that relations (22) become simple when one
assumes that one of the distribution functions H, is exponential. For fixed a, if
H, is exponential, then

(26) Ni_alx) = (/p)Ni-.(x), x>0.

In the proof of this step one uses the relation known in the theory of semi-groups
of contraction operators &,(P,) = (Al —o/(P,) ™!, where I is the identity operator
and #,(P,), A >0, is the resolvent induced by the transition probabilities P,.

In our case the distribution function H, is exponential, so we substitute (26)
for a =1 into (25) and we obtain (16) for Ng . Iterating (16) n—1 times we have

(27) ng (x) = Ng (0) Y. K¥(x, 0)+ | K*'(x, wyng (w)du, x> 0.
i=1 0 .

Letting n— oo in (27), using (13) and the bounded convergence theorem we
establish that the unique non-zero solution of (16) is ng (x) = N¢ (0)K*(x, 0),
which is a density iff condition (ii) is fulfilled. Hence we have (17) and from (27)
we have also (19). Formula (18) follows from (17) and (4), whereas we obtain
formula (20) substituting (17) and (18) into (23) for a = 1 and integrating. It is
easy to verify that N, (o0)+ Ny(c0) = 1.

3. Limiting distribution. In the former section we have defined the content
process X in the model Gl/r,/GI/r,. Now we consider two other auxiliary
models. Let the following be given for i =0, 1:

(1} a sequence of moments &' (oh =0) such that the distances s,
=0,+1—05 (n=0,1,...) are positive independent random variables with
common distribution function H,_; and finite mean 1/u,_;;

(2) a sequence §' of positive independent random variables with common
distribution function H; and finite mean 1/u;

(3) real functions r, (@ =1, 0) with properties such as in the model
Gl/ro/Glr,.

We assume that in the first model (i = 0) the contents Z°(¢) at the moment
te(ol, 09+4), n=0, 1, ..., decrease with intensity r.(Z°(t)) whereas o are the
moments of jumps up of the form g,(x, S?), where x is the contents just before
the jump. Analogously, in the second model (i = 1) the contents Z(¢) at the
moment te(g,, 0l.,), n=0, 1, ..., increase with intensity ro(Z'(t)) whereas
a, are the moments of jumps down of the form q,(x, S}, where x is the contents
just before the jump. In accordance with this description we construct, for fixed i,
the content process Z' as follows: let Z' be the chain defined by the formula

(28) Zne1 = 4:1-d9(Z0, 1), sher), n=0,1,...,
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Where we take Z} = X3, Z3 = q,(X}, s9), respectively, and the functions q,,
a= 1‘, 0, are defined by formulas (1)<3). Thus we have

(29) Zi(t) = ql—i(zr]l._.is t_a:.l) for tE[O'f,, O-:.H- 1): n= Oa 1: (RRE)

Where Z!7i=gq(Zi, Si_,,) for n=1,2,... and we take Z}= X3, Z9
= q,(X3§, sb), respectively.

_ One can see from this construction that Z' are Markov chains and they
give the contents just before the jumps of the processes Z-. The content process
Z° s defined by the quadruplet {8°, 1o, 8% r,}. With our assumptions we will
use the notation GI"°/Gl/r, for this model. The content process Z! is defined by
the quadruplet {S, r,, s', ro} and we will use the symbol GI"'/GI/r, for this
mode],

Comparing the definitions (4) of the Markov chains X% a =1, 0, in the
Mmodel GI/r,/GI/r, with the definitions (28) of the Markov chains Z' in the
models GI"/GI/r,_;, i =0, 1, we obtain the equalities

(30) P{XicA} =P {ZicA}, xeR,, Ac®,, i=0,1.

S_imilarly, comparing the construction (5) of the process X with the construc-
tions (29) of the processes Zi, i =0, 1, we obtain the equalities

B1) P{X(t)eA|a(t) =i} = P.{Z'()e 4},
xeR,, AeB,, i=0,1,1t>0,

Where ¢ is the alternating process defined in (10). Equalities (30) and (31) will be
Useful to find the limiting distribution of the process X . First we show a lemma
Concerning the limiting distributions of the processes Z, i=0,1.

