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A NOISY DUEL UNDER ARBITRARY MOVING. II

1. Definitions and supposntlons In paper [19]-[23] of the author and in
this paper an m versus n bullets noisy duel is considered in which duelists can
move at will.
' In this paper we solve the duels in which players have one, two or three
bullets. _

Let us define the game which will be called the game (m, n). Two Players
I and II fight in a duel. They can move as they like. Maximal velocity of Player
L is v,, maximal velocity of Player II is v,, and let v; > v, > 0. Player I has
m bullets (or rockets), Player II has n bullets (rockets).

Assume that at the moment ¢ = 0 the players are in the distance 1 off from
each other and that v, +v, = 1.

Denote by P(s) the probablhty that Player I (II) achieves a success
(destroys the opponent) if he fires in the distance 1—s. We assume that the
function P(s) is increasing and continuous in the interval [0, 1] and has
a continuous second derivative inside-this interval, P(s) = 0 for s <0, P(1)= 1.

Player I gains 1 if he only achieves the success, gains — 1 if Player II only
achieves the success, and gains 0 in the remaining cases. It is assumed that the
duel is a zero-sum game. :

The duel is noisy — the player.hears the shot of his opponent.

Wlthout loss of generahty we can assume that Player II is motionless.
Then v, =1, v, =0.

~ When Player I has fired all his bullets, his motion in the direction of the
opponent loses sense. Then we shall always assume that Player I evades with
maximal speed after firing all his bullets.
' Suppose that Player I has fired all his bullets and he evades. In this case

Player IT will do the best (if he survives) if he fires all his bullets immediately
after the last shot of Player I. If, on the other hand, Player II has fired all his
bullets and Player I survives and has yet bullets, the best- what he can do is to
reach the opponent and to achieve the success surely. '

We shall keep the above assumptions throughout the paper. We suppose
also that the reader knows paper [19] and remembers the definitions, notation
and assumptions given there.
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For the definitions and notions concerning duels see [1], [5], [6], [24].
For other games of timing see [2], [3], [8], [9], [111-[13], [15], [25].

2. Duel (m, 1). Let a point a,,,€[0, 1] and let <a,,,> be the earliest moment
when Player I reaches this point (at the moment 0 he is at the point 0). Denote
by a},, the random moment,

) K o S iy +00(8),
distributed according to an absolute continuous probability distribution
(ACPD) in the above interval, a(e)—0 if ¢ 0.
Let us consider the case where Players I and II have one bullet each.
Define the following strategies £ and 5 of these players:

Strategy of Player 1. Reach the point g, ,, and if Player IT did not ﬁre
before, fire the shot at a;.

Strategy of Player II. Fire at the earliest moment when Player
I reaches the point a,, (at the moment {a,, ). If he did not reach this point, do
not fire.

The number a,, satisfies the equation

(1) P(a,,) = \/2—1.
Now, let us consider the case where Player I has m bullets, m > 2, and

Player II has one bullet. In this case we define strategies ¢ and # of these
players as follows:

Strategy of Player I Reach the point a_,, and if Player II did not fire
before, fire a shot at (a,,> and play ¢-optimally the obtained duel (m—1, 1).

Strategy of Player II If Player I reaches the point aml, fire a shot at
ay1- If he does not reach this point, do not fire.
The number a,,, satisfies the equation

- Playy)
2 P(,,) = 11 :

In {19] it is proved that in the case m = t the strategy ¢ is e-maximin and
the strategy 7 is minimax. In the case m > 2 the strategy & is e-maximin and mls
e-minimax (for a properly chosen a(g)). In both cases the value of the game is
glven by the formula

. (3) Umt =

14+(m—3)P(a,,)
| 1+(m—1)P(a,,)

3. Further definitions and assumptions. Suppose now that the duel (m, n)
begins when the distance between the players is 1 —a. This duel will be denoted
by (m, n), {(a). To simplify considerations we calculate the time also from ¢ = a.
All other suppositions about the duel (m, n) made at the beginning of the paper

holds also for the duel (m, n), (a). Thus Player I, after firing all his bullets,
evades with maximal speed, etc.
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In the further part of the paper (and in the forthcoming papers [20]-[23]
We assume that between successive shots of the same player.the time £ has to
pass.

We say that Player I assures in limit the value u, if for each ¢ > 0, £ > 0 he
has a strategy ¢, such that

@) K(&s 1) = u,—ky (e, &)

for any strategy 7 of Player I1, where k, (¢, £) is a function tending to zero when
£-0, £§50.