~ LemMa 1. For every i (i =0, 1), if the Markov chain Z*~* has the unique
Mvariant probability measure Ni_;, then for every xe &, and Aec B, we have

(32) lim P {Zi(t)e A} = p,_; | Ni.id2) [ (1~ Hy - )1 ,(q1 -1z, w)du.

t~ o 0- 0

Proof. The proof proceeds analogously to the proofs of Lemma (4.12) and
ThEOrem (4.14) in [2] where one assumed a condition analogous to condition
fl)- In our model GI/r,/GI/r,, condition (i) is sufficient for the existence of
variant probability measures of the Markov chains X%, a = 1, 0, but we have
00 proof for it to be the sufficient condition for the uniqueness of these
Measures. Hence the assumption of the lemma. The renewal process defined in
Lemma (4.12) in [2] is here the process

M, (1) = sup{n: ¢’ < 1}
and the Markov process is the process

[Zif-i'(:)’ t - a‘ﬂ{f(t}] 9 t 2 0.
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The assumptions of the theorem due to Orey (see Theorem 4 in [11] cited in
[2]) are satisfied for the state space #, and by the assumption of the lemma the
integral (0.1) is equal to

a0

[ N{_i(dy) | udHy - i) = Upy_,
0- 4]

and, by (1) at the beginning of Section 3, it is finite. Thus, as in Lemma (4.12),
for any open sets A€, Be# . and for any xe #, we obtain the following:

(33) lim Px{Zi{_i(;')EA, t—ai{i“)EB} = [Al_,NI'_,(A)_“(l—H,._l(u))du
B

1> oo

Next, analogously to Theorem (4.14) in [2], the process Z' can be presented in
the form

Zity = 41 -i(Z a0y t— )

(see formula (29)). Hence and from (33) we obtain (32).

By Lemma 1 and equalities (30) and (31) we have the following limiting
theorem:

. THEOREM 3. In the model Gl/r,/Gl/r,, let the Markov chains X° have the
unique invariant probability measures N; (a = 1, 0) and let the distributions H,
be aperiodic. Then for every xe®, and ye R, we have

(4  ImP{XO<y =o[[N{@dD |  (1—H,@du)
- t— o0 0

max(0,R;(z) — Ri(y))

y Ro(y)— Ro(z)
+ [ N§@dz) | (1—Hyw)du].
il

0

Prqdf. From equalities (30){32) and from the main renewal theorem we
have

lim P {X (t)e A} = v[ j N{ (dz) j (1—H () 4(q,(z, w)du

t— oo

+ | N§@2) | (1— HoW)L(golz, w)du].
0- 0 '

Hence we obtain directly (34).

The proof of Theorem 3 will be used to show that, in the model
GI/rO/M/rl, condition (i) (also condition (ii)) is necessary and sufficient for the
existence of the limiting distribution of the process X and we will find the

explicit form of this distribution. For this purpose in the next part we prove the
equivalence of (i) and (ii). ' ”
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4. Equivalence of the conditions. Consider the model GI [ro/M/r,. Con-
dition (ii) obtained in Theorem 2 is difficult to verify. Simultaneously, we have
here also condition (i). Thus the question arises what is the relation between
them. The next theorem contains the answer.

THEOREM 4. In the model Glfro/M/r,, condition (i) is equivalent to
condition (ii).

We divide the proof of Theorem 4 into 5 lemmas. The first of them
Contams the implication (i)=(ii). Next we consider the content process Z° r
the model GI/9/M/r,. By the assumption that the distances s° are exponential,
the process Z° is a Markov process. In Lemmas 3 and 4 we calculate the
generator of this process and in Lemma § we show that condition (ii) is
N€cessary and sufficient for the process Z° to have a unique stationary
distribution identical with the distribution N o - In the end, we prove in Lemma
6 that condition (1) is necessary for the ¢xistence of a stationary distribution of
the process Z°. ' '

LEMMA 2. Condition (i) implies condition (ii). .
~ Proof Let f, (n=1,2,...) be the sequence of densities defined recur-
Stvely by the formulas
filx) = Ho(l _Ho(x)),
for1(X) = § fix—w)f,(wydu, x>0,n=1,2,...
0

By condition (i), definitions (11), (12) and with r, assumed to be non-decreasing
and r, non-increasing, one can verify, using mathematical induction, that there
€Xist x, and g, (0 < x, < 00, 0 < g, < 1) such that for x, < y < x we have

(35) K*(x, y) < 05 fo(Ro()—Ro0)ro(x), n=1,2,...