Similarly, Player 11 assures in limit the value u, if for each ¢ > 0, £ > 0 he
has a strategy n.; such hat

) K(&; 1) < 4 +kae,
for any strategy € of Player I, where k, (¢, £) is a function tending to zero when
€0, §-0.

Other notions defined below can be defined wider. Since I want to be
Understood also by people not working in the theory of games, I define these
Dotions in a simpler way but under the following additional assumption
(satisfied in the paper):

(C) Assume that Players I and II assure in limit the same value 2.

The number v%, will be called the limit value of the game.

Suppose that there is a strategy &; of Player I assuring in limit, in the duel
(m, n), <a), the value Unn, Where k, (g, €) = k,(é). This strategy &, will be called
Optimal or maximin in limit.

Similarly we define the optimal or minimax in limit strategy of Player II.

If, however, instead of the condition k,(§)—0 for §—>0 we have
(6) limk, (8 <,

e—0
then such a strategy ¢,, is called e-optimal in limit.

Let us consider a family & of strategies such that for each ¢ > 0, £> 0
there is a strategy ¢.; belonging to this family and being e-optimal in limit. In
the paper we consider only families & of strategies containing for each £ > 0
4 strategy &, such that ¢ < 8(8) and
@ lim 6(8) = 0.

é~0
If Player I has at his disposal such a family of strategies, then he has a strategy
$ optimal in limit.

A similar corollary is true also for Player II.

4. Duel (1, 2), {a). In this section we give a solution for the duel (1, 2), {a)>
When q is small, This solution will be necessary to solve other duels with m and

" bullets and, in particular, the duels (m, n), <0>, which is the main aim of
Papers [19]-[23] and of this article.

2 - Zastosowania Mat. 20.4
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The duel (1, 2), <{a), and generally (m, n), {a), has some pecularities.
Firstly, when a =0, Player I assures the value zero simply evading at the
moment zero. Then the value of the game (or the limit value of the game)
vY, has to be nonnegative even in the case where Player I has less bullets!
Secondly, as can be seen, for example, in the duel considered in this section,
Player II has, in general, for m < n, infinitely many optimal in limit strategies
different in this sense that he has not to fire only at <a,,), defined below, to
assure the value v9,.

Case 1. Denote by ¢ and # the following strategies of Players I and II:

Strategy of Player L. Evade if Player II did not fire a shot. If he fired,
play e-optimally the duel (1, 1).

Strategy of Player II. Do not fire as long as Player I does not reach
the point a,,. If he reaches this point, fire a shot at <{a,,)» and play optimally
the duel (1, 1).

The number a,, is given by the equation

®) Pla,y) = -1 = 2=/2
P ey, 4

We prove that if a < a,,, then the strategies ¢ and n defined above are
optimal in limit and the value of the game is

%) vl, = 0.
Suppose that Player II playing against ¢ fires at the point a’ < a. We have
K(S; @, 1ig) > —P(a)+(1 = P(@)(v;; —¢) > —P(@)+(1—P@)v,, —s

for any strategy 7, (maybe dependent on a') in the subsequent duel. Then
Player I assures in limit the value O (see Section 3).

Throughout the paper, by k(é), k;(§) we denote functions tending to zero if
£—0. '

Suppose that Player I playing against # fires before he reaches the point
a,. For such a strategy (and the point) o/, a’ < a,,, we have

K(d';n) < P(@)—(1—-P@)(1—(1 = P(@))?) +k(§)
=1-20(a)+ Q@)+ k()

= (Q(a)—1)(Q*(@)+ Q(a)— 1) + k() < k(8)
if

~1
o) > \/52 = 0,618...,

where Q(a) = 1—-P(a). Since a' < a,,, the above condition holds.
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Suppose that Player I reaches the point a,, but does not fire the shot. For
such a strategy ¢

K(& ) < —P(a ) +(1—Pla))oy, +k(@) = k(@).

Suppose that Player I fires at {a,,) (if Player II did not fire before) i.e., at
the earliest moment when he reaches the point a,,. For such a strategy £

K& n< —(1—P(a;,))* P(a,,)+ k(@) < k(d).

Suppose, finally, that (if Player II did not fire) Player I never reaches the
point a,, and never fires. For such a strategy £

K(&mn=0.
Then also Player II applying the strategy # assures in limit the value 0. This
Completes the proof of the proposition.

Let us notice that here and in the other cases it is sufficient to consider
only nonrandom strategies &, 7/ (and (d/, 50), (@, o))

Case 2. In the previous case, the strategies ¢ and # of Players I and II
were optimal in limit when a < a,,. Now, let us assume that a > a,,. Let now
¢ and 5 denote strategies of Players I and II defined as follows:

Strategy of Player 1. Evade if Player I did not fire a shot. If he fired,
Play ¢-optimally the duel (1, 1).