Taking into account definition (15) and dealing identically as in [3] (see p. 357,
formulas (30)(32)), we obtain the identity

(36) K*(x, 0) = k(x)+ [ K*(x, Wk(@du, x,<x < o,

where k(x) = K(x, 0)+ [ K(x, u)K*(u, O)du.
0

- Identity (36) gives us, by Fubini’s Theorem, the following:

(37) Qf K*(u, O)du = of k(u)du + ojo k(u)(]'o K*(v, u)dv)du.

X0 X0 u

For the estimation of the integrals occurring on the right-hand side of (37) we
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use (35) and we calculate

(38) J K*(u, Odu < @of(1-00), x> X,

X

o0

(39) 0j?k(u)du < 0o j fl(u)du+onK*(v 0 | fiwdu)dv

Ro(xo) Ro(x0) — Ro(v)

X0

< @o+0o | K*(u, 0)du.
0

Combining (37){39) we complete the proof because the function K*(-, 0) is
integrable in the finite interval (see (14)).

Remark 1. It follows from the proof of Lemma 2 that instead of (i) one
can assume the condition

tyTo(X) ot (X)) S0 for 0< xo<x and 0 < g, < 1

without assuming the monotonicity of r, and r,.

Now consider the model GI"°/M/r,. The content process Z° constructed
by (29) for i = 0 is a Markov process under the assumption that the distances
s° have a common exponential distribution with parameter u,. In this
part we omit, for convenience, the indicator 0 and we write: the process Z, the
distances s, and so on. The paths of Z are right-continuous and the moments
¢ are its Markov moments. One can compare this process with the content
process considered in [3]. The last one is also a Markov process with
right-continuous paths. Namely, at the Poisson jump times the process has
jumps forming a sequence of positive i.i.d. random variables. Between the juinp
times the process decreases with intensity dependent on the state of the process.
The difference between the content process in [3] and the process Z is such
that jumps of Z are not independent because they depend on the contents just
before jumps. But if we take ry(x) =1, x >0, then the model GI'/M/r, is
identical with the model considered in [3]. Therefore, we use the methods
of investigation of Markov processes with the convergence introduced in [3]
(bounded pointwise convergence) to show that condition (ii) is necessary
and sufficient for the existence and the uniqueness of the stationary distribution
of Z.

If y is a probability distribution on (#,, %,), then let

P0)= | P.()y(dx), E()= [ E()y@dx).

Ro

For each fe b, let ¢,(x) = E_{f (Z (t))}. Further, let & and 2 be the classes
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of functions defined as follows:

&L = {feb&,: lime,(x)=f(x) for each x > 0},

t}0

2 = {feZ: lim(p,(x)—f(x))/t exists by bounded
tl0
pointwise convergence on %, and belongs to #}.

Bounded pointwise convergence on %, means that (¢(x)—f(x))/t is
bounded on R,. If feD, then the operator o defined by the formula

Af (x) = li;? (@) —f )/t

i$ called a generator (infinitesimal operator).
Finally, for each « > 0 and feb®, we define the operator &,, called
a resolvent, by

R0 = [ exp{—at} @,
0

Remark that from the construction (29) for i = 0 and from the strong
Markov property of the process Z we obtain the next auxiliary form of the
function @,

(40) (P,(X) = gul exp{_lulu} Z‘pt—u(qo(qi(xv u)’ U))dHO(v)dua x 2 0.

The next two lemmas contain the characterization of the domain & of the
Operator <. :

~ LEMMA 3. The class £ consists of all left-continuous functions. Every fe 9
'S absolutely continuous on R, with a left-continuous density.

Proof From (40) it follows that

@,(x) = exp{—p,t} flg,(x, t)+0(1)

4 t—0 for febd,. Hence we obtain the characterization of &£ because
% (x, f)—x continuously as t—0 (see (2) for a = 1).