Strategy of Player II. Fire at {(a) and play optimally afterwards.
We prove that if
(10) 0730842 = Q(4,,) < Q) < O(ay,),

Where 4, , is the root of the equation S (Q'(dlz)) = 0 (S given in (12)), then & and
1 defined above are optimal in limit strategies of Player I and II and the limit
value of the game (1, 2), <a) is

(11) v}, = —1+(1+v,,)Q(a).
Assume that Player II fires at a’' < a. Then for such a strategy (a’, 7,)
K(; d,1g) 2 —P(@)+(1—P(a))v,, —k(9)
= —P(a)+(1—P(a))v,, —k(§) = v, —k(5).
Assume that Player IT does not fire if Player I evades. For such a strategy 7l

K(&; ) =02,
if

Q(a) < = Q(a,,).

1+v,,
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Otherwise, assume that Player I did not fire at {a). For such &
K(& 1) < —P@)+(1=P(@))v,, + k(&) = 3, +k(@).
If he fires at {a), we have
K(& 1) < (1= P@)*P(a) + k(§) < %, +k(§)
if ’
(12) $(Q@) = Q*(@—0*@—(1+v,,)Q(@) +1 < 0.

The function S(Q) is a decreasing function of the variable Q and is equal to
zero for Q = Q(d,,) = 0.730842. Then under the condition (10) the proposition
is proved.

5. Definition of the duels (m, n), <1, anc, a) and (m, n), <2, a, a n c).
Discussion. We have suppossed that between successive shots of the same
player the time é has to pass. Let

(m,n),{2,a,anc), 0<c<é,

be the duel in which Player I has m bullets, Player II has n bullets but if ¢ < &,
Player I can fire his bullets beginning from the moment {a} and Player II from
the moment <a) +c. If ¢ = §, the rule is the same with the only exception that
Player I is not allowed to fire at {a).

Similarly we define the duel (m, n), <1, anc, a).

All other definitions and suppositions made for the duel (m, n), {a)> hold
also for the above two duels.

If in the duel (m, n), {a> Player II fires as the first the bullet at the point a4’
and misses and Player I does not fire at the same moment, then the duel (m, n),
{a) reduces to the game (m, n—1), <2, a, a' A &.

" Moreover, if in the duel (m, n), {1, a A ¢, a> Player I fires as the first at the
moment ¢ > {a)+c and misses, t = {{a’)», and Player II did not fire at this
moment, then the duel (m, n), {1, a A ¢, a) reduces to the game (m—1, n), {1,
a Aé a).

The symbol {{a’>> means a moment when Player 1 is at the point a’ (not
necessarily the earliest one which is denoted by (a’)).

If as the first fires Player II and misses, then:

(a) If he fires at t < (ad+¢, t = {{a')), the duel considered reduces to
the game (m, n—1), <2, @, a' A ¢,y for some ¢,, ¢, <é.

(b) If he fires at ¢t = {a) +c, the duel considered reduces to the game (m,
n—1), {a,), where a, is the point where Player I will be at the moment
{a)+c+é

(c) If he fires at ¢ > <a) +c, t = {{a'), the duel considered reduces to the
game (m, n—1), <2, a, @ A &).

Similar situations arise also when the players fire at the same moments.
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Then if the i)layer which has only one bullet does not ﬁre, each of the duels
(m,n),<ad; (m,n),<{l,anc,a); (mn)<2,aarc)

feduces after a shot to a duel of the above three kinds.
The same conclusion holds when the players fire simultaneously.

6. Duel (1, 2), <1, anc,a).
Case 1. Define the strategies £ and #n of Players I and IIL

Strategy of Player I. Evade if Player II did not fire before If he fired,
play optimally the duel (1, 1).

Strategy of Player II. Do not fire a shot as long as Player I does not
reach the point a,,. If he reaches thlS point, fire at {a,,) and play optimally
the duel (1, 1).

From this section “play optimally” means “apply a strategy optimal in
limit”.

Denote by 1%, the limit value of the game (m, n), {1, a A ¢, a, and by
2,4 ..

Uy, the limit value of the game (m, n), <2, a, a A c).

Let us return to the duel (1, 2), {1, a A ¢, a). Comparing with the duel (1,
2), {a) it is easy to see that if a < a,,, then the strategies ¢ and # defined above
are optimal in limit and the limit value of the game is %7‘{2 =0.

Case 2. Now let the strategies ¢ and # of Players I and II be defined as
follows:

Strategy of Player L. Evade if Player I did not fire. If he fired, play
optimally the duel (1, 1).

Strategy of Player II. Fire at the moment ¢, {a) <t < {a)+c, and
blay optimally the duel (1, 1).

For each strategy & of Player I, if a < a,,, then
K& m< —P(a)+(1—P(a))v11+k(€).

Comparing with the duel (1, 2), {a) it is easy to prove that Player I assures in
limit the same value if

—P(a)+(1—P(a))v,, <0,
ie, if a > a,,. Then if a,, < a < a,,, the constant

(13) b, = —14(1+0,,)0

is the limit value of the game (1, 2), <1, a A ¢, a) and the strategies é and
N defined above are optimal in limit.
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7. Duel (1, 2), {2,a,anc).

Case 1. Let the strategies £ and # of Players I and II be the same as in
Case 1 of the previous two duels. It is easy to prove that if a < a,,, then also
now the strategies ¢ and # are optimal in limit. The limit value of the game is
1)12 = Q.

Case 2. Define ¢ and 7.

Strategy of Player I. Evade if Player II did not fire. If he fires a shot,
play optimally the duel (1, 1).

Strategy of Player IL If Player I did not fire before, fire a shot at
{ay+c and play optimally afterwards. -

When
(14) Q(d:1) < Q(a) < Q(ay),
Q(4,,) = 0.780539 is the root of the equation
(15) Q3(d,,)—(3+v,,)0(d,,)+2 =0, |
the strategies ¢ and n are optimal in limit and the limit value of the game is
(16) B2 = — 1+ (1+0,,)0(a).

The proof that Player I assures in limit a value a satisfying the conditions
(14) is the same as in the duel (1, 2), {a>. We shall prove that the same is true
for Player I

Assume that Player I applying & fires before (a)+c. We have

K(&m) < P()-Q@)(1-Q*@)+k(@) = 1-20(@)+ Q@) +k@ < 2 +k(@)
if
5(Q@) = Q*(a)—(3+v,,)Q(@)+2 < 0.

The function § is a deéreasing function of the variable Q and has the root
Q = Q(d,,). The the inequality holds for a < dy,.
Assume that Player I applying & fires at {(a)+c. We have

K& n) < —Q*@P@+kE) < —1+(1+0,,)0(a) +k(§)

if a<d,, (see (12)). )
Assume that Player I applying ¢ does not fire a shot before or at (a) +c.
We obtain

K& n) < —P@+(1—P@)v,, +k(@ = 35,+k().
The proposition is proved.
We put

Ci,={a: Q a) > Q(au)} D,, = {a: Qlay,) = Q(a) = Q(d,,)}.
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8. Results for the duel (1, 2). We have

L _ {0 - if Q(a) = Q(a,,) = 0.853553,
2141 +0,,)0()  if O(ay,) > Q(a) = Qa,;) = 0.585787:
% _ {0 lf Q(a) ? Q(a12)>
=14 (140,,)0@ i Q(a10) 2 Q(a) > 0(dy,) = 0.730842;
~ {0 if 0(a) > Q(ay ),
2T =14+ +0,)0@  if Qlay,) = 0a) > 0(d,,) = 0.780539.
9. Duel (2, 2). Define ¢ and #.

Strategy of Player I. Reach the point a,, and if Player II did not fire
before, fire a shot at a5, and play optimally afterwards.

Strategy of Player II If Player I did not fire before, fire at {a,,» and
Play optimally afterwards. If Player I did not reach the point a,, do not fire.
The numbers v,, and a,, are determined from the equations

Vs = —P(ay)+Q(a,,)0,; = P(a22)+Q(a22)v““

Let a,, €D,,. In this case

2
At

}Jtizzz = —14+(1+v,,)Q(a,,)

and from the above we obtain

(17) ( +011)Q2(a22)—(3+021)Q(a22)+2 = 0.
Since v,, > 0.414214 (see [23]), we obtain
(18)  Qfla,,) = 0.812085.

Then a,,eD,, as was assumed. Moreover,
(19) vy, = — 14 (14+0,,)0(a,,) = 0.148461.