It is known (see, e.g., [3], Proposition 2) that for every « > 0 we have
2. = 9. Thus, if f €2, then there exists a function he & such that f = #_h.
Hence by the construction (29) for i = 0 of the process Z and from its strong

arkov property we obtain

f(x)=E, {]'1 e”*h(q,(x, t))dt} +E, {exp {—ao,} 0fe“’“‘h(Z(a1 +u))du}
0 (4]

= Ex{:‘j e—ath(41(x> t))dt} + Ex{exp{—“al} f(%(ql(x’ Gl)’ SO))}’

This formula is analogous to formula (6) in [3].
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Dealing further as in the proof of Proposition 3 in [3], i.e., taking into
account that o, is exponential and that g,(x, t) = 0 for ¢t > R, (x), we calculate

f(x) =}exp{ —(@+u)(Ry (x)— Ry ) Hh(w) + py W (W))(r, (W)~ du

+(h(0)+ 1y W(0)exp{ —(x+p )R, (O} o+ )",

where

W(x) = f(qo(x, w)dH y(u).

O ey, B

It follows from this form of the function f that f is absolutely continuous
because R, is absolutely continuous and h, W are bounded. The integrand is
left-continuous because h is left-continuous (he ¥) and W, R,, r, are
continuous on #,. Hence f has a left-continuous density.

Remark 2. It follows from the proof of Lemma 3 that one can assume
only that r, is left-continuous and has strictly positive right limits in &, . Such
an assumption has been taken in [3].

LEMMA 4. The domain 9 consists of all absolutely continuous functions f on
R, having a left-continuous density f' such that r, f' is bounded on A ,.
Furthermore, if fe€ 2, then

oo}

(41) Af0) = p; [ (f(200, W)/ (0)dH,(u),

0

@) AL =y | ((dolx 1) —F C)dHo ) —r, S, x>0,

0

Proof. The proof is analogous to the proof of Proposition 4 in [3]. So we
emphasize only the differences following from the modification of the model.

By Lemma 3 we assume that f is absolutely continuous on £, with
a left-continuous density f’. Introduce the notation

a,(x) = E‘;lhexP{“lh u} :‘j (Pt—u(QO(‘h(xa u), U))dHO(.v)du,

b(x) = exp{—p,t} f(q,(x, ¥)),

¢,(x) =f(x)=f(g,(x, )},

d,(x) = (1—exp{—pu,t}) f(q,(x, 1))-
Hence we can write (40) in the form

(43) ¢.(x) = a,(x)+b,(x).
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_ Comparing (43) and (40) with formula (8) in [3] we see that the only
difference is the appearance of the function qo in the integrand. Since g, (', v) is
Continuous (see (2) for a = 0), the fact of the bounded pointwise convergence of
a(x)/t (t]0) does not change, ie., we have

(44) lim (a,(x)/t) = p, Uj?f(qo(x, v))dH,(v), xe,.
0

tl0

By (43) and the notation, we can present the difference ¢,(x)—f(x) in the form

(45) 00 —f (%) = 4,(x) = c,(0)—d,(x).

The expression b,(x) in (43) is identical with the expression b,(x) in formula (8)
of [3] (substituting 4 = p,, q(x, ) = q4,(x, t)). Thus. farther parts of the proof
of Lemma 4 and Proposition 4 in [3] are also identical and we obtain
(46) lim (d,(0/1) = 1, f(x),  xe o,

10

Where the convergence is bounded pointwise, and

(47) lim (c,(x)/t) = r,(x) f'(x), xe,,
tlo
Where the convergence is bounded pointwise iff r; /' is bounded.

Taking into account formula (45) and convergences (44), (46), (47) we
Conclude that f e 2 iff the function r, f* is bounded. Formulas (41) and (42)
follow from (44)(47) and from the fact that c,(0) = 0.

COROLLARY. Let @, denote the class of f € 9 having a non-negative density
f'. Then for fe%, we have

D

(48) Af(0) = py [ (1= Ho(RoW)) S (u)du,

0

9) atf (x) = , | (1~ Ho(Rot) — Ro(x) S @du~r, () (), xe,.