We prove that for a,, defined by (17) the strategies £ and # are optimal in
limit if a < a,,.
Firstly, let us notice that from (2) it follows that

1 ﬁ
= (0.707107.
Qa,,) = 1+P(a11) 3 |

Then a,, < a,, and the strategies ¢ and n are well defined.
Suppose that Player II fired when Player I has been at the point a’ < a,,.
We obtain

K(S; d', 1) 2 — P(a)+Q(a)v,; — k(&)
—P(a5,) +Q(a33)v51 —k(€) = v5, — k(&)
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Suppose that Player II did not fire before <{a,,> +a(g). For such a strategy
/1 we have

K(E: 1) > Play)+ Q@) k(@) = 022~ k(o).
Then
K(E; A) = vy, —k(é)

for each strategy # of Player II. Obviously, in all these cases the functions k are,
is general, different. '
Otherwise, let us assume that Player I applying & never reaches the point
a,, and never fires. Then ’
K& n=0< Uys-

If Player I fires at @' < a,,, then
K(a, &y m) < P(@)+Q(a) 05, + k(&)

{1 —Q(a@)+k(®) if deC,,,
1-20(@)+(1+0,,)Q%(@)+k(® if d'eD,,.

The first function is an increasing function of the variable a’. The second one
has the only minimum at the point @’ = a,, (ie., if Q(a’) = 1/(1+v,,) = Q(a,,))
Then it is also increasing for a’'e D, ,, a’ea,,. For @ = a,,, that is to say for '
being at the end of the intervals C,, and D,,, both functions take the same
value. Then :

K(@, Eo; 1) < 1-20(a35)+(1+0,1)Q(@25) + k(&)
=2-(340,1)Q(a2,) +(1 +v,,)Q(az;) — 1 +(1 +v,,)Q(ay,) + k(&)
= —14+(1+v,,)0(a,,) + k(&) = v, +k(é).
If Player I fires at <a,,», then
K(& 1) < Q%(ag,)vy, +k(@) = 0.113149 + k(8) < v,, +k(§).

If, finally, Player I does not fire before or at {a,,) but reaches the point a,,, we
obtain

K< —P(ay,)+0Q(az,)v,, +k(é) = vy, +k(§).

Then if a < a,,, the strategies ¢ and n are optimal in limit.
Solutions for duels (m, 2), 2 < m < 25, are given in [23].

10. Duel (1, 3), <a). Define ¢ and #.

Strategy of Player I. Evade if Player II does not fire. If he fired (say at
@), play optimally the obtained duel (1, 2), <2, a, d’ A £).

Strategy of Player IL Fire at <a) and play optimally afterwards.
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Now
(20). K(& 1) = —P(a)+Q(@)81, +k()
B {—1+Q(a)+k(é) if aeCy,,
-1+ 40,,)Q* @ +k(@E) i aeDy,.
We prove that, for Q(a) > Q(a,;) = 0.814115,
(21) 0*(ay3)—(2+v,,)Q%a;3)+1 =0,
the strategies ¢ and # are optimal in limit and
(22) 7, = {—'1+Q(0) , ?f aeC,,,
~1+(1+0,,)0%@a) if a;, <a<ay,.

To prove this assume that Player II fires at ' < a. We obtain
K(& a, 1ig) = —P(@)+ Q@) 15, —k(E)
> —P(a)+Q(a) %5, — k(@) = v33—k(®)

foraeC,,uD,, since from (20) it follows that —P(@)+Q(a)%%, isa decreasing
function of the variable a' for a’'e C;,uD,,.
If Player 11 applying # does not fire,

K(& i) =03t
since
o —P(@) <0 for acC,,,
B =141 +0,,)0%@) < —14+(1+2,,)Q@) <0 for aeD,,.
Otherwise, if Player I applying & does not fire at the beginning of the duel,
K(& 1) < —P@)+ Q@2+ k(@) = vi+k(@)
for a < a,,,
If Player I also fires at <{a), aeC,,, then
K(&n) < — Q@) (1-Q* (@) +k() < vs+k(@)
'fOr '
—0%(@)(1-0%*@) < —1+Q(a),
ie, if
5((a) = Q*@)+Q*@)—-12>0.
8(Q) is an increasing function of the variable Q for QeQ(C,,) and
S(Q(ay,)) = $(0.853553) > 0.
Then the inequality S(Q(a)) > 0 holds for aeC,,.
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If aeD,,, we obtain the inequality
Q*(a)—(2+v,)Q*(@+1 <0
which is satisfied for Q(a) > Q(a,,) = 0.814115. Thus the proposition is proved.

Let us notice now that Case 1 does not occur as was in the duel (1, 2), {a).
Player II has always to fire at {(a) if a < a,5.

11. Duel (1, 3), <1, a A ¢, a). Define ¢ and ». _
Strategy of Player I. Evade if Player II did not fire. If he fired (say at
@), play optimally the obtained duel (1, 2), {a;, a; A ¢,),
=max(a’, a,), a,=)<ay+c<.

The symbol >t{ denotes the coordinate of the point at which Player I has been
at the moment t.

Strategy of Player II. Fire before {a)+c¢ and play optimally after-
wards.

Now the strategies £ and # are optimal in limit and
—14+0(a) if aeC,,,
—1+(1+4v,,)Q%@) if aeD,,.
For any strategy £ of Player I we have

K (& n) < —P(@)+ Q@) +k()) = 25 +k(@)

(23) by = {

if aeC,,uD,,.
On the other hand, if Player II fires a shot at a’, then

K(& d, o) 2 —P(a)+Q(a)2— k(®)
—P(@)+Q(a)¥1, — k(&) = %3 —k(#)

for aeC,,uD,, (see the duel (1, 3), {(a)).
If Player II applying 4 does not fire,

K¢ fy=0>0v3 for aeC,,uD,,.
12. Duel (1, 3), <2, a, a A ¢). Define ¢ and 2.

| Strategy of Player I. Evade if Player II did not fire. If he ﬁred a shot,
play optimally the obtained duel. :

Strategy of Player IL If Player I did not fire before, fire a shot at
{a)+c and play optimally afterwards.

We shall prove that

24) =y 1H0@ o afaeCh,,
—1+(1+4+v,))0% ) if a,<a<i,,,
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Where Q(d,,) = 0.834554 is the root of the equation
29) Q*(d13) —(1+0,,)0%(d13) —20(d;3) +2 =0,
and we shall prove that the strategies ¢ and 5 are optimal in limit.

The proof that Player I assures in limit the value 343 for a < d,, is the
same as for the duel (1, 3), {a). To prove that Player II does the same let us
assume that Player I applying & fires before {a)+c. We obtain

K(&; n) < P(a)—Q(a)(1— Q% (@) + k(&)
= 1-20(@)+ Q*(@)+ k() < B3, + k(&)
if, for aecC,,,
0*(@)—-3Q@+2<0
Or, dividing by Q(a)—1, ) _
5,(Q(@) = @*(@)+Q*(@)+Q(a)-2 > 0.
The function S,(Q) of the variable Q is increasing for Qe Q(C,,) and
S,(0(a,,)) = 0.203965 > 0.

Thus the inequality holds.
For aeD,, we obtain the condition

$,(0(a) = Q*(@)—(1+2v,,)0*(@)-20(a)+2 < 0.
This function is a decreasing one of the variable Q and S,(Q(d,5)) = 0. Then
52(Q(a) < 0 for a<d,s.
The proof in the situations when Player II fires a shot at {a) +c or after
{a)+c or does not fire at all is the same as in the duel (1, 3), <a).

13. Results for the duels (1, 3). We have

Lo _ {—l-l-Q(a) if Q(a) > Q(a,,) = 0.853553, |
B -1+ 40,,)0%@)  if Q(ay;) > Q(a) > Q(d,,) = 0.780539;
. = {—I—I-Q(a) if Q(a) = Q(ay,);
BT =14 +0,,)0%a) i Qlay,) = Q(a) = Q(ay,) = 0.814115;
2 _f-140@ if Q(a) > Q(ay,),
U141 +0,,)Q%0) i Qay5) > Qa) > Q(d,5) = 0.834554.
Then

%7‘{3 = U‘i3 = 12)‘{3 if a < 613.
14. Duel (2, 3), {a).
Case 1. Define £ and #.

Strategy of Player I If Player II did not fire before,. fire a shot at
?33 and play optimally the resulted duel. If he fired, play optimally the duel
2, 2). |
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Strategy of Player II. If Player I did not fire before, fire at {a,,> and
play optimally afterwards. If he fired (say at a'), play optimally the duel (1, 3),
{1, @ Ac, a'). If Player I did not reach the point a,,, do not fire.

We remind that the random variable a%; is distributed according to an
ACPD in the time interval

(4337, az3>+a(e)], a(e)>0 if &0

(and also if §-0, see Section 3).
The number a,, satisfies the equations

_ o
v33 = Play3)+ Q(a23)v‘123"‘ = —P(a,3)+Q(a,3)v,, = v%5.

Suppose that a,, < a,,. Then 9% = —1+4+Q(a,;) and we obtain the
equation

(26) 0%(a,3)—(3+v,,)0(ay3)+2 =0,

Q(a,3) = 0.882709. Then the assumptlon a,; < a,, holds.
Moreover,

27) vl = —14+(1+v,,)0(a,s) = 0.013757.

We shall prove that if a < a,,, then the strategies ¢ and # are optimal in
limit and 155 = 194.