X

; The Corollary follows immediately from (41), (42) and from the definition
of 9.,

LEMMA 5. Condition (ii) is necessary and sufficient for the process Z to have
4 Stationary distribution y. Then the density g on R, of this distribution fulfills
the equation :

(50) g(x) = p(0)K(x, 0)+}K(x, wg(uwdu, x>0.
0

Equation (50) has a unique solution of the form

(51 g(x) = kK*(x,0), x> 0.
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Proof. We use the proofs of Propositions 5, 6 and Theorem 1 from [3].
Taking the arguments from the theory of Markov processes contained in
Proposition 5 from [3] we establish that Z has a stationary distribution y iff

(52) | f(x)y(dx)=0 for all fe9,
Ro
which is equivalent to
(53) 0 = E h(Z(0))—a Oj? e “E h(Z(t))dt
. - 0

for « >0 and he ¥ such that f = %, he 2.

We show using (53) that if y fulfills (52) for all f € 2 . , then it is a stationary
distribution of Z. Namely, it is easy to verify that the functions g, = q,(x, 1),
a =1, 0, are non-decreasing with respect to x for each ¢t because

dq,/dx =r(q)/r,(x) >0 for x>0 and t> 0.

Hence and from the construction of the process Z, considering two paths of
Z with the same sequences s, S and with the same functions r, (@ = 1, 0) but
with different starting points, say x, for the first one and x, for the second one,
where x; > x,, we can establish that the first path can never cross the second
path from above. Therefore, if the function h is non-decreasing, then also the
function £,k is non-decreasing for every o >0. Further, if #,h is
non-decreasing, then Z,he %, and it fulfills (52) and (53). Simultaneously, if
h is continuous, then by the right-continuity of paths of Z, the function
E h(Z (1)) is right-continuous in ¢. Thus from (53) and by the uniqueness
theorem for Laplace transforms we have

E,h(Z(t)) = E,h(Z(0)), t>0,
for all h that are non-decreasing and continuous, which implies the equality
P(Z(t)eA)=7y(4) for t >0 and Ae2,,

i.e., y is a stationary distribution of Z.
Thus we have shown that y is a stationary distribution if (52) is fulfilled for
all fe2,. Hence and from (48) and (49) we obtain

0= ,qu(O) :j)? (1—Ho(Row)) f'(w)du

+Hy E [Df (1 —Ho(Ro()— Ro(x))) /* (w)du—r,(x) f*(x)] y(dx).

By Lemma 4 the function r, f* is bounded, so y is a stationary distribution
iff the equation

© [+3]

(54) [ re@ £ pdx) = [ (T KCx, w)y(dihry () £ (9)dx
g

0 0
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1s fulfilled for-all fe P, . It is obvious that any probability measure y which is
absolutely continuous on A . and satisfies (50) also satisfies (54), and hence it is
Stfltionary. To prove the converse it suffices to take f absolutely continuous
With f'(x) = 1/r,(x) for xe(a,b], 0<a<b, and f'(x) =0 otherwise. By

mma 4 and by the definition of 2 ., such a function f belongs to 2, and
from (54) we have '

b+ b+ x
| vdx)= | (| K(x, u)y(du))dx.
a a 0-

Since g, b are arbitrary, this implies that y is absolutely continuous with density
Satisfying (50). |

Remark that (50) is identical with (16), and therefore by Theorem
2 condition (1) is necessary and sufficient for equation (50) to have a unique
Solution of the form

([0, x]) = k(1 +}K*(u, 0)du),
: 0

Le, g(x) = kK*(x, 0), x > 0.
. To complete the proof of Theorem 4 it remains to show that condition (i)
I8 necessary for the existence of a stationary distribution of the process Z.
Lemma 6. If condition (i) is not fulfilled, then the process Z has no
Stationary distribution.
Proof. Assume that

(55) Bo/uo = By/1y

and suppose that the process Z has a stationary distribution y. We show that
this leads to a contradiction.

If B, = 0, then by (55) also §, =0, and we have a contradiction with the
assumption that r, is strictly positive on # . Therefore, let 0 < §,, f; < 0.
Consider the special case of the model GI"/M/r, in which the sequences s,
§ have means 1/uy, 1/, and the functions r, (@ = 1, 0) are constant and equal
© ro(x) = Bo, x =0, 7,(x) = B,, x > 0. Denote the content process in this
Mode] by Y. Since for the process Z we have ry(x) =, for x >0 and
"1(x) < B, for x > 0, it is not difficult to remark that by the same sequences s,

and the same starting points the paths of Y are below the paths of Z. Hence,
taking for both processes the initial distribution y, we obtain

P(Y(®)<y) = y([0,y]) for t>0, ye,,
Whence
(S6) liminfP(Y() <y)>0 for some ye,.

t— o0

3~ Zastos, Mat. 203
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On the other hand, the process Y is also a special case of the content
process considered in [3], therefore by (55) we have

lim P(Y(t) <y)=0 for all ye&,

t—

(see Proposition 8, Theorems 2 and 7 in [3]).

5. Limiting distribution for the exponential output phase. Consider again
the model GI/r,/M/r,. Using the results obtained hitherto we find the limiting
distribution of the process X in this model. In Theorem 3 we have obtained the
limiting distribution of the content process in the model GI/r,/GI/r, under the
assumption that the imbedded Markov chains X have unique invariant
probability measures N, (a = 1, 0). Therefore, first we determine the problem
of the existence and uniqueness of measures N, (a = 1, 0) in our particular
case. Introduce the notation

oo = sup {x: Hy(x) < 1}.
x20
LEMMA 7. Let a5 = co. Then in the model Gl/r,/M/r, condition (i) is
necessary and sufficient for the Markov chains X°® (a =1, 0) to have unique
invariant probability measures N, defined by formulas (17) and (18).

Proof. If (i) is fulfilled, then from Theorem 1 there exist invariant
probability measures N, for X* (@ = 1, 0). The uniqueness of N¢ follows from
the irreducibility of the chain X° for the exponential H, and «, = co. For this
it suffices to show that, for each xe %, and each set Ae4, with positive
Lebesgue measure, we have Q%(x, A) > 0, where Q° is defined by (6) for a = 0.
Let A=[a,b], a<b, a,beR, and let

B, = {vedy: q,(qo(x, u), v)e 4}.

From definition (3) of the functions q, it follows that the sets B, are non-empty
for ue, such that u > Ry(a)—Ry(x). If g = 00, then :

[ dHy(u) >0 for M > Ry(a)—R,y(x).
M
Therefore it suffices to estimate

Q°(x, A) = [ dHy(w) | pyexp{—u,v}dv > 0.
‘ M B,

The uniqueness of N{ follows now from relations (4). The forms of the

measures follow from Theorems 4 and 2. Conversely, if there exist uniqueé

invariant probability measures for X* (@ = 1, 0), then, by Theorems 2 and 4,
condition (i) is satisfied.

The next lemma is a consequence of Lemmas 1 and 7.
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LEMMA 8. Let the distribution H, be exponential, let the distribution H, be
Aperiodic, and let a, = co. Then condition (i) is necessary and sufficient for the
Process Z' to have, for every i (i =0, 1), the limiting distribution

(57) v(z) = lim P (Zi()) < 2), x, zedh,,

t— w0

defined, respectively, by the equality

(58) vo(z) = N§ (2)
or
(59) C v,(2) = poN, (2,

Where N§ is of the form (17) and N, is of the form (20).

Proof. If (i) is fulfilled, then by Lemma 7 and equality (30) the Markov
Chain Z!~% has a unique invariant probability measure N;_,. Applying
Lemma 1 we obtain equality (32) for fixed i. Now, using Theorems 4 and 2 and
tf_flking into account relations (22) and (26) for a = 1, we establish that the
Tight-hand side of (32) for i =0 equals u, Ny(4)/v = N§(4), whence we
Obtain (58). Similarly, applying Theorems 4 and 2 and relation (22) for a = 0,
We establish that the right-hand side of (32) for i = 1 equals u,N,(4)/v, so we
have (59),

~ Conversely, if for every i the limiting distribution v; exists, then the
distribution Vo 1S a stationary distribution of the process Z°. Therefore, by
Lemma 5 and Theorem 4, condition (i) is satisfied.