Suppose that Player II fired before Player I reaches the point a,;
(@' < a,3). Then

- K(S; @, fig) 2 — P(a)+Q(a)v,, — k()
' 2 —Plazs)+Q(a33)v22 —k(€) = v35—k(é).
Suppose that Player II fires after <a,;>+a(e). For such a strategy #,
K(& ) > P(ay3)+Q(a,5) 0% ~ k(&) = o35 —k(®.
On the other hand, if Player I fired before a,,, @’ < a,, since a,,€C,,, we
obtain
| K@, &o; 1) < P@)+Q@)Hs +k(@)
= 1-20(a)+Q*(@)+ k() = P*(a)+k(9
< 1-20(a33)+ Q%(a3) + k() = v35 + k(D).
If Player I applying ¢ fires at <a,,>, we have
K (& 1) < Q%(a,3)05% + k(@) = v +k(@).
If Player I applying £ did not fire before or at <a,;», we obtain
K(& 1) < ~P(ay3)+Q(ay3)v5, + k(@) = 034 +k(é).
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If, finally, Player I never reaches the point a,; and never fires, then
K& m=0<o3
Thus the proposition is proved.
Case 2. Define ¢ and .

Strategy of Player L If Player II did not fire before, fire at a® and play
optimally the obtained duel <1, >a*( A ¢, Ya®(>. If he fired, play optimally the
duel (2, 2).

Strategy of Player II. Fire at {a) and if Player II did not fire at this
moment, play optimally the duel (2, 2). If he ﬂred play optimally the obtained
duel (1, 2), <a,>.

The strategies ¢ and #n are optimal in limit and

(28) v33 = —1+(1+v,,)Q(a)

" .

(29) 0.882709 = Q(a,;) = Q(a) > = Q(d,,) = 0.870730,
- 1+0,,

where.

(30) Q*(a53)—(34v,,) Q(a23)+2 = 0.

To prove this let us assume that Player II fires at {a). For such a strategy
1 we obtain

K(; 1) 2 —Pla)+Q(a)vy; —k(é) = v33—k(é)

lf a< a,,.

Let us assume that Player II fires after {a) +a(e). In this case, for aeC,,
we have

K(&; ) = P(a)+Q(@) 135 —k(8)
= 1-2Q(a)+Q*(a)—k(§) = 53— k(&)
if
0%(@)—(3+0,,)Q@+2>0

ioe-, if a ? 6123. ’
Player 1I also assures in limit the value v%3 since in the case where Player
I fires at {a) we have

K(&n < Q¥ @t +k(®) < —1+(1+0,,)Q@)+k(d)
for

a) = ,
0@ > 7~
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and when Player 1 does not fire at (@) we obtain
K(& m < —P(a)+Q(@)vy;, + k() = v33+k(@).
Case 3. Define ¢ and .

Strategy of Player L. Fire at {(a) and if Player II did not fire, play
optimally the obtained duel (1, 3), {1, a A ¢, a). If he fired, play optimally the
obtained duel (1, 2), <a,).

Strategy of Player II. Fire at {(a) and if Player I did not fire, play
optimally the duel (2, 2). If he fired, play optimally the obtained duel (1, 2),

{a;).
Now ¢ and n are optimal in limit for

@31 i, <a<ay,

and for these a’s we have

(32) v53; = 0.
Proof. If Player II fires later then {a) or does not fire,

K(& ) > P(a)+Q(@)vf3 — k(@) = P*(a)—k(® > —k(®).

If Player 1 fires later than {a)> or does not fire, we have

K(&m < —Pla)+Q(@)vy, +k(E) < k(@)
if

Q(a) <

140, = Q(az3)-

The proposition is proved.
15. Duel (2, 3), <1, anc, ad>.

Case 1. When a < a,,, the optimal in limit strategies of Players I and 11
are the same as in the duel (2, 3), {a).

Case 2. Define £ and n.

Strategy of Player I If Player I did not fire, fire at the random
moment @}, a; = y{a)+c{, and play optimally the resulting duel.

Strategy of Player IL Fire before (@) +c¢ and play optimally the duel
2, 2).

The value of the game is
(33) 255 = — 1 +(1+v,,)0(a).
The strategies £ and 1 are optimal in limit and formula (33) holds surely if

(34) dy3 S a <X dy3.
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The proof is similar to that for the duel (2, 3), <a), Case II, and is omitted.

16. Duel (2, 3), <2, a, anc).

Case 1. Here also the optimal in limit strategies of Players I and II are the
same as in the duel (2, 3), {a) if a < a,;.

Case 2. Define ¢ and 7.

Strategy of Player I. Fire before {(a)+c¢ and play optimally after-
wards.