Having these lemmas we can obtain the following limit theorem:

THEOREM 5. In the model Gl/ro/M/r,, let the distribution H, be aperiodic
and let oy = co. Then condition (i) is necessary and sufficient for the content
Process X to have a limiting distribution of the form

(60) lim P (X (2) < y) = No(y)+ N, (),

Where the functions N, (@a=1,0) are defined by formulas (20) and (19),
Tespectively.

Proof If (i) is fulfilled, then from Lemma 7, equality (30) and Lemma 1 we
iVe (32)for i = 0, 1. Hence, from (31) and from the main renewal theorem we
Obtain

lim P (X()<y)= v[? N (dv) Oj? (1—H @)0,n(q, (@, u))du

+ }O N (dv) 3‘3 (1—H o) 10,41(q0(v, w)du].
00— 0

Thug by Theorems 4 and 2 and by (22) the above implies (60).
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On the other hand, the right-hand side of (60) is a probability distribution
iff (i) is satisfied, i.e., by Theorem 4 also (i) is satisfied.

Remark 3. In Theorem 5§ we do not solve the problem of the existence of
lim P,(X(t) < y) in the case where (i) is not satisfied. It follows from Lemma

| md o}

6 that in this case there does not exist a stationary distribution of the process
Z°. Dealing similarly as in [3] (see Proposition 8 and Theorem 2 in [3]) one
can show that if (ii) is not satisfied, then

lim P (Z°()e 4) =0

t—+ oo

for Ae %, bounded. Hence and from Theorem 4 it follows that if (i) is not
satisfied, then even when lim P (Z'(t)e A) exists and it is a probability

=0
distribution, there does not exist a limiting probability distribution of X be-
cause in this case we have

lim lim P,(X(t) < y) = lim lim P(Z(t) < y)P,(x() = 1) = v/py < 1.

y—oot— o0 y—oo t—+o

The probability distribution Ng given by (17) is difficult to calculate in
general. We give some special cases where one can calculate the series K* in the
explicit form. We put ¢ = u,/u,.

Exponential input phase. Assuming

Ho(x) = 1—exp{—pox}, x>0,

we calculate

K*®D(x, y) = ui* Yexp{— uo (Ro(*) — Ry (M)} (R ()= Ry M) (r, (x)n!)~*
O0<y<x,n=0,1,..,,

and hence

K*(x, y) = prexp{—po(Ro(x) = Ro(») + 111 (R, (x)— R, ()} /r1 (),
0<y<x.

By Theorem 4 the integral
g (n1exp{—poRo(u)+ #y R, W)}/, (w)du

is finite iff

inf o (x)/o < supr, (x)/p;

x20 xz20
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Then by Theorem 2 we obtain

X

Ng(x) = k[1 +uy 5(3XP{"P‘0R0(")+1“1Rl(“)}/r1(“))du] >

0

1 (x) = k[1—exp {— o Ro(%)+ s R, (x)}

+u f(exp {—o Ro(u)+ s R, (u)} /r1(“))du] J
0

No(x) = Ng (x)/(1+0),
Ny (x) = eN{ (x)/(1+0).

Constant input intensity function. Assuming ry(x) =1 we have
from (11) the equality

K*'(x, y) = u, (1-Ho(x—p)/r,(x), 0<y<x.

T.he kernel K*! of this form has been considered in [3] and the probability
distribution N o is here identical with the stationary distribution of the content
Process given in [3]. We can obtain the remaining distributions applying
formu]as (18)~(20) and substituting R,(x) = x. The calculations of N¢ for some
Output intensity functions can be found in [7].

Constant input and output intensity functions. Assuming
To(x) = 1 and r,(x) = 1 we obtain the particular model of the above case. For
¢ <1 we have

NS =(1-0) ¥ e"(H"0),

n=0

N{ () = [Hox—wdNg @),  No(x) = N& (x)/(1+0),
0

Ni() = o] Hox—w)dNo(w), x> 0.
0

_The distributions N, and N, agree with the limiting distributions given
6] (p. 280).
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