Strategy of Player I If Player I did not fire before, fire at {a) + ¢ and
play optimally afterwards. If he fired, play optimally the obtained duel (1, 3),
{1, a; A cy, a,y, where a, = ><a>+c<

The value of the game is

(35) 845 = P(a)+Q(@)14; = P(a).
These strategies are optimal in limit when
(36) , dy3 S AKX ay,.

To prove this let us notlce that if ae C,,, then Player I assures the value
v23 since he fires first and 013 = P(a) for aecC,,.
On the other hand, assume that Player I fires before {(a)+c. We have

K(& 1) < P(@)+Q(a) 053+ k().
If Player I fires at {a)+c, we obtain ,
K(&; 1) < Q*(@)vi, + k(@) = k(@) < P*(a)+ k(@)
If Player I fires after (a>+c or does not fire at all, we have
| K(& 1) < —P(@)+Q(@)vy, +k(®) < P*(@) +k(3)
if
Q¥ (@—(3+1,,)0@+220

ie., when a > a,,. The proposition is proved.

17. Results for the duels (2, 3). We have

N {u;g ~ 0.013757 if 0(a) = Q(a,s) = 0.882709,

BT 14(140,)00@) i Qlayy) > Q@) > 0(d,3) = 0870730
U3 if Q(a) = Q(a,;),

3=+~ 1+(14v,,)0(a)  if Qay;) = Q) = 0(4,,),
0 if O(d,s) > 0(a) > O(a,,) = 0.853553;

<
[ 8]

2a=¥% if 0@ > 0(@y),
P*(a) if Qfaz) > 0(0) > Q(ay,).
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18. Duel (3, 3). Define & and #.

Strategy of Player I. Reach the point a,, and if Player II did not fire
before, fire at a%; and play optimally the resulting duel. If he fired, play
optimally the duel (3.2).

Strategy of Player IL If Player I did not fire before, fire at {(a,;) and
play optimally the duel (3, 2) (or (2, 2)). If he fired (say at a'), play optimally the
obtained duel (2, 3), {1, a’ A ¢, @’>. If Player I did not reach the pomt as5, do
not fire.

Assume that the number a,; is determined by the equations

D33 = P(ay5) +0(a,3)0%% = — P(as3)+Q(a33)vs,,
where v;, is given in [23], v;, = 0.289928, a,, is defined in Section 14, and

Q(a,,) = 0.882709.
We have
9% = 3y = 0.013757,
(37) D33 = 1 —(1—54)Q(a,3) = 0.129435,
(38) | Q(a,,) = i?zz ~ 0.875580.

To prove that the strategies £ and # are optimal in limit and vy, is the
value of the game assume that Player I fires before a,;. For such a strategy
(@, f,) we obtain

 K(&; d, 1) 2 —P(a)+Q(a)v;,—k(E)
—P(a,;)+0(ays)vy, —k(é) 0.1-73863.1 —k(£) > v5;—k(é).
Suppose that Player II fires after {a,,»+a(e). For such a strategy #,
K& ) > Plays) +Q(a) 45 — k(@) = vyy k(o).
If, on the other hand, Player I fires before a,; (strategy (@, £,)), then
K(@, & n) < P(@)+Q(a)%55 + k(&)

_ {1—(1—1_;‘513)Q(a’)+k(é) if @ < ay,,
T U-20@)+(1+0,,)Q% @) +k(@E)  if ay3 < d < da;.

The first expression is not greater than

1—(1—-v35)Q(ay3) + k(é) = vy5 +k(£).
The second one is not greater than

1=20(833) +(1+92,)0% (8) + k(@) = 1~ (1~135)Q(az5) + k(E) = 033 + k(9
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Since
b3 = 3% = —1+(1+0,)Q(az3).
If Player I fires at {aj;),
K(&; n) < Q*(as33)v,, +k(8) = 0.113816+ k(&) < v55 +k(4).
If Player I does not fire at {a,;» or before,
K(&; n) < —Plass)+ Q(a33)vs5 +k(E) = v33+ k(D).
If Player 1 does not reach the point a,, and does not fire,
K& n)=0<uvsy;.

This completes the proof of the proposition,

Let us notice that the strategies £ and n in the duel (3, 3) are of different
kind from those in the duel (2, 2). Now players fire at a%; and <{a,,), @,3 # @13,
whereas in the duel (2, 2) at a5, and <{a,,).

The optimal in limit strategies for the duels (m, n), n =4, 5, 6, m < n, are
given in [20]-[23]. Solutions of the duels (m, n), n < 6, n < m < 25 are given
in [23].

Noisy duels with retreat after the shots are considered by the author in
{161-[18].

For other noisy duels see [4], [10], [14], [26].
